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Abstract
We introduce a family of quantum walks on cycles parametrized by their
liveliness, defined by the ability to execute a long-range move. We investigate
the behaviour of the probability distribution and time-averaged probability
distribution. We show that the liveliness parameter, controlling the magnitude
of the additional long-range move, has a direct impact on the periodicity of the
limiting distribution. We also show that the introduced model provides a
method for network exploration which is robust against trapping.
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1. Introduction

Quantum walks [1–3], quantum counterparts of classical Markov processes, provide a
powerful method for developing new quantum algorithms [4] and protocols [5–9]. As
quantum protocols have to be executed on pair with classical protocols controlling distant
parts of a quantum network, quantum walks have to include elements enabling them to adapt
to the current structure of the network. The methods of adapting classical algorithms for the
purpose of quantum networks are currently under an active investigation [10] and include the
application of game theory in a complex quantum network with interacting parties [11].

Quantum walks on cycles can be used as a simple and very powerful model for the
purpose of modeling quantum and hybrid classical-quantum networks. In particular, in [7],
the authors have developed a model that can be used to analyze the scenario of exploring
quantum networks with a distracted sense of direction. By using this model, it is possible to
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study the behavior of quantum mobile agents operating with non-adaptive and adaptive
strategies that can be employed in this scenario.

The presented work introduces a family of quantum walks on cycles with liveliness,
corresponding to the ability to execute a long-range move. The introduced family is para-
metrized by the liveliness parameter, which is used to control the magnitude of the additional
long-range move. In particular, the proposed family contains lazy quantum walks, which can
be introduced as quantum walks with liveliness equal to0. We investigate the behavior of the
probability distribution and time-averaged probability distribution [12] for the introduced
family and generalize the results obtained by Bednarska et al [13]. We show that the live-
liness parameter has a direct impact on the periodicity of the limiting distribution. We also
show that the introduced model provides a method for network exploration which is robust
against trapping.

This paper is organized as follows. In section 2 we introduce the model of lively quantum
walks on cycles. In section 3 we study the behavior of the time-averaged limiting distribution
of the introduced model and discuss its periodicity. In section 4 we prove that the introduced
model allows the improvement of the quantum network exploration. This is achieved by
demonstrating that our model can be used to avoid trapping and to counteract malfunctions in
the network. Finally, in section 5, we discuss the possible applications and extensions of the
introduced model.

2. Lively quantum walks

Let us first consider a cycle with n nodes and define a standard model of quantum walk. The
position of a walker during a quantum walk executed on such cycle is described by a vector in
n-dimensional complex space n. The state space is of the form  Ä n2 . Quantum walk
process is defined in the situation by the shift operator

Ä = Ä +
Ä = Ä -

S i i n

S i i n

0 0 1 mod ,
1 1 1 mod , 1

(∣ ⟩ ∣ ⟩) ∣ ⟩ ∣ ( )⟩
(∣ ⟩ ∣ ⟩) ∣ ⟩ ∣ ( )⟩ ( )

or equivalently

å å= Ä + + Ä -
=

-

=

-

S i i i i0 0 1 1 1 1 , 2
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n

i

n

0

1

0

1

∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ( )

where addition is modulo n. In this case the walker has for her disposal two directions— 0∣ ⟩
(right) and 1∣ ⟩ (left)—represented in the two dimensional Hilbert space 2, corresponding to
the coin used in the classical random walk. The evolution operator is defined as

= Ä U S C , 3n( ) ( )

where C is the coin operator which acts on coin space 2.
Let us now assume that the coin register used to control a quantum walker is represented

by a vector in 3 (i.e. by a qutrit) and thus, during each step, the walker can change its
position according to one of three possible states of the coin register. Using this setup we
define lively quantum walk on cycles as follows.

Definition 1 (Lively quantum walk on a cycle). Lively quantum walk on a n-dimensional
cycle with liveliness   -a n0 1, is defined by the shift operator  Î ÄS Ln a n, 3( )( ) of
the form
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+ Ä +
+ Ä +
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x a n x
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For the case a=0 the above definition reduces to lazy quantum walk (i.e. a quantum
walk with no liveliness). One should also note that if the introduced model would included
jumps with -a parameter we could restrict our considerations to the case where ⎢⎣ ⎥⎦a n

2
.

For the small number of nodes, the existence of the additional connections can be used to
model the transition from a cycle to the full network. For example, for n=6, the lively
quantum walk with a=2 is equivalent to the quantum walk on the total network. However,
in order to study the parametrized family of processes on graphs with different degree of
connectivity, additional connections, and thus larger coins, are needed.

Operator Sx
n a,( ) acts on position x by shifting it by +1, −1 or by the value specified by the

liveliness parameter Î ¼ -a n0, 1, , 1{ }. The case a=0 is identical to the case a=n.
The coin operator used in the further considerations is defined by the Grover operator
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Using the above we define the walk operator for the lively walk on cycle as

⎛
⎝⎜

⎞
⎠⎟å= Ä

=

-

U S G . 8
x

n

x
n a

n
0

1
, ( ) ( )( )

3. Limiting distribution periodicity

We start with the proof of the periodicity of the limiting distribution for the introduced model.
Let us introduce the time-averaged probability distribution for the quantum walk as follows.

Definition 2. We define the time-averaged probability distribution at position x for a unitary
process U as

åP =
¥ =

x
N

P x tlim
1

, , 9
N t

N

0

( ) ( ) ( )
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where P x t,( ) denotes the probability of measuring position x after t steps

å y=
=

P x t c x U, , 10
c

t

0

2

0
2( ) ∣⟨ ∣ ∣ ⟩∣ ( )

and y0∣ ⟩ is arbitrary initial state.

Let us now consider a lively quantum walk with n nodes and the step size a chosen in
such a way that there is a common divisor of both numbers.

Theorem 1. If >a nGCD , 1( ) then the limiting time-averaged probability distribution is
periodic with period equal to a nGCD ,( ).

First, let us note that the spectrum of the walk operator is conveniently expressed using
Fourier basis at the position register.

Lemma 1. The walk operator  = Ä Î ÄU S G Ln a
n

n, 3( ) ( )( ) has eigenvalues lk j, with
corresponding eigenvectors  y f= Ä Î Ävk j k j k

n
, ,

3∣ ⟩ ∣ ⟩ ∣ ⟩ satisfying the equation

l=- - G v vdiag e , e , e , 11k k ka
k j k j k j

i i i
, , ,( ) ∣ ⟩ ∣ ⟩ ( )

where f = å - xek
kxi∣ ⟩ ∣ ⟩ for = = ¼ -pk l n, 0, , 1l

n

2 , Îj 0, 1, 2{ }.

Proof. We analyse the action of the step on fÄd k∣ ⟩ ∣ ⟩ for basis state Îd 0, 1, 2{ } and note
that the step operator acting on states with Fourier states on position register results in a
relative phase f fÄ = ÄS 0 e 0n a

k
k

k
, i∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩( ) , f fÄ = Ä-S 1 e 1n a

k
k

k
, i∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩( ) and

f fÄ = Ä-S 2 e 2n a
k

ka
k

, i∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩( ) . Thus we can reduce the dynamics of the states of the
form fÄv k∣ ⟩ ∣ ⟩ so that we consider the v∣ ⟩ subsystem only and we substitute the step operator
with - -diag e , e , ek k kai i i( ). Therefore any eigenvector vk j,∣ ⟩ of the form given in equation (11)
corresponds to an eigenvector of the form fÄvk j k,∣ ⟩ ∣ ⟩ of the walk operator U. +

In the context of the limiting distribution we emphasize the fact that for any eigenvector
of the form y f= Ävk j k j k, ,∣ ⟩ ∣ ⟩ ∣ ⟩ the probability distribution at the coin register

yÄ =d x d v 12k j k j,
2

,
2∣(⟨ ∣ ⟨ ∣)∣ ⟩∣ ∣⟨ ∣ ⟩∣ ( )

is position independent. This property can be applied into limiting distribution formula

*åå å y yP =
l ¢ ¢ Î

¢ ¢ ¢ ¢
l

x a a d x d x, , , 13
d k j k j V

k j k j k j k j
, , ,

, , , ,( ) ⟨ ∣ ⟩⟨ ∣ ⟩ ( )
( ) ( )

where x is the position, y y= åak l k l0 , ,∣ ⟩ ∣ ⟩, Vλ are indices of λ-eigenvectors such that
l l= =lV k j, : k j,{( ) }. It is straightforward from equation (12) that for one-dimensional

eigenspaces the probability is transition invariant

* * *y y y y= = ¢ ¢a a d x d x a a d v a a d x d x, , , , , 14k j k j k j k j k j k j k j k j k j k j k j, , , , , , ,
2

, , , ,⟨ ∣ ⟩⟨ ∣ ⟩ ∣⟨ ∣ ⟩∣ ⟨ ∣ ⟩⟨ ∣ ⟩ ( )

for ¢ = ¼x x n, 1, , . For higher-dimensional eigenspaces we are concerned with relative phase
during transition. In other words, one is assured that for two positions ¢x x, the modules of the
terms y yd x d x, ,i j⟨ ∣ ⟩⟨ ∣ ⟩ and y y¢ ¢d x d x, ,i j⟨ ∣ ⟩⟨ ∣ ⟩ are equal, however they may differ in phase.
Here we prove that the dimensionality of eigenspaces of eigenvalues lk j, is higher than one if

the relation = pk l
n

2 is satisfied for l being the multiplication of n

n aGCD ,( )
. We do not prove that

J. Phys. A: Math. Theor. 49 (2016) 375302 P Sadowski et al

4



for ¹ pk l

n a

2

GCD ,( )
the lk j, -eigenspace is one-dimensional, but the influence of the cases when it

is not true is negligible.

Lemma 2. For = pk l

n

2 and ln

n aGCD ,
∣

( )
we have that l = 1k,0 is an eigenvalue of U and the

other eigenvalues lk,1, lk,2 are mutually conjugated i.e. l l = 1k k,1 ,2 . Moreover, eigenvalues
for p¢ = -k k2 are the same.

Proof. Let us derive the characteristic polynomial for eigenvalues of the step operator on the
subspace corresponding to the fk∣ ⟩ on the position space

= - -U Gdiag e , e , e . 15k
k k kai i i( ) ( )

From assumptions we obtain that n la∣ and thus =e 1kai . Thus the characteristic polynomial
simplifies to
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⎞
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l
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3
1 2 cos 1 , 162( ) ( ) ( )

with real coefficients and the same solution for-k thusl = 10 and lemma holds. The explicit
formulas for the eigenvalues with substitution for w=e ki are
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and eigenvectors without normalization factors read
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Proof of theorem 1. In order to prove the cyclic property of the walk we consider the
limiting distribution from definition 2 in the alternative form

*å å y yP =
l ¢ ¢ Î

¢ ¢ ¢ ¢
l

x a a d x d x, , . 18
k j k j V d

k j k j k j k j
, , , ,

, , , ,( ) ⟨ ∣ ⟩⟨ ∣ ⟩ ( )
( ) ( )

We aim at proving that P = P +x x a( ) ( ). We note that for each eigenvalue λ such that
=lV 1∣ ∣ its unique eigenvector yk j,∣ ⟩ satisfies y y= +d x d x a, ,k j k j,

2
,

2∣⟨ ∣ ⟩∣ ∣⟨ ∣ ⟩∣ as a result of
lemma 1. We assume that multiple eigenvalues l l= ¢ ¢k j k j, , follow the case

= ¢ =p p -k k,l

a n

n l

a n

2

GCD ,

2

GCD ,( )
( )

( )
resulting from construction in lemma 2 and give the

= =¢e e 1ka k ai i and =¢e e 1k ki i . In particular, we show that the relative phases that occur in
the terms of the sum equation (18) vanish every a steps. Thus the equality

y y y y+ + =¢ ¢ ¢ ¢d x a d x a d x d x, , , , 19k j k j k j k j, , , ,⟨ ∣ ⟩⟨ ∣ ⟩ ⟨ ∣ ⟩⟨ ∣ ⟩ ( )

holds for ¢ ¢ Î lk j k j V, , ,( ) ( ) and overall limiting probability is periodic with the period equal
to a nGCD ,( ). +
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Thus, we observe interesting phenomena that if the paths generated by the lively steps do
not interact i.e. create separate classes of nodes, then the asymptotic probabilities become
equal within these classes. This behavior is illustrated in figure 1. One should note that the
values of the limiting distribution depends on the initial state. However, the periodicity is not
affected by the initial state.

4. Additional properties of lively walks

In this section we focus on some additional properties of the introduced model. We start by
demonstrating that the model enables us to avoid the trapping of the particle for any coin.
Next we study how the periodicity of the lively walks is disturbed if one of the links in the
network is missing.

4.1. Mean difference of position

Let us consider the situation when we have two parties (or players) using the introduced
model to execute a quantum walk on a network. The first player aims at exploring the
network, while the other one aims at stopping the exploration by trapping the quantum walk.
The second party can choose the coin used during the walk. Below we demonstrate that in
such situation the introduced model is not vulnerable for the actions of the second party and
the trapping can be avoided for any coin.

To be more precise we introduce a random variable r rX D,( ) that models the measure-
ment in canonical basis of the joint position and coin register. Using this concept trapping of a
quantum walk would mean that the probability distribution of the variable rX t, for rt being the
state of the system in time t, does not change in time. In particular the expectation value
 rX t( ) would be time-independent. Thus, in order to avoid trapping we will ensure that the
expectation value of the position changes in time.

Theorem 2. Let  =C
3,  =P

n be Hilbert spaces and  C( ) and  P( ) spaces of
density operators corresponding to them. Let us suppose that we have a lively walk with an
initial state   r Î ÄC P0 ( ) in the form r = + + Ä x x0 0 1 1 2 20

1

3 0 0(∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣) ∣ ⟩⟨ ∣.
Then for arbitrary (time-dependent) three-dimensional coin operator Ct the lively walk with

Figure 1. Illustration of the simple networks for the lively walk with n=6 and n=7
nodes and the liveliness a=2. In the case (a) all nodes belong to the same class. In the
case (b) red (dotted) and blue (dotted–dashed) links connect the nodes corresponding to
different classes exhibiting different asymptotic behavior.
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liveliness ¹a 0, can not be trapped i.e.the difference of the expectation value of the position
 -r r+X Xt t1( ) ( ) in time t is non-zero.

One should note that in principle Ct can change at each step of the evolution. For this
reason this theorem can be applied for the model with the time-dependent coin operator.

Proof. First, we note that the shift operator from equation (4) may be represented in a
different form

å= Ä
=

S c c U , 20n a

c
c

n a,

0

2
,∣ ⟩⟨ ∣ ( )( ) ( )

where = å + DU x xc
n a

x c
a, ∣ ⟩⟨ ∣( ) ( ) , d d dD = - + + ac

a
c c c,0 ,1 ,2
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modulo n. We also note that each pair of matrices Uc

n a,( ) commute. Let =em m
n
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eigenvectors of matrices Uc

n a,( ). By mathematical induction we will show that state after
arbitrary number of evolutions is of the form

åår r= Äi j e e , 21
ij ml

ij ml m l, ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ( )

where

år d= = =a a e x x e a
1

3
with and 1. 22ij mm ij m m m m

m
m, 0 0⟨ ∣ ⟩⟨ ∣ ⟩ ( )

Let us show that the relation in equation (22) are valid for the initial state. Matrix
elements of r0 are of the form
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where i j,∣ ⟩ ∣ ⟩, =i j, 0, 1, 2, are the states of the canonical coin basis.
Next we will demonstrate inductive step
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where aei i m, is eigenvalue of S which is corresponding to eigenvector i e, m∣ ⟩
Now we can show that the state from equation (21) after partial trace on position register

is of the form 

3
3 .
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The above result implies that after an arbitrary number of steps, a quantum walker moves
right, left or jumps with equal probabilities.

Let r rX D,t t be random variables corresponding to the measurement on the position and
coin register after t steps, respectively. Furthermore let r r= Ä Ä C C .t

C
n t n( ) ( )† We have
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where = =r+P D i 1

3
t 1( ) for all Îi 0, 1, 2{ }. This proves the claim. +

One should note that this enables the user to obtain an arbitrary change of position. This
does not depend on whether the >a nGCD , 1( ) .

Figure 2. Illustration of the simple network with one broken link for the lively walk
with n=7 nodes and a=2. For the standard quantum walker the broken cycle
(case(b)) is equivalent to the line segment.
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Figure 3. Influence of one broken link on the time-averaged limiting probability
distribution. Limiting distributions for the cases without broken link are plotted on the
black dotted line, whlist limiting distributions for the cases with one broken link are
plotted on the solid red line. The periodicity of the time-averaged limiting distribution
is disturbed around the nodes without the connection. Here the broken link is located
between nodes 18 and 19 (case (a)), 24 and 25 (case (b)), and 38 and 39 (case (c)),
respectively and the initial state is of the form + + Ä0 1 2 01

3
(∣ ⟩ ∣ ⟩ ∣ ⟩) ∣ ⟩.
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4.2. Networks with broken links

As the second application of the introduced model we describe a simple method of detecting
link failures in the network [14].

Let us consider the network delivering the connection for the implementation of the
lively quantum walk. In such situation the limiting distribution will have the properties
described in section 3.

Let us now consider a failure of the network, which can be described as a lack of one of
the links (seefigure 2). In this case the broken link can be understood as a connection error or
as an action of a malicious party.

We can define the model used to describe a lively walk on a cycle with one broken link.
We assume that the walker is able to execute moves with a=2. In such case the shift
operator is given as

å= + Ä + Ä + Ä

+ Ä - - + Ä - - + Ä -
=

-

S S

n n n n n

1 0 0 0 1 1 1 0 2 2 2 0

0 1 1 1 0 0 2 1 2 2 0 2 .

27

B
n

x

n

x
n,2

1

2
,2 ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣

∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣
( )

The second part of equation (27) can be interpreted as the laziness condition—e.g. in
position 0∣ ⟩ with coin pointing in the direction of a broken link, the walker does not move and
the coin is changed from 0∣ ⟩ to 1∣ ⟩. However, one should note that due to the possibility of
executing steps with a larger range, the cycle with broken links is not equivalent to a line
segment.

The time-averaged limiting distribution in this situation is presented in figure 3. One can
easily observe that the situation where one of the links is missing has a significant impact on
the periodicity of the limiting distribution. The disturbance is particularly strong around the
location of the broken link.

Suppose we know the limiting distribution for the networks without and with a broken
link, and denote them respectively P0 and P1. We want to asses if the given network has a
broken link. In other words we need to make a statistical test which tells us if the considered
model has distribution P0 or P1. Our goal is to estimate how many measurements are needed
to discover one broken link and how this number depends on the size of the network.

This problem is equivalent to finding the relationship between the best ability to dis-
tinguish between statistical hypothesis (H P:0 0 and H P:1 1) and the size of a statistical
sample (the number of measurements) [15]. The ability of distinguishing hypothesis is called
the advantage and is expressed as

a b= - -P PAdv , 1 , 28q 0 1( ) ∣ ∣ ( )

where q denotes a number of statistical samples, and α and β are errors of type I and II,
respectively. It turns out that there is a connection between the number of samples and the
best advantage for distinguishing between distributions P0 and P1

- -P P1 BestAdv , 2 , 29q
qC P P

0 1
,0 1( ) ( )( )

where  denotes that two functions are asymptotically equivalent and C P P,0 1( ) is called
Chernoff information

å= -
l

l l
< <

-C P P P i P i, inf log . 30
i

0 1
0 1

0 1
1( ) ( ) ( ) ( )
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Figure 4. Number of measurement required to assess if the network has one broken
link. The plots represent results obtained for networks with number of nodes being a
multiplicity of the liveliness parameter. Broken links are always between ⎢⎣ ⎥⎦n

2
and

⎢⎣ ⎥⎦ + 1n

2
nodes, where n is the number of nodes and the initial state is of the

form + + Ä0 1 2 01

3
(∣ ⟩ ∣ ⟩ ∣ ⟩) ∣ ⟩.
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From equation (29) we obtain that if we have »q
C P P

1

,0 1( )
samples, then we have the maximal

ability to distinguish P0 from P1.
The number of measurements required in the case of lively quantum walk with one

broken link is presented in figure 4. It is important to say, that results presented in figure 4 are
obtained by numerical approximation of Chernoff information(30). One can observe that for
large networks this number decreases with the growing liveliness parameter. This reflects the
fact that the smaller networks and for the small liveliness parameter, the density of con-
nections is higher. In such case one broken link does not have big impact on the network
structure and, as the result, on the time-averaged limiting distribution. On the other hand, for
larger networks and large liveliness parameter, the density of connections becomes smaller.
This results in more significant impact of the broken connection on the observed behavior of
the walk.

5. Concluding remarks

In this work we have introduced and studied a parametrized model of a quantum walk on
cycle. The introduced model can be used to study the situation where the near-neighbor
communication in the network is supplemented by the existence of the long-range links
between the selected nodes.

The introduced model displays the periodicity of the time-averaged limiting distribution.
We have proved that the periodicity of the limiting distribution is connected with the live-
liness parameter.

The existence of additional connections enables the utilization of the introduced model
for the purpose of quantum network exploration. In particular, the additional connection
allows avoiding the trapping of the walker for any choice of the coin. This makes the lively
walk resistant to the actions of a malicious party disturbing the programme of the quantum
walker exploring the network.

Thanks to the introduction of additional connections, the lively walk can preserve its
properties in the situation when one of the links is missing. This represents the situation when
a structural error in the network occurs. We have shown that such errors disturb the peri-
odicity properties of the introduced model. Moreover, one can argue that the additional
connections can be beneficial from the point of view of quantum walk integrity. This is due to
the fact that the additional connections make the network more resistant to broken links.
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