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Abstract In this paper we propose an extended version of the ping–pong protocol
and study its security. The proposed protocol incorporates the usage of mutually unbi-
ased bases in the control mode. We show that, by increasing the number of bases, it is
possible to improve the security of this protocol. We also provide the upper bounds on
eavesdropping average non-detection probability and propose a control mode modifi-
cation that increases the attack detection probability.

Keywords Quantum cryptography · Quantum secure direct communication ·
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1 Introduction

A method of quantum secure direct communication (QSDC), contrary to quantum
key distribution (QKD) schemes, offers the confidential exchange of deterministic
messages without key agreement [12]. The interest in this fascinating idea started
a decade ago in seminal papers of Beige et al. [1] and Boström et al. [2]. Since
then QSDC techniques have been developed following two different paradigms:
exploiting indistinguishability of non-orthogonal quantum states [1,4,14,17,22] and
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based on entanglement of signal particles with a system inaccessible to the eaves-
dropper [2,6,18,25]. The protocols from the former family are usually simpler to
implement at the price of classic channel utilization in message mode, although
exceptions of this rule exist [14]. On the other hand, the entanglement based ping–
pong protocol uses classic channel only in control mode [2]. This feature can
be exploited to build and additional cryptographic security layer which improves
security of the protocol [19,24]. The ping–pong protocol has been also improved
and extended in other directions including super-dense information coding [5,21]
and its variants based on higher dimensional signal particles [20,23]. However, in
the analyses of higher dimensional variants it was assumed that control mode is
executed in at most two dual bases. This possibly understates an eavesdropping
detectability.

The main aim of this paper is to show that, by increasing the number of
bases used in the control mode, it is possible to decrease an upper bound of
the attack non-detection probability. Eavesdropping is most effectively detected
if subsequent tests are executed in randomly selected mutually unbiased bases
(MUB) [8]. Unfortunately, the problem of finding MUB for the arbitrary Hilbert
space remains unsolved and constructive solutions exist only for spaces of dimen-
sion N = pm where p is prime [7,10] and/or spaces with dimension not exceeding
six [3,15].

2 Preliminaries

2.1 Mutually unbiased bases

A sequence of orthonormal bases {B(0),B(1), . . . ,B(M)} of C
N is called MUB if, for

any two elements |b(m)k 〉 ∈ B(m), |b(n)l 〉 ∈ B(n), the following condition holds

∣
∣
∣〈b(m)k |b(n)l 〉

∣
∣
∣

2 = δm,nδk,l + 1

N

(

1 − δm,n
)

, (1)

where N denotes the dimension of underlying Hilbert space. The explicit construction
of MUB is only known in the case of dimension N = pm , where p is a prime and m
is a positive integer [7]. For an odd prime p we have [7]

|b(l)k 〉 =
N−1
∑

q=0

B(l)k,q |b(0)q 〉

= 1√
N

N−1
∑

q=0

ω�k�qω(l−1)�q�q�2|b(0)q 〉,
(2)

where ω = e2π i/N , circled operations �, �, � denote multiplication, division and
subtraction in the finite field GF(pm), respectively and |b(0)q 〉 are vectors of compu-
tational basis. In the case of p = 2 the explicit formulas for the MUB elements are
more involved [10].
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2.2 Ping–pong protocol operation

Bob, the recipient of information, prepares an EPR pair composed of qudits [9]

|ψ0,0〉 = 1√
N

N−1
∑

k=0

|b(0)k 〉|b(0)k 〉. (3)

One of the qudits, referred to as ‘home’, is kept confidential, while the second one,
called ‘travel’, is sent to Alice. Because of an entanglement, Alice’s manipulations
on the travel qudit induce non-local effects. Alice is able to encode 2 log2 N bits of
information per one protocol cycle applying one of the unitary transformations

Uμ,ν =
N−1
∑

k=0

ωμk |b(0)k+ν〉〈b(0)k |, (4)

where μ, ν = 0, . . . , N −1. Operator (4) transforms the initial state into another EPR
pair |ψμ,ν〉 [13] which can be unambiguously discriminated by Bob when the ‘travel’
qudit is returned by Alice. Eavesdropping Eve cannot distinguish the travel qudit on
its way forth and back from a maximally mixed state

ρt = 1

N

N−1
∑

α=0

|b(0)α 〉〈b(0)α |, (5)

so this way she cannot infer any information about the encoding operation used by
Alice. Because of that indistinguishability, further analysis can be carried out as if
Bob sent one of the randomly selected states |b(0)α 〉 [2]. However, Eve can entangle
the ‘travel’ qudit with some ancilla system before it reaches Alice

|ψα〉 = A|b(0)α , φ〉 =
N−1
∑

l=0

aα,l |b(0)l , φα,l〉, (6)

where α = 0, . . . , N − 1 and |φα,l〉 denotes Eve’s probe states. That way, because
of the introduced entanglement, Alice’s encoding operation also modifies the state
of the ancilla. By inspection of the ancilla’s state Eve can gain some information
about the encoded message. On the other hand, Eve’s attack operation inevitably
breaks the perfect correlation of the ‘travel’ and ‘home’ qudits, and that violation
can be detected when Alice and Bob switch to control mode in which they perform
local measurements on the possessed qudits and classically communicate their results.
Unfortunately, the control mode executed only in computational basis is insufficient,
as Eve can mount an undetectable attack in which she can infer half the informa-
tion posted by Alice [20,23]. It has been also shown in [23] that the incorporation
of dual basis removes such possibility. The question how protocol detectability can
be improved by taking into account all possible mutually unbiased bases remains
open.

Without loss of generality it may be assumed that Bob sends a state |α〉 [2,20].
It follows from (6) that p(0)α = ∣

∣aα,α
∣
∣2 describes the non-detection probability when
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computational basis B(0) is used in control mode. If Alice selects another basis B(m)
then the ‘travel’ qudit after attack is seen as

|ψα〉 = A|b(0)α , φ〉 =
N−1
∑

k=0

cα,k |b(m)k , φα,l〉, (7)

where cα,k = ∑N−1
l=0 aα,l〈b(m)k |b(0)l 〉. The attack is not detected in the basis B(m) with

probability

p(m)α = ∣
∣cα,α

∣
∣
2 =

∣
∣
∣〈b(m)α |aα,:〉

∣
∣
∣

2
, (8)

where |aα,:〉 = ∑N−1
l=0 aα,l |b(0)l 〉. The non-detection probability averaged over multiple

control mode cycles is given by

dα =
M−1
∑

m=0

qm p(m)α , (9)

where M is the number of bases and qm describes relative frequency of their selection.
It should be shown for completeness that in the control mode Bob can unambigu-

ously infer Alice’s local measurement result as long as he is informed about the used
basis. This follows from the fact that, as the local change of basis does not influence
the entanglement, the measurement performed by Alice fully determines the outcome
of Bob’s measurement. Let us suppose that Alice performed a measurement in the
basis B and obtained symbol i . In this case, the state of the system, after the projective
measurement, reads

(|Ui 〉〈Ui | ⊗ 1l)

(
∑

k

|k〉 ⊗ |k〉
)

= |Ui 〉 ⊗
(

∑

k

〈Ui |k〉|k〉
)

= |Ui 〉 ⊗ |Ui 〉,
(10)

where Ui is i th vector of the basis B. From the above one can notice that, if Bob
performs a measurement in the basis B, he will obtain the symbol i with probability 1.

3 Bounds on the non-detection probability

Let us begin with general theorem concerning non-detection probability.

Theorem 1 Let {B(0),B(1), . . . ,B(M)} be a set of M + 1 orthonormal bases, used
in the control mode of the protocol and selected equally frequently. Then, the upper
bound for the average non-detection probability (9) is given by

dα ≤ 1

M + 1
σ 2

1 (V
(α)), (11)

where σ1(V (α)) denotes the greatest singular value of V (α) =
{

B
(i)
α, j

}

i j
.
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Proof Let us denote by vm the αth element of B(m). By V (α) we denote a matrix

with rows given by bra vectors 〈vm |, i.e. V (α)
m, j = B

(m)
α, j (overline denotes complex

conjugate). If control bases are selected equally frequently the average non-detection
probability (9) can be written as

dα = 1

M + 1

∥
∥
∥V (α)|aα,:〉

∥
∥
∥

2
, (12)

and since max|x〉
∥
∥V (α)|x〉∥∥2 = σ 2

1 (V
(α)) we obtain the result. ��

Let us now assume that the control mode is executed in M + 1 mutually unbiased
bases. In this case the upper bound on the non-detection probability is stated in the
following theorem.

Theorem 2 If the control mode is executed in M + 1 mutually unbiased bases, then
the average non-detection probability is bounded by

dα ≤ 1 + M/
√

N

1 + M
. (13)

Proof Let us introduce a matrix W = V (α)V (α)† where V (α) is defined as in the proof
of Theorem 1. Directly from the definition of matrix V (α) and MUB condition (1) we
get

Wi, j = 〈vi |v j 〉 = {δi, j + (1 − δi, j )e
iφi, j /

√
N }M

i, j=0. (14)

Note that matrix W does not depend on the particular α. The maximal singular value
of the matrix W can be bounded as [16] (see also inequality [11, Eq. (3.7.2)])

σ1(W ) ≤
⎛

⎝(max
i

∑

j

|Wi, j |)(max
j

∑

i

|Wi, j |)
⎞

⎠

1/2

. (15)

Taking into account (14) we get

max
i

∑

j

|Wi, j | = max
j

∑

i

|Wi, j | = 1 + M/
√

N , (16)

and the result follows from Theorem 1 and the fact that σ 2
1 (V

(α)) = σ1(W ). ��
In the case of dimension N = pm for prime p and m being a positive integer, there

exists a set of N + 1 mutually unbiased bases [7], and the bound (13) reads

dα ≤ 1 + √
N

1 + N
. (17)

It is possible to improve this bound using explicit expression (2).

Theorem 3 Let N = pm where p is an odd prime and m is a positive integer. Then
the maximal non-detection probability is bounded by

dα ≤ 3

1 + N
. (18)

123



574 P. Zawadzki et al.

Proof Let us introduce matrix W = V (α)†V (α) for some fixed α

Wμ,ν =
N

∑

q=0

(V (α)†)μ,q Vq,ν =
N

∑

q=0

B(q)α,μB
(q)
α,ν . (19)

Matrix W may be decomposed as W = P + Q:

Pμ,ν = B(0)α,μB
(0)
α,ν = δα,μδα,ν, (20)

Qμ,ν =
N

∑

q=1

B(q)α,μB
(q)
α,ν

= ω�α�(μ�ν) 1

N

N
∑

q=1

ω(q−1)�(μ�μ�ν�ν)�2

= ω�α�(μ�ν)δμ�μ�ν�ν,0, (21)

where we have used identities ωkωl = ωk⊕l and
∑N−1

k=0 ω
k�l = Nδl,0 (see eg. [7]).

Thus,
∣
∣Qμ,ν

∣
∣ = δ(μ�ν)�(μ⊕ν),0 and using bound (15) we get σ1(Q) ≤ 2. Obviously

σ1(P) = 1. Thesis follows from (11) combined with σ 2
1 (V ) = σ1(W ) and inequal-

ity [11, Eq. (3.3.17)]

σ1(P + Q) ≤ σ1(P)+ σ1(Q) = 3. (22)

��

It has been shown that usage of at least two dual bases is sufficient to ensure asymp-
totic protocol security [23]. However, the detection capabilities of the control mode
are significantly improved when more mutually unbiased bases are used. This fol-
lows from the comparison of the bound on average non-detection probability obtained
in [23] (curve (d) on Fig. 1) with the bounds obtained herein (curves (b) and (c)).
The improvement of the protocol’s detectability becomes more apparent with the
increase of the dimension of the underlying Hilbert space—for bound from [23] we
have limN→∞ dmax = 1/2 while for (17) and (18) limN→∞ dmax = 0. Although the
asymptotic behavior of the bounds (17) and (18) is similar, they differ in the provided
optimality.

The comparison of the considered bounds with numerical results is presented
in Fig. 1. It follows that bound (18) is close to optimal. It was also verified that
the best fitting to numerical estimates is achieved for σ 2

1 (V ) = 1
2 (3 + √

5) ≈ 2.618.
Further improvement can be proposed based on the analysis of the proof of Theo-

rem 3. The matrix P is related to the control mode tests executed in the computational
basis. If that basis is excluded from the control mode, one obtains a better protocol
behaviour. We can state the following.

Corollary 1 Let us assume, that N = pm, where p is an odd prime and m is a positive
integer, and the computational basis is excluded from the control mode. In this case
an average non-detection probability is bounded by
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Fig. 1 Comparison of upper bounds on average probability of non-detection calculated: a via numerical
simulations, b with expression (18), c with expression (17), d when only two bases are used in control
mode [23] (dmax = (1 + 1/

√
N )/2)

dα ≤ 2/N . (23)

It should be noted that, as the information is encoded and decoded in the computational
basis, Eve still has to use this basis for an attack preparation. Comparing the above
bound with the numerical estimate for the seminal protocol, we observe about 30 %
improvement in an attack detection capabilities.

4 Conclusions

In this paper we have proposed an extended version of the ping–pong protocol, which
incorporates the usage of mutually unbiased bases in the control mode. We provided
upper bounds on eavesdropping average non-detection probability in the proposed
protocol.

If the communicating parties use M + 1 mutually unbiased bases in the control
mode, the bound is given by the leading singular value of the matrix with rows given
by the appropriate bra vectors. One should note that the number M of bases used in
the control mode should depend on the dimension.

If the communicating parties use particles of dimension N = pm , where p is
an odd prime and m is a positive integer, it is possible to provide a better estimate.
Assuming that Alice and Bob use N + 1 bases and construct them according to [7],
the non-detection probability averaged over sufficiently many cycles never exceeds
3/(N + 1). Eavesdropping detection capabilities can be improved by the exclusion of
the computational basis from the control mode.
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