Email: 

Stanowisko: 

profesor instytutu
Zespół badawczy

Horizontal Tabs

Publikacje

2023

3. Strzoda, A., K. Grochla, P. Głomb, and A. Madej, "Link failure prediction in LoRa networks", International Wireless Communications and Mobile Computing Conference, IWCMC, Marrakesh, Morocco, IEEE, 07/2023.

2022

6. Książek, K., P. Głomb, M. Romaszewski, M. Cholewa, B. Grabowski, and K. Buza, "Improving Autoencoder Training Performance for Hyperspectral Unmixing with Network Reinitialisation", 21st International Conference on Image Analysis and Processing, vol. 13231, Lecce, Italy, Springer, Cham, 05/2022.
7. Grochla, K., A. Strzoda, R. Marjasz, P. Głomb, K. Książek, and Z. Łaskarzewski, "Energy-Aware Algorithm for Assignment of Relays in LPWAN", Transactions on Sensor Networks, vol. 18, issue 4, 11/2022.
8. Grabowski, B., P. Głomb, K. Książek, and K. Buza, " Improving Autoencoders Performance for Hyperspectral Unmixing Using Clustering", Asian Conference on Intelligent Information and Database Systems, vol. 1716, Ho Chi Minh City, Vietnam, Springer, 11/2022.

2021

2020

10. Głomb, P., and M. Romaszewski, "Anomaly detection in hyperspectral remote sensing images", Hyperspectral Remote Sensing: Theory & Applications: Elsevier, 2020.
13. Książek, K., M. Romaszewski, P. Głomb, B. Grabowski, and M. Cholewa, "Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks", Sensors, vol. 20, issue Recent Advances in Multi- and Hyperspectral Image Analysis, 11/2020.

2019

14. Cholewa, M., P. Głomb, and M. Romaszewski, "A Spatial-Spectral Disagreement-Based Sample Selection With an Application to Hyperspectral Data Classification", IEEE Geoscience and Remote Sensing Letters, vol. 16, pp. 467-471, March, 2019.
15. Grabowski, B., P. Głomb, M. Romaszewski, and M. Ostaszewski, "Unsupervised deep learning approach to hyperspectral anomaly detection", PP-RAI'2019, Wrocław, Poland, Wroclaw University of Science and Technology, 2019.
16. Głomb, P., K. Domino, M. Romaszewski, and M. Cholewa, "Band selection with Higher Order Multivariate Cumulants for small target detection in hyperspectral images", PP-RAI'2019, Wrocław, Poland, Wroclaw University of Science and Technology, pp. p. 121, 2019.

2018

17. Grabowski, B., W. Masarczyk, P. Głomb, and A. Mendys, "Automatic pigment identification from hyperspectral data", Journal of Cultural Heritage, vol. 31, pp. 1 - 12, 2018.
18. Romaszewski, M., P. Głomb, and M. Cholewa, "Adaptive, Hubness-Aware Nearest Neighbour Classifier with Application to Hyperspectral Data", Computer and Information Sciences: Springer International Publishing, 2018.

2017

20. Cholewa, M., P. Gawron, P. Głomb, and D. Kurzyk, "Quantum hidden Markov models based on transition operation matrices", Quantum Information Processing, vol. 16, pp. 101, 2017.

2016

21. Romaszewski, M., P. Głomb, and M. Cholewa, "Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 121, pp. 60 - 76, 2016.
22. Głomb, P., and M. Cholewa, "Performance of Interest Point Descriptors on Hyperspectral Images", Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, 2016.
23. Cholewa, M., and P. Głomb, "Two Stage SVM Classification for Hyperspectral Data", Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, 2016.
24. Romaszewski, M., and P. Głomb, "Parameter Estimation for HOSVD-based Approximation of Temporally Coherent Mesh Sequences", Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2016.

2015

25. Domino, K., P. Głomb, and Z. Łaskarzewski, "Classification of LPG clients using the Hurst exponent and the correlation coeficient", Theoretical and Applied Informatics, vol. 27, issue 1, pp. 13–24, 2015.

Strony

Historia zmian

Data aktualizacji: 10/06/2022 - 10:42; autor zmian: Łukasz Zimny (lzimny@iitis.pl)