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Abstract In the presented work, we aim at exploring the possibility of abandon-
ing complex numbers in the representation of quantum states and operations. We
demonstrate a simplified version of quantum mechanics in which the states are rep-
resented using real numbers only. The main advantage of this approach is that the
simulation of the n-dimensional quantum system requires n2 real numbers, in con-
trast to the standard case where n4 real numbers are required. The main disadvantage
is the lack of hermicity in the representation of quantum states. UsingMathematica
computer algebra system we develop a set of functions for manipulating real-only
quantum states. With the help of this tool, we study the properties of the introduced
representation and the induced representation of quantum channels.

Keywords Quantum states · Random density matrix · Quantum mathematics

1 Introduction

Quantum information theory aims at harnessing the behavior of quantum mechan-
ical objects to store, transfer and process information. This behavior is, in many
cases, very different from the one we observe in the classical world [8]. Quantum
algorithms and protocols take advantage of the superposition of states and require
the presence of entangled states. Both phenomena arise from the rich structure of
the space of quantum states [1]. Hence, to explore the capabilities of quantum infor-
mation processing, one needs to fully understand this space. Quantum mechanics
provides us also with much larger allowed operations than in classical case space. It

J.A. Miszczak (B)
Institute of Theoretical and Applied Informatics,
Polish Academy of Sciences, Baltycka 5, 44100 Gliwice, Poland
e-mail: jmiszczak@acm.org

J.A. Miszczak
Applied Logic, Philosophy and History of Science Group,
University of Cagliari, Via Is Mirrionis 1, 09123 Cagliari, Italy

© Springer International Publishing AG 2017
I.S. Kotsireas and E. Martínez-Moro (eds.), Applications of Computer Algebra,
Springer Proceedings in Mathematics & Statistics 198,
DOI 10.1007/978-3-319-56932-1_21

305

jmiszczak@acm.org



306 J.A. Miszczak

can be used to manipulate quantum states. However, the exploration of the space of
quantum operations is fascinating, but a cumbersome task.

Functional programming is frequently seen as an attractive alternative to the tradi-
tionalmethods used in scientific computing,which are basedmainly on the imperative
programming paradigm [4]. Among the features of functional languages whichmake
them suitable for the use in this area is the easiness of execution of the functional
code in the parallel environments.

During the past few years Mathematica computing systems have become very
popular in the area of quantum information theory and the foundations of quantum
mechanics. Themain reason for this is its ability tomerge the symbolic and numerical
capabilities, both of which are often necessary to understand the theoretical and
practical aspects of quantum systems [3, 5, 10, 11].

In this paper, we utilize the ability tomerge symbolical and numerical calculations
offered byMathematica to investigate the properties of the variant of quantum theory
based on the representation of densitymatrices built using real-numbers only.We start
by introducing the said representation, including theMathematica required functions.
Next, we test the behavior of selected partial operations in this representation and
consider the general case of quantumchannels acting on the space of real-only density
matrices. In the last part, we provide some insight into the spectral properties of the
real-only density matrices. Finally, we provide the summary and the concluding
remarks.

1.1 Preliminaries

In quantum mechanics the state is represented by positive semidefinite, normalized
matrix. In the following, we focus on this property as it is crucial for the properties of
quantum states and channels. To be more specific, we aim at using symbolic matrix
which is Hermitian. Using the symbolic capabilities of Mathematica they can be
expressed as

SymbolicDensityMatrix[a_, b_, d_] := Array[
If[#1 < #2, a#1,#2 + I b#1,#2 , If[#1 > #2, a#2,#1 − I b#2,#1 , a#1,#2 ]] &, {d, d}]

In the above definition slots a_ and b_ are used to specify the symbols used to
denote the real and the imaginary parts of the matrix elements.

Additionally one has to take into account the fact that symbols a_{i, j} and b_{i, j}
represent real numbers. This fact is useful during the simplifications in the formulas
and can be expressed using the function

SymbolicDensityMatrixAssume [ a_ , b_ , d_ ] :=
$Assumptions = Map[Element [# , Reals ] &,

Flatten [ Join [
Table [ai, j , { i , 1 , d} , { j , i , d } ] , Table [bi, j , { i , 1 , d} , { j , i +1 , d}]

] ]
]
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It is easy to see that the normalization condition can be easily added to the list
of assumptions. However, the conditions for the positivity, e.g. in the form of the
positivity conditions for the principal minors, are more complicated [2, Chap. 1].

One should note that, in order to utilize the hermicity conditions for a matrix
defined using function SymbolicDensityMatrix, is it necessary to execute function
SymbolicDensityMatrixAssume with the same symbolic arguments.

Another function useful for the purpose of analyzing the operation on quantum
states is SymbolicMatrix function defined as

SymbolicMatrix[a_ , d1_, d2_] := Array[Subscript[a , #1, #2] &, {d1, d2}]

Using Flatten function in combination withMapwe can impose a list of assump-
tions on the elements of the symbolic matrix. For example, if one needs to ensure
that the elements of the matrix mA are real, this can be achieved as

mA = SymbolicMatrix [ a , 2 , 2 ] ;
$Assumptions = Map[Element [ # , Reals ] &, Fla t t en [mA] ]

2 Using Real Density Matrices

Clearly, the representation of the density used in Sect. 1.1 is redundant as the off-
diagonal element ai, j + ibi, j is conjugate to a j,i − ib j,i . Using this observation, we
can represent any density matrix as a real matrix with elements defined as

R[ρ]i j =
{

Reρi j i ≤ j
−Imρi j i > j

. (1)

The above definition can be translated into Mathematica code as

ComplexToReal[denMtx_] := Block[{d = Dimensions[denMtx][[1]]} ,
Array[ If[#1 <= #2, Re[denMtx[[#1 , #2]]] , − Im[denMtx[[#1 , #2]]]] &, {d, d}]]

Thus, for a given densitymatrix, describing d-dimensional systemwe get amatrix
with n2 real elements, instead of a matrix with n2 complex (or n4 real) elements.
Note, that these numbers can be reduced during the simulation due to the positivity
and normalization conditions, but this requires distinguishing between diagonal and
off-diagonal elements.

In the following, we denote the map defined by the ComplexToReal function as
R[·]. One should note that R : Mn(C) �→ Mn(R). However, we will only consider
multiplication by real numbers as it does not affect the hermicity of the density
matrix.

The real representation of a density matrix contains the same information as the
original matrix. As such it can be used to reconstruct the initial density matrix.

Assuming that realMtx represents a real matrix obtained as a representation of
the density matrix one can reconstruct the original density matrix as
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RealToComplex[realMtx_] := Block[{d = Dimensions[realMtx][[1]]} ,
Array[ If[#1 < #2, realMtx[[#1 , #2]] + I realMtx[[#2 , #1]] ,

If[#1 > #2, realMtx[[#2 , #1]] − I realMtx[[#1 , #2]] ,
realMtx[[#1 , #2]]]] &, {d, d}]

]

The map defined by the function RealToComplex will be denoted as C[·]. It is
easy to see that for any ρ we have R[C[ρ]] = ρ.

One can also see that mapsR and C are linear if one considers the multiplication
by real numbers only. Thus, it can be represented as a matrix on the Hilbert–Schmidt
space of density matrices. Using this representation one gets

R[ρ] = res−1 (MR res(ρ)) (2)

where res is the operation of reordering elements of the matrix into a vector [6].
The introduced representation can be utilized to reduce the amount of memory

required during the simulation. For the purpose of modelling the discrete time evo-
lution of quantum system, one needs to transform the form of quantum maps into
the real representation. For a map Φ given as a matrix MΦ one obtains its real
representation as

MR[Φ] = MRMΦMC (3)

One can see that this allows the reduction of the number of multiplication operations
required to simulate the evolution.

3 Examples

Let us now consider some examples utilizing maps R and C. We will focus on the
computation involving symbolic manipulation of states and operations. Only in the
last example, we use the statistical properties of density matrices which have to be
calculated numerically.

3.1 One-Qubit Case

In the simplest case of two-dimensional quantum system, the symbolic densitymatrix
can be obtained as

SymbolicDensityMatrix[a , b, 2]

which results in (
a1,1 a1,2 + ib1,2

a1,2 − ib1,2 a2,2

)
. (4)
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The list of assumptions required to forceMathematica to simplify the expressions
involving the above matrix can be obtained as

SymbolicDensityMatrixAssume[a , b, 2]

which results in storing the following list

{a1,1 ∈ Reals , a1,2 ∈ Reals , a2,2 ∈ Reals , b1,2 ∈ Reals}

in the global variable $Assumptions.
InMathematica the application of map R on the above matrix results in

(
Re

(
a1,1

)
Re

(
a1,2

) − Im
(
b1,2

)
Re

(
b1,2

) − Im
(
a1,2

)
Re

(
a2,2

)
)

, (5)

where Re and Im are the functions for taking the real and the imaginary parts of the
number. Only after using function FullSimplify one gets the expected form of the
output (

a1,1 a1,2
b1,2 a2,2

)
. (6)

In the one-qubit case, it is also easy to check that map R is represented by the
matrix

M (2)
R = 1

2

(
2 0 0 0
0 1 1 0
0 −i i 0
0 0 0 2

)
. (7)

The matrix representation of the map C reads

M (2)
C = (M (2)

R )−1 =
(

1 0 0 0
0 1 i 0
0 1 −i 0
0 0 0 1

)
. (8)

The above consideration can be repeated and in the case of three-dimensional
quantum system the matrix representation of theR map reads

M (3)
R = 1

2

⎛
⎜⎜⎜⎝

2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 −i 0 i 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 −i 0 0 0 i 0 0
0 0 0 0 0 −i 0 i 0
0 0 0 0 0 0 0 0 2

⎞
⎟⎟⎟⎠ . (9)

3.2 One-Qubit Channels

The main benefit of the real representation of density matrices is the smaller number
of multiplications required to describe the evolution of the quantum system.

To illustrate this, let us consider a bit-flip channel defined by Kraus operators

jmiszczak@acm.org



310 J.A. Miszczak

{(√
1 − p 0
0

√
1 − p

)
,

(
0

√
p√

p 0

)}
, (10)

or equivalently as a matrix

M (2)
BF =

(
1−p 0 0 p
0 1−p p 0
0 p 1−p 0
p 0 0 1−p

)
. (11)

The form of this channel on the real density matrices is given by

M (2)
R M (2)

BFM
(2)
C =

(
1−p 0 0 p
0 1 0 0
0 0 1−2p 0
p 0 0 1−p

)
. (12)

This map acts on the real density matrix as

(
pa2,2 − (p − 1)a1,1 a1,2

(1 − 2p)b1,2 pa1,1 − (p − 1)a2,2

)
. (13)

One should note that in Mathematica the direct application of the map R on the
output of the channel, ie. MRMBF res ρ, results in

(
Re

(
pa2,2 − (p − 1)a1,1

)
a1,2 + 2Im(p)b1,2

(1 − 2Re(p))b1,2 Re
(
pa1,1 − (p − 1)a2,2

))
(14)

In order to get the simplified result, one needs to explicitly specify assumptions
p ∈ Reals. This is important if one aims at testing the validity of the symbolic
computation, as without these assumptionsMathematica will not be able to evaluate
the result.

3.3 Werner States

As the first example of the quantum states of the composite system, let us use the
Werner states defined for two-qubit systems as

W (a) =

⎛
⎜⎜⎝

a+1
4 0 0 a

2
0 1−a

4 0 0
0 0 1−a

4 0
a
2 0 0 a+1

4

⎞
⎟⎟⎠ . (15)

The partial transposition transforms W (a) as
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W (a)TA =

⎛
⎜⎜⎝

a+1
4 0 0 0
0 1−a

4
a
2 0

0 a
2

1−a
4 0

0 0 0 a+1
4

⎞
⎟⎟⎠ (16)

and this matrix has one negative eigenvalue for a > 1/3, which indicates a presence
of quantum entanglement.

In this case, the real representation of quantum states reduces one element from
the W (a) matrix and we get

R[W (a)] =

⎛
⎜⎜⎝

a+1
4 0 0 a

2
0 1−a

4 0 0
0 0 1−a

4 0
0 0 0 a+1

4

⎞
⎟⎟⎠ . (17)

This matrix has eigenvalues

{
1 − a

4
,
1 − a

4
,
a + 1

4
,
a + 1

4

}
(18)

and we have that the sum of smaller eigenvalues is greater than the larger eigenvalue
for a > 1/3.

3.4 Partial Transposition

Another important example related to the composite quantum systems is the case of
partial quantum operations. Such operations arise in the situation when one needs to
distinguish between the evolution of the system and the evolution of the same system
treated as a part of a bigger subsystem.

Let us consider the partial transposition of the two-qubit density matrix

ρ = SymbolicDensityMatrix[x, y, 4]

which is given by

ρTA =

⎛
⎜⎜⎝

x1,1 x1,2 + iy1,2 x1,3 − iy1,3 x2,3 − iy2,3
x1,2 − iy1,2 x2,2 x1,4 − iy1,4 x2,4 − iy2,4
x1,3 + iy1,3 x1,4 + iy1,4 x3,3 x3,4 + iy3,4
x2,3 + iy2,3 x2,4 + iy2,4 x3,4 − iy3,4 x4,4

⎞
⎟⎟⎠ (19)

One can easily check that in this case
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R[ρTA ] =

⎛
⎜⎜⎝

x1,1 x1,2 x1,3 x2,3
y1,2 x2,2 x1,4 x2,4

−y1,3 −y1,4 x3,3 x3,4
−y2,3 −y2,4 y3,4 x4,4

⎞
⎟⎟⎠ (20)

and

(R[ρ])TA =

⎛
⎜⎜⎝
x1,1 x1,2 y1,3 y2,3
y1,2 x2,2 y1,4 y2,4
x1,3 x1,4 x3,3 x3,4
x2,3 x2,4 y3,4 x4,4

⎞
⎟⎟⎠ (21)

and thus
R[ρTA ] �= (R[ρ])TA . (22)

For this reason one cannot change the order of operations. However, the explicit form
of the partial transposition on the real density matrices can be found by representing
operation of partial transposition as a matrix [6],

ChannelToMatrix[PartialTranspose[# , {2, 2}, {1}] &, 4]

and using Eq. (3).
One should note that this method can be used to obtain an explicit form of any

operation of the formΦ ⊗ 1, where1denotes the identity operation of the subsystem.

3.5 Partial Trace

The second important example of a partial operation is the partial trace. This operation
allows obtaining the state of the subsystem.

For two-qubit density matrix we have

trAρ =
(

x1,1 + x3,3 x1,2 + x3,4 + i
(
y1,2 + y3,4

)
x1,2 + x3,4 − i

(
y1,2 + y3,4

)
x2,2 + x4,4

)
. (23)

One can verify that the operation of tracing-out the subsystem commutes with the
map R and in this case we have

C[trAR[ρ]] = trAρ. (24)

Thus, one can calculate the reduced state of the subsystem using the real value
representation.
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3.6 Random Real States

In this section, we focus on the statistical properties of the matrices representing real
quantum states. The main difficulty here is that, in contrast to the random density
matrices, real representations can have complex eigenvalues.

Random density matrices play an important role in quantum information theory
and they are useful in order to obtain information about the average behavior of quan-
tum protocols. Unlike the case of pure states, mixed states can be drawn uniformly
using different methods, depending on the used probability measure [1, 7, 9].

One of the methods is motivated by the physical procedure of tracing-out a sub-
system. In a general case, one can seek a source of randomness in a given system,
by studying the interaction of the n-dimensional system in question with the envi-
ronment. In such situation, the random states to model the behaviour of the system
should be generated by reducing a pure state in N × K -dimensional space. In what
follows we denote the resulting probability measure by μN ,K .

Using Wolfram language, the procedure for generating random density matrices
with μN ,K can be implemented as

RandomState[n_ , k_] := Block [{gM} ,
gM = GinibreMatrix [n , k ] ;
Chop[# /Tr [# ] ] &@(gM.ConjugateTranspose [gM] )

]

where function GinibreMatrix is defined as

GinibreMatrix[n_, k_] := Block[{dist } ,
dist = NormalDistribution[0 ,1];
RandomReal[ dist ,{n,k}] + I RandomReal[ dist ,{n,k}]

]

3.7 Spectral Properties

In the special case of K = N we obtain the Hilbert–Schmidt ensemble. The distrib-
ution of eigenvalues for K = N = 4 (i.e. Hilbert–Schmidt ensemble for ququart) is
presented in Fig. 1.

The real representation for theHilbert–Schmidt ensemble for one ququart consists
of matrices having four eigenvalues. Two of these values are complex and mutually
conjugate (see Fig. 2).

3.7.1 Form of the Resulting Matrix Elements

Using SymbolicMatrix function one can easily analyze the dependency of the ele-
ments of the resulting matrix on the element of the Ginibre matrix.
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Fig. 1 Distribution of eigenvalues for 4-dimensional randomdensitymatrices distributed uniformly
with Hilbert–Schmidt measure for the sample of size 104. Each color (and contour style) correspond
to the subsequent eigenvalue, ordered by their magnitude
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Fig. 2 Distribution of eigenvalues for 4-dimensional randomdensitymatrices distributed uniformly
with Hilbert–Schmidt measure for the sample of size 104. Eigenvalues were ordered according to
their absolute value
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For the sakeof simplicitywedemonstrate this onone-qubit states from theHilbert–
Schmidt ensemble. In this case, the Ginibre matrix can be represented as

mA = SymbolicMatrix[a , 2, 2];
mB = SymbolicMatrix[b, 2, 2];
m2 = mA + I mB

The resulting density matrix has (up to the normalization) elements given by the
matrix

m2.ConjugateTranspose[m2] .

In this case, the real representation is given by

(
q1,1 q1,2
q2,1 q2,2

)
, (25)

with
q1,1 = a21,1 + a21,2 + b21,1 + b21,2,

q1,2 = a1,1a2,1 + a1,2a2,2 + b1,1b2,1 + b1,2b2,2,

q2,1 = a2,1b1,1 + a2,2b1,2 − a1,1b2,1 − a1,2b2,2,

q2,2 = a22,1 + a22,2 + b22,1 + b22,2.

(26)

Here ai, j and bi, j are independent random variables used in the definition of the
Ginibre matrix.

From the above, one can see that the elements of the density matrix resulting from
the procedure for generating random quantum states are obtained as a product and
a sum of the elements of real and imaginary parts of the Ginibre matrix. In the case
of density matrices, the normalization imposes the condition q1,1 = 1 − q2,2. Thus,
one can also see that the elements are not independent.

4 Final Remarks

In this work, we have introduced a simplified version of quantum states’ represen-
tation using the redundancy of information in the standard representation of density
matrices. Our aim was to the find out if such representation can be beneficial from
the point of view of the symbolic manipulation of quantum states and operations.

To achieve this goal we have usedMathematica computing system to implement
the functions required to operate on real quantum states and demonstrated some
examples where this representation can be useful from the computational point of
view. Its main advantage is that it can be used to reduce the memory requirements
for the representation of quantum states. Moreover, in some particular cases where
the density matrix contains only real numbers, the real representation reduces to the
upper triangular matrix.
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The real representation can be also beneficial for the purpose of modelling quan-
tum channels. Here, its main advantage is that it can be used to reduce the number of
multiplications required during the simulation of the discrete quantum evolution. As
a particular example, we have studied the form of partial quantum operations in the
introduced representation. In the case of the partial trace for the bi-bipartite system,
the introduced representation allows the calculation of the reduced dynamics using
the real representation only.

Unfortunately, the introduced representation poses some disadvantages. Themain
drawback of the introduced representation is the lack of hermicity of real density
matrices. This makes the analysis of the spectral properties of real quantum states
much more complicated.
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