
Quantum Inf Process
DOI 10.1007/s11128-010-0166-1

Experimentally feasible measures of distance between
quantum operations

Zbigniew Puchała · Jarosław Adam Miszczak ·
Piotr Gawron · Bartłomiej Gardas

Received: 27 January 2010 / Accepted: 22 February 2010
© Springer Science+Business Media, LLC 2010

Abstract We present two measures of distance between quantum processes which
can be measured directly in laboratory without resorting to process tomography. The
measures are based on the superfidelity, introduced recently to provide an upper bound
for quantum fidelity. We show that the introduced measures partially fulfill the require-
ments for distance measure between quantum processes. We also argue that they can
be especially useful as diagnostic measures to get preliminary knowledge about imper-
fections in an experimental setup. In particular we provide quantum circuit which can
be used to measure the superfidelity between quantum processes. We also provide a
physical interpretation of the introduced metrics based on the continuity of channel
capacity.

Keywords Quantum information · Quantum noise · Quantum tomography

1 Introduction

Recent applications of quantum mechanics are based on processing and transferring
information encoded in quantum states [1,2]. The full description of quantum infor-
mation processing procedures is given in terms of quantum channels or quantum
processes, ie. completely positive, trace non-increasing maps on the set of quantum
states [1].

In many areas of quantum information processing one needs to quantify the differ-
ence between ideal quantum procedure and the procedure which is performed in the
laboratory. Theoretically these imperfections can be measured using state tomog-
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raphy [3,4] or process tomography [5,6]. In particular the problem of quantify-
ing the distance between quantum channels was studied in the context of channel
distinguishability [7–10]. The problem of discrimination of memory-channels was
considered in Ref. [11], where it was shown that memory assisted protocols are needed
in this scenario.

The problem of identifying a universal measure which could be used for this purpose
was first comprehensively addressed in Ref. [12]. In this work the authors provided the
list of requirements which should be satisfied theoretically, as well as experimentally,
in order to make the measures of distance between quantum processes meaningful.

Another approach to define a fidelity criterion for quatum channels is presented in
Ref. [13]. Authors define minimax fidelity which is noncommutative generalization of
maximal Hellinger distance between classical positive probability kernels. The mini-
max fidelity has a direct operational meaning and it gives free dimensional bounds
to the CB-norm distance. Unfortunately to obtain minimax fidelity one must perform
optimization procedure with respect to the set of quantum states.

The main aim of this paper is to present two measures of distance between quantum
processes which can be measured directly in laboratory without resorting to process
tomography. For this purpose we use measures based on the superfidelity, the func-
tional introduced recently [14–16], to provide an upper bound for quantum fidelity. We
introduce metrics on the space of quantum operations based on superfidelity and we
examine their properties. We propose a simple quantum circuit which allows for the
measurement of superfidelity between quantum processes. Hence, to our knowledge,
we provide the first examples of metrics on the space of quantum operations which
can be measured directly in laboratory without resorting to process tomography. We
test our quantities against the requirements introduced in Ref. [12] and show their
relations with J fidelity introduced therein. We provide a physical interpretation of the
introduced metrics based on the continuity of channel capacity. We also argue that the
proposed metrics can be especially useful as the diagnostic measures allowing to get
preliminary knowledge about imperfections in an experimental setup.

2 Preliminaries

Let H be a separable, complex Hilbert space used to describe the system in question.
The state of the system is described by the density matrix, ie. operator ρ : H → H,
which is positive (ρ ≥ 0) and normalized (trρ = 1).

In what follows we denote by MN the space of density matrices of size N .
We restrict our attention to the finite-dimensional case.

Recently a new measure of similarity between quantum states, namely superfidelity
G(ρ, σ ), was introduced [14]

G(ρ, σ ) = trρσ +
√

1 − trρ2
√

1 − trσ 2. (1)

The most interesting feature of the superfidelity is that it provides an upper bound
for quantum fidelity [14]
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F(ρ1, ρ2) ≤ G(ρ1, ρ2). (2)

It also provides lower [16] and upper [15] bound for the trace distance

1 − G(ρ1, ρ2) ≤ Dtr(ρ1, ρ2) ≤
√

τ

2

√
1 − G(ρ1, ρ2), (3)

where τ = rank(ρ1 − ρ2). In (2) we have an equality either for ρ, σ ∈ M2 or in the
case where one of the states is pure.

The superfidelity has also properties which make it useful for quantifying the dis-
tance between quantum states. In particular we have:

1. Bounds: 0 ≤ G(ρ1, ρ2) ≤ 1.
2. Symmetry: G(ρ1, ρ2) = G(ρ2, ρ1).
3. Unitary invariance: for any unitary operator U , we have

G(ρ1, ρ2) = G(Uρ1U †, Uρ2U †).

4. Concavity: G(ρ1, αρ2 + (1 − α)ρ3) ≥ αG(ρ1, ρ2) + (1 − α)G(ρ1, ρ3) for any
ρ1, ρ2, ρ3 ∈ MN and α ∈ [0, 1].

5. Supermultiplicativity: for ρ1, ρ2, ρ3, ρ4 ∈ MN we have

G(ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) ≥ G(ρ1, ρ3)G(ρ2, ρ4).

Note that the superfidelity shares properties 1.-4. with fidelity. However, in contrast
to the fidelity, the superfidelity is not multiplicative, but supermultiplicative.

In Ref. [15] the authors showed that G is jointly concave in its two arguments. Note
that the property of joint concavity is obeyed by square root of the fidelity but not by
the fidelity.

It was also shown that it can be used to define such metrics on MN [14] as

CG(ρ, σ ) = √
1 − G(ρ, σ ) (4)

or

AG2(ρ1, ρ2) = arccos(G(ρ1, ρ2)). (5)

The problem of finding the measure of difference between ideal and real quantum
processes was first studied in depth in Ref. [12], where the authors proposed the list
of requirements for gold-standard metric between quantum processes.

If ∆ is a candidate for distance measure, the criteria are as follows:

(R1) Metric: ∆ should be a metric.
(R2) Easy to calculate: it should be possible to evaluate ∆ in a direct manner.
(R3) Easy to measure: there should be a clear and achievable experimental procedure

for determining the value of ∆.
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(R4) Physical interpretation: ∆ should have a well-motivated physical interpreta-
tion.

(R5) Stability: ∆(1 ⊗ Φ,1 ⊗ Ψ ) = ∆(Φ,Ψ ), where 1 is the identity operation on
an additional quantum system.

(R6) Chaining: ∆(Φ2 ◦ Φ1, Ψ2 ◦ Ψ1) ≤ ∆(Φ1, Ψ1) + ∆(Φ2, Ψ2).

As already noted in Ref. [12], it is hard to find a quantity which fulfills all of the
above requirements. On contrary, in many cases it is desirable to use some kind of
quantity which does not posses all of the required features to get some preliminary
insight into the nature of errors occurring in the experimental setup.

3 Metrics based on superfidelity

Let ∆G be a distance measure based on the superfidelity between Jamiołkowski states
of processes [1]. In this paper we consider two functions CG , motivated by root infi-
delity,

CG(Φ,Ψ ) = √
1 − G(ρΦ, ρΨ ), (6)

and AG2 , motivated by Bures angle,

AG2(Φ,Ψ ) = arccos G(ρΦ, ρΨ ). (7)

Note that the above metrics defines the same topology.
Superfidelity is a continuous function on the space of quantum states with respect

to both arguments. Thus, metrics CG and AG2 are continuous with respect to a per-
turbation of a given map.

3.1 Basic properties (R1, R2)

It was shown in Ref. [14] that quantities defined in Eqs. (4) and (5) do provide the met-
rics on the space of quantum states. As such CG and AG2 fulfill requirement (R1).

Also from the definition of superfidelity it is clear that ∆G can be easily calcu-
lated—requirement (R2). From the computational point of view the calculation of
∆G , using standard mathematical software, is also much efficient than in the case of
metrics based on fidelity [15].

3.2 Measurement procedure (R3)

Any useful distance measure for quantum processes should be easy to measure in a
laboratory. In the case of any metric based on superfidelity this is to say that it should
be easy to measure the superfidelity between quantum processes.

In Fig. 1 a quantum circuit used for measuring the superfidelity between two quan-
tum processes is presented. In the first step one needs to produce Jamiołkowski matri-

123



Distance between quantum operations

Fig. 1 Quantum circuit for
measuring trρΦρΨ . The
probability P0 of finding the top
qubit in state |0〉 leads to an
estimation of trρΦρΨ =
2P0 − 1 [17]. This allows direct
estimation of process
superfidelity. See Ref. [18] for
the description of quantum gates
used in this circuit

ces for analyzed processes as described in Ref. [6]. In the second step we utilize the
scheme proposed in Ref. [17].

The circuit works for quantum channels of an arbitrary dimension. Its only draw-
back is that it requires controlled SWAP operation, which makes it problematic for
realization using contemporary technology [19].

In order to measure the superfidelity between two one-qubit channels one needs
five qubits and for measuring the superfidelity between two n-dimensional states one
needs 2 + 4n dimensional space. Note that the measurement is performed on a qubit
indeferently of the dimensionality of the system on which the channels act.

One should also note that the presented quantum circuit can be used to measure the
fidelity between a unitary operation and an arbitrary quantum channel. As such it can
be used in the situation when one needs to measure the difference between an ideal
(ie. unitary) process and a real (ie. noisy) process.

The advantage of the presented measurement procedure is that it requires less
resources than process tomography of channels one wish to compare. One can com-
pare the method presented above with ancilla-assisted process tomography (AAPT)
[20]. In order to perform full AAPT of a quantum process described by Jamiołkowski
matrix of dimension d = 2n one needs to perform d + 1 measurements using mutual
unbiased bases. In our case one needs only one one-qubit measurement.

3.3 Physical interpretation (R4)

The physical interpretation of superfidelity based metrics can be given in terms of con-
tinuity of channels capacities. The results in Ref. [21] give the connection of capacities
with the diamond norm, defined for mappings from B(Hin) to B(Hout) as

‖Φ‖	 = max{‖(Φ ⊗ 1)(X)‖1 : X ∈ B(Hin ⊗ Href), ‖X‖1 = 1}. (8)

Using stability results concerning diamond norm [22, Chap. 11] one can take
dim(Href) = dim(Hin).

To obtain continuity first note that the inequality (3) gives an upper bound for the
trace distance which depends on system dimension in terms of CG . From the equiv-
alence of topology generated by AG2 and CG , it follows that for a fixed dimension
if two channels are close in the superfidelity based metrics they are close in trace
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distance defined for Jamiołkowski matrices. All norms on finite dimensional space are
equivalent. Taking into account the stability results concerning diamond norm, one
can see that trace norm defined for Jamiołkowski matrices and diamond norm defines
the same topology.

Thus if two channels are close in the superfidelity based metrics they are close in
metric generated by diamond norm [23]. Following results from Ref. [21] we obtain
that two channels close in the superfidelity based metrics have similar classical capac-
ity, quantum capacity, and private classical capacity.

3.4 Stability (R5)

In this paragraph we show the stability of distance measures based on superfidelity
∆G between Jamiołkowski matrices of processes. In fact we will even show, that if
we extend both channels by the same unitary channel (not necessarily identity) the
superfidelity-based distance measures do not change.

We have the following lemma.

Lemma 1 Let Ψ,Φ be given channels and let τ be a unitary quantum channel, then

G(ρτ⊗Ψ , ρτ⊗Φ) = G(ρΨ , ρΦ). (9)

Proof To prove the above all we need is the fact that Jamiołkowski state of unitary
channel is a rank 1 projector, the fact that ρΨ1⊗Ψ2 is a permutation similar to ρΨ1 ⊗ρΨ2

and the following lemma. 
�

Lemma 2 Let |φ〉 be a normalized vector, then

G(|φ〉 〈φ| ⊗ ρ1, |φ〉 〈φ| ⊗ ρ2) = G(ρ1, ρ2). (10)

Proof To obtain the lemma it is enough to notice that

tr(|φ〉 〈φ| ⊗ ρi )(|φ〉 〈φ| ⊗ ρ j ) = tr(|φ〉 〈φ| |φ〉 〈φ|)trρiρ j = trρiρ j (11)

for any i, j ∈ {1, 2}. 
�

From Lemma 1 we have that any ∆G fulfills requirement (R5).

3.5 Chaining (R6)

Despite its simple form superfidelity, in contrast to fidelity or trace distance, is not
monotone under the action of quantum channels. This fact was proved in Ref. [15].
One can easily construct an example similar to the one used in Ref. [15] to see that
the superfidelity between quantum channels fails to fulfill requirement (R6).
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To get counterexample one may consider the following Jamiołkowski states

ρΦ1 = ρΦ2 = 1

2

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , (12)

ρΨ1 = 1

2

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , ρΨ2 = 1

2

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ (13)

representing quantum channels Φ1, Φ2, Ψ1 and Ψ2 respectively. However, this prop-
erty holds if we aim to compare unitary (ie. ideal) quantum operations with general (ie.
noisy) quantum operations. In this particular case superfidelity reduces to J fidelity.

Chaining rule is important if one aims to compare quantum processes divided into
smaller steps. It holds for distance measures proposed in Ref. [12].

4 Examples

To get a deeper insight into a behavior of superfidelity-based distances we provide
explicit formulas for the selected families of quantum channels.

4.1 One-qubit channels

We start by analyzing one-qubit channels. In this case dynamical matrix can parame-
trized as Ref. [24] (up to two orthogonal transformations [1, Sect. 10.7])

D = 1

2

⎛

⎜
⎜
⎝

ηz + κz + 1 0 κx + iκy ηx + ηy

0 −ηz + κz + 1 ηx − ηy κx + iκy

κx − iκy ηx − ηy −ηz − κz + 1 0
ηx + ηy κx − iκy 0 ηz − κz + 1

⎞

⎟
⎟
⎠ , (14)

where parameters κ = (κx , κy, κz) and η = (ηx , ηy, ηz) are real vectors representing
distortion and translation of the quantum state in the Bloch ball.

Let DΨ and DΦ be two dynamical matrices parametrized by vectors κΨ , ηΨ and
κΦ , ηΦ respectively.

After straightforward calculations we get

G(ρΨ , ρΦ) = 1

4
(1 + κΨ · κΦ + ηΨ · ηΦ

+
√

3 − ||κΨ ||2 − ||ηΨ ||2
√

3 − ||κΦ ||2 − ||ηΦ ||2
)

, (15)

where ‘·’ denotes the scalar product.
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One should note that it is hard to obtain concise formula for the fidelity or trace
distance between two one-qubit channels.

4.2 Selected higher-dimensional channels

We start with an elementary result concerning the superfidelity on commuting matrices
[14].

Lemma 3 Let ρ1 and ρ2 be hermitian matrices with eigenvalues λ and µ respectively.
If ρ1ρ2 = ρ2ρ1 then there exists an orthonormal basis {|i〉}i such that

ρ1 =
∑

i

λi |i〉 〈i | and ρ2 =
∑

i

µi |i〉 〈i | . (16)

With this notation we have

G(ρ1, ρ2) = λ · µ +
√

(1 − |λ|2)(1 − |µ|2). (17)

This lemma enables us to obtain explicit formulas for the superfidelity between
quantum channels for some interesting families discussed below.

4.2.1 Depolarizing channel

For any p ∈ [0, 1] we define a depolarizing channel as Ref. [2]

κd,p(ρ) = pρ + (1 − p)tr(ρ)
1

d
1. (18)

It is a d-dimensional CP-TP map. It is not difficult to notice that ρκd,p and ρκd,q

commute, thus we have

G(ρκd,p , ρκd,q ) = 1

d2

(
1 + (d2 − 1)pq + (d2 − 1)

√
(1 − p2)(1 − q2)

)
. (19)

4.2.2 Generalized Pauli channel

Generalized Pauli channel �d is an extension to any dimension of the one-qubit Pauli
channel [2].

For two generalized Pauli channels ρp and ρq given by the probability distribution
matrices pi, j and qi, j , we can find a direct formula for their similarity in terms of
superfidelity

G(ρp, ρq) = tr(pqT ) +
√

1 − tr(ppT )

√
1 − tr(qqT ). (20)
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This follows from the fact that ρp and ρq commute and vectors p, q ∈ Rd2
are

eigenvalues of ρp and ρq respectively.

4.2.3 Werner-Holevo channel

Werner-Holevo channel cannot be represented as generalized Pauli channel.
For dimension d and parameter p ∈ [− 1

d−1 , 1
d+1 ] we define Werner-Holevo chan-

nel as

κT
d,p(ρ) = pρT + (1 − p)tr(ρ)

1

d
1. (21)

Thus we have

G(ρT
κd,p

, ρT
κd,q

) = 1

d2

(
1 + (d2 − 1)pq + (d2 − 1)

√
(1 − p2)(1 − q2)

)
. (22)

Since the dynamical matrices for depolarizing channel and Werner-Holevo channel
commute, one can also easily calculate the superfidelity between these channels. In
this case it reads

G(ρκd,p , ρ
T
κd,q

) = 1

d2

(
1 + (d − 1)pq + (d2 − 1)

√
(1 − p2)(1 − q2)

)
. (23)

4.2.4 Dephasing channel

Let Ft = F†
t be a d-dimensional dephasing matrix ie. (Ft )i i = 1 and (Ft )i j = fi j (t)

for i = j . We define channel DFt as follows

DFt : ρ0 → Ft • ρ0, (24)

where by ‘•’ we denoted the Hadamard product of matrices. One can easily see that
for these types of channels

Gt (f, g) = 1

d2

(
(f t )

† · gt +
√

d2 − ‖f t‖2
√

d2 − ‖gt‖2,

)
(25)

which in the case gt = f∗
t reduces to

Gt (f, f∗) = 1 − ‖ ft‖2 − (f t )
† · f∗

t

d2 . (26)

Here f t stands for a vector obtained from matrix Ft by the reshaping procedure [1],
and ‖ · ‖ represents a standard norm on C

d .
Note also that the results (25) and (26) hold in the case of arbitrary hermitian matrix

Ft , not only a dephasing matrix.
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Fig. 2 Probability distributions of trace distance (Dtr ), root infidelity (CF ) and root “superinfidelity”
(CG = √

1 − G) for one-qubit quantum channels

4.3 Statistical properties

In order to asses the quality of the distance measures based on superfidelity we have
analyzed its statistical behavior. We have compared the average superfidelity with the
average fidelity between one-qubit quantum channels. We have also analyzed average
superfidelity and average fidelity between quantum channels for higher-dimensional
random channels.

Measures based on fidelity and trace distance (J fidelity and J process distance)
provide natural benchmarks for testing new measures on the space of quantum oper-
ations.

Using the algorithm by Bruzda et al.[25] we have generated 106 pairs of normal-
ized dynamical matrices representing one-qubit quantum channels. For this sample
we have calculated the distance measures CF , Cg , Dtr (see Fig. 2).

Numerical results presented in Fig. 2 indicate that in the case of one-qubit channels
the superfidelity (or metrics based on it) can be used to approximate trace distance or
measures based on fidelity. Thus, the circuit used to measure the superfidelity can be
used to provide some insight into the behavior of these measures.

5 Concluding remarks

We have introduced the measure of similarity between quantum processes constructed
as the superfidelity between corresponding Jamiołkowski states. We have used this
quantity to introduce two metrics on the space of quantum operations—CG and AG—
motivated by root infidelity and Bures angle. We have argued that the introduced
quantities can be used as diagnostic measures for probing errors occurring during
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physical realizations of quantum information processing. This is especially true as
we have shown that the presented quantities can be potentially measured in labora-
tory. Also, a quantum circuit, constructed to measure the superfidelity can be used to
measure the fidelity between a unitary evolution, regarded as an ideal channel, and
an arbitrary quantum process, realized in a laboratory. Thus, the presented quantum
circuit can be used to calibrate experimental setup with respect to some ideal setup. We
also provide a physical interpretation of the introduced metrics based on the continuity
of channel capacity. For the special case of one-qubit channels superfidelity between
quantum operations can be used as a relatively good approximation of the fidelity.
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