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We introduce a method of analyzing entanglement-enhanced quantum games on reg-
ular lattices of agents. Our method is valid for setups with periodic and non-periodic
boundary conditions. To demonstrate our approach we study two different types games,
namely the Prisoner’s dilemma game and a cooperative Parrondo’s game. In both cases
we obtain results showing, that entanglement is a crucial resource necessary for the
agents to achieve positive capital gain.
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1. Introduction

Systems involving a large number of simple variables with mutual interactions
appear frequently in various fields of research. Often the interactions are of local
character. Network models have proven to be successful in analysis of such phe-
nomena [1]. Axelrod [2, 3] and Nowak and May [4] prompted scientist to inves-
tigate networks with local interactions that model various social end economic
structures. Cooperation and coordination are among the key issues in economics
and social sciences and can be analyzed from this point of view [5]. Game the-
oretical models often provide a qualitative way of understanding various aspects
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of human decisions and behavior of complex systems. The combined network and
game theoretical methods resulted in a description of population structures with
local interactions with sometimes astonishing accuracy. The fields of econophysics
and sociophysics were born during the process [6–8]. Bearing in mind interesting
analyses of a wide spectrum of problems performed from the quantum game theo-
retical point of view [9–12], one should not be astonished that quantum games have
invaded the network territory.

Quantum game theory approach extends such analyses in an interesting way
[9, 11–13]. Cooperation is usually modeled in the context of Prisoner’s dilemma [14].
Another interesting phenomenon is known as Parrondo paradox [15], the counterin-
tuitive fact that in some cases combination of apparently loosing games can result
in success. Such games have their quantum counterparts and this spurred us on to
the analysis described in the present work.

The main contribution of this work is to provide a consistent model allowing
to study quantum games on two-dimensional lattice. We provide a general ingre-
dients needed in order to implement any quantum game in this general scheme. In
particular, we address the problem of using multipartite entangled states shared
by players. As a particular case, we study the family of games on two-dimensional
lattice constructed using the Parrondo scheme.

This paper is organized as follows. In Sec. 2, we provide necessary background
and notation. In Sec. 3, we develop a general model allowing the incorporation of a
strategic quantum games into the evolutionary scheme on two-dimensional graphs.
In Sec. 4, we use the introduced model to provide an uniform analysis of a family
of quantum games, focusing on the games based on the Parrondo scheme. Finally,
in Sec. 5 we draw the final conclusions.

2. Preliminaries

Strategic game theory studies mathematical models of conflict and cooperation
between rational decision-makers [16] and is widely applied in a great number of
fields, ranging from biology to social sciences and economics. Recently, the scientific
community realized that quantum phenomena might be important in this context.
Therefore, a lot of attention has been given to transferring concepts of game theory
to the quantum realm hoping that this work would contribute to our understanding
of this difficult field of research.

Quantum games are games in the standard sense but the approach allows for
harnessing quantum phenomena during the course of the game [17, 18]. The devel-
oped formalism can be also used in a more abstract sense regardless of its quantum
theoretical roots. Some classical game theoretical issues can be extended to allow
for quantum strategies including cooperation and coordination problems. The set
of quantum strategies is much larger than the set of classical ones and the pres-
ence of entanglement in the extended in such way games (“quantized”) implies
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more complex behavior of agents than the one implied by “classical mixing” of
strategies [16].

For the purpose of this paper, N -player quantum game can be defined as a
quadruple

Γ = (H, ρ,S,P). (1)

In this ordered list H is a Hilbert space, ρ is a quantum state (i.e., a density matrix),
S = {Si}N

i=1 is the set of possible player’s strategies and P = {Pi}N
i=1 is the set of

payoff functions for the players. Quantum strategies sα
i ∈ Si are completely positive

trace preserving (CPTP) maps. The payoff function of ith player Pi assigns to a
given strategy profile i.e., a set of player’s strategies {sαj

j }N
j=1 a real number — the

payoff.
Usually, the set of strategies is limited to unitary operators and the payoff is

determined via a measurement of the appropriate variables. A rich strategy sets
often allows for some spectacular results. For example, it has been shown that if
only one agent is aware of the quantum nature of the system, he/she will never
lose in some types of quantum games [19]. Moreover, it has been demonstrated
that a player can cheat by appending additional qubits to the quantum system in
question [20]. One can also study the impact of random strategies on the course of
the game [21].

3. Quantum Games on 2D-Lattice

Let us consider a two-dimensional lattice with M1 ×M2 nodes. Each node of the
lattice is occupied by one player.

Our scheme consists of three steps. In the first step, each agent in the network
is assigned an initial capital. In the second step, we create a quantum game setup
for a selected agent and all his/hers nearest neighbors. This refers to creation of an
shared entangled state in standard Eisert quantization of games, or a creation of a
shared coin state in a quantum Parrondo game. After the shared state is created,
a quantum game is played by an agent with all of his/her neighbors.

In the case of periodic boundary conditions, we need only to concern ourselves
with a five-player game, as every agent in a periodic lattice has four neighbors. In
the non-periodic case, we must also study the three- and four-player game. Based
on the results of the game and the game’s payoff function, a possible capital change
vector is obtained.

In the third step, the capital values of each player is updated using the capital
change vectors from the previous step. This is done for every agent in the lattice.
This process is repeated N times to enhance the differences in capital behavior.
This setup allows to study a number of different cases, as one can assign different
strategy setups for every number of players.

For a single player (node) on a lattice we introduce the following scheme for
playing entanglement assisted quantum game.
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• The state |ψm〉 describing the game at node m is used to describe a subspace of
coins and a subspace of position for each players,

|ψm〉 ∈ C
K2

m ⊗ C
K4

m , (2)

where Km is the number of players playing with player at the node.
• The initial state of the game is given as:

|ψm(0)〉 = |φ〉 ⊗
(⊗

Km

|00〉
)
, (3)

where |φ〉 is a multipartite state shared by Km players and the position registers
for all players are prepared in the base state.

• Evolution operator is composed of the walker Wm and the shift operator Sm,
where

W =
Km⊗
i=1

X(si) ⊗ �
K4

m , (4)

with each X(si) ∈ SU(2) and

S =
∑

i1,...,iKm

(
Km⊗
k=1

|ik〉〈ik|
)

⊗
(

Km⊗
k=1

S−1k+1

)
, (5)

where S =
∑

x |x+ 1〉〈x|.

4. Uniform Analysis of Entangled Quantum Games

4.1. Prisoner’s dilemma

The quantum prisoner’s dilemma game is defined as follows. Each player is sent a
qubit and can locally operate on it, using any unitary operator U ∈ SU (2). The
initial state of the system is entangled:

|ψ〉 = J |0〉⊗N , (6)

where N is the number of players, J is the entangling operator [17]

J =
1√
2

(�⊗N + iσ⊗N
x ). (7)

After the players have applied their respective strategies, the untangling gate, J†,
is applied to the system, hence the final state of the game is

|ψf 〉 = J†
(

N⊗
i=1

Ui

)
J |0〉⊗N , (8)

where Ui is the strategy of the ith player. The payoff of the first player amounts
to:

$A =
∑

i1,...,iN∈{0,1}×N

pi1,...,iN 〈ψf | i1, . . . , iN 〉, (9)
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where pi1,...,iN are numbers corresponding to the possible classical payoffs of the
first player. We assign the payoffs in the way described in [22], Eq. (23).

In the case of Prisoner’s dilemma, the quantum version of the game utilizes
an extended set of strategies, which includes unitary operators. In the case of our
scheme one can consider three scenarios by restricting the set of strategies available
for the players, namely

(1) only classical strategies, i.e.

{C,D}, (10)

(2) only quantum strategies from the set,

{H,Q,Σ}, (11)

(3) classical strategies with one quantum strategy,

{C,D,H}, {C,D,Q}, {C,D,Σ}, (12)

where the unitary strategies are

• C = (1 0
0 1),

• D = (0 1
1 0),

• H = 1√
2
(1 1
1 −1),

• Q = ( i 0
0 −i),

• Σ = ( 0 1
−1 0).

One should note that the strategy H cannot be interpreted as a mixture of classi-
cal strategies as it operates on the normalized vectors, whilst the mixed strategy
operates on the probabilities.

We perform 100 consecutive updates of the players’ capital and we consider on
orthogonal neighbors. During each update, the players on a central node play the
game with five different players — one in which they are at the center of their four
neighbors, and four where they are one of the neighbors for other central players.
Players on edge nodes play four games at each step — one a five-player game and
the others four- or three-player games. A corner player participates in two four-
player games and one three-player game. In each of the games a different set of
entangled qubits is used.

The results obtained for the first case are shown in Fig. 1(a). In it, we show the
average capital of players on a 5 × 5 network averaged over all possible strategy
combinations. As can be seen, the highest average capital gains are achieved by
players closer to the edge of the lattice. The average capital of an agent in the
lattice is equal to 19. The strategy set which yields the highest average capital of
a player is [(C,C,C), (C,C,C,C), (C,C,C,C,C)] and gives an average capital of
588.8. A strategy set (A,B,C) means that the first player uses strategy A, the
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Fig. 1. Average capital distribution for the prisoner’s dilemma game in the case of classical strate-
gies (a), quantum strategies (b), classical strategies with addition of the quantum strategies H,
Q, Σ (c, d and e, respectively).

Fig. 2. Capital distribution for the prisoner’s dilemma game in the case of classical strategies.
The strategy set is [(C, C, C), (C, C, C, C), (C, C, C, C, C)] and gives the highest average capital
of agents of all strategy sets. This figure also illustrates the cases where we added a quantum
strategy to the classical ones.

second strategy B and the third strategy C. The capital distribution for this case
is shown in Fig. 2.

The second case is illustrated in Fig. 1(b). In this case, similar to the classical
one, highest capital gains are found for the edge players. Also, the overall capital
distribution is the same as in the purely classical case. The average capital of an
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Fig. 3. Capital distribution for the prisoner’s dilemma game in the case of quantum strategies.
The strategy set is [(Σ,Σ,Σ), (Q, Q,Q, Q), (Σ,Σ, Σ,Σ,Σ)] and gives the highest average capital of
agents of all strategy sets.

agent in the lattice is equal to 17.8. The strategy set which yields the highest average
capital of a player is [(Σ,Σ,Σ), (Q,Q,Q,Q), (Σ,Σ,Σ,Σ,Σ)] and gives an average
capital of 588.8. The capital distribution for this case is shown in Fig. 3.

We present the results for the third case in Figs. 1(c)–(e) for the possible
strategies {C,D,H}, {C,D,Q} and {C,D,Σ}, respectively. The average capital
gains are −29.6, 15.4 and 28.2 respectively. As can be seen, the average capi-
tal gain with the added strategy Σ is higher than in the purely classical case.
The strategy set which gives the highest average capital gain of a player is
[(C,C,C), (C,C,C,C), (C,C,C,C,C)], the same as in the purely classical case.
Hence, the capital distribution for this case is identical to that shown in Fig. 2
and the average capital gain is equal to 588.8.

4.2. Cooperative Parrondo paradox

Cooperative Parrondo’s games were introduced by Toral [23]. The scheme is as
follows. Consider an ensemble of N players, each with his/hers own capital Ci(t), i =
1, 2, . . . , N . As in the original paradox, we consider two games, A and B. Player i
can play either game A or B according to some rules. The main difference from the
original paradox is that probabilities of game B depend, in general, on the state of
all players j �= u. For simplicity, we only consider the case when the probabilities
of winning at time t, depend only on the present state of the players. The game,
by definition, is a winning one, when the average value of the capital

〈C(t)〉 =
1
N

N∑
i=1

Ci(t), (13)

increases with time.
There are several known approaches to quantization of Parrondo’s games [24,

25]. We model a cooperative quantum Parrondo’s game as a multidimensional
quantum walk (QW) [26, 27]. The average position of the walker along each axis
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determines each player’s payoff. As in the classical case, we consider two games, A
and B. Similar to the classical case the probabilities of winning game B depend on
the state of the other players. A detailed introduction of the model of the game is
presented in [28].

The following two possible schemes of alternating between games A and B are
considered

(1) random alternation, denoted A+B

(2) games played in succession AABBAABB , . . . , denoted [2, 2].

We focus our attention on the cooperative game in a regular lattice. We consider
two types of boundary conditions for the lattice: periodic, allowing to simulate the
behavior of an infinite lattice and non-periodic to simulate the finite case.

With each agent on the network we associate a Hilbert space that consists of
two components: the coin’s Hilbert space and the position Hilbert space

Hi = Hc ⊗Hpos. (14)

We introduce two base states in the single coin Hilbert space, the |L〉 and |R〉
states. These states represent the classical coin’s heads and tails respectively.

When the agents play the game, we connect their respective Hilbert spaces using
the tensor product

HG =
N⊗

i=1

Hi, (15)

where N denotes the total number of players participating in the game.
Game A is implemented using an operator performing a flip of a fair coin. The

operator is given by

UA =


 1√

2
i√
2

i√
2

1√
2


. (16)

The game B is played as follows. An agent i performs a flip of his coin using
one of the unitary operators from the family

Uk =

( √
ρk

√
1 − ρkeiθk

√
1 − ρkeiφk −√

ρkei(θk+φk)

)
. (17)

Each operator in the set {Uk} depends on the parameters: ρk which is the classical
probability that the coin does not change its state, and φk and θk are phase angles,
which we assume to be φk = θk = π/2 for all k. The choice of the probabilities, and
thus an operator from the set {Uk}, depends on the number of neighbors and the
number of winners and losers amongst the neighbors of an agent i.

We set the probabilities in game B to ρ = 0.5 except for the case when all the
other players have lost. In this case, we set it to ρ = 0.9.

1450012-8

Fl
uc

t. 
N

oi
se

 L
et

t. 
20

14
.1

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

05
/2

9/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

June 2, 2014 14:49 WSPC/S0219-4775 167-FNL 1450012

General Model for an Entanglement-Enhanced Composed Quantum

After the coin flip, agent i applies a move operator to his Hi space. The operator
is given by

Upos = Pr ⊗ S + Pl ⊗ S†, (18)

where S is a shift operator in the position space, defined as S|x〉 = |x + 1〉, |x〉
denotes the current position of the walker. It follows from the definition of S that
S†|x〉 = |x− 1〉. Pr and Pl denote projection operators on the |R〉 and |L〉 states of
the coin respectively.

We study the behavior of the lattice for different sets {Uk} of possible game B
coin tosses. We chose those sets so that

(1) a three and four player game shows paradoxical behavior,
(2) game shows paradoxical behavior for three, four and five players.

Furthermore, we study different initial states of players’ coins: the separable state,
the entangled GHZ state and the entangled W state.

The setup of the simulation is as follows. Each agent in the network plays a game
with all of his/hers neighbors. The network is updated sequentially. The network is
evolved for 1000 iterations. In the case of the A+B game scheme, we average the
results for 10 independent runs of the simulation.

Figure 4 shows the results of the simulation when the initial state of the coin
is separable. Figures 4(a) and 4(b) show the results of the simulation for the non-
periodic network and Figs. 4(c) and 4(d) show the results for the periodic network.
In the case of non-periodic network, the final structure of the network appears
similar for both games: the only difference being the absolute value of capital of each
agent. The same is true for the periodic network. Bar plots presented in Fig. 4(e)
shows the average capital gains of the players in a three, four and five-player game.
The game A+B shows paradoxical behavior only in the three-player case, whereas
the [2, 2] game shows this kind of behavior in three and four-player games. As the
five-player game is always a losing one and the network contains mostly agents
playing the five player game, the average capital gain of an agent in the network
is negative. In fact, almost every agent experiences a capital decrease. Figure 4(f)
shows the average capital of an agent in all studied cases.

In the case of the GHZ state, the results are summarized in Fig. 5. Figures 5(a)
and 5(b) show the results of the simulation for the non-periodic network and
Figs. 5(c) and 5(d) show the results for the periodic network. The capital distribu-
tion in the network differs significantly from the one obtained for the separable coin
state. In this case, games [2, 2] and A + B show paradoxical behavior in the case
of three, four and five players as depicted in Fig. 5(e). Also, the value of average
capital gain in each of these games is much higher than in the case of the separable
coin state. This is reflected in the average capital gain of the entire network after
1000 iterations. As shown in Fig. 5(f) the average capital gain of the network is
much greater than in the separable case. This is due to the fact, that all games show
paradoxical behavior. Therefore, the agents in the network always gain capital.
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(a) [2,2] non-periodic (b) A + B non-periodic (c) [2,2] periodic (d) A + B periodic
lattice lattice lattice lattice

(e) Average payoff as a function of the number of players. The bars show the payoff for game A,
game B, game [2, 2] and game A + B going from left to right

(f) The average capital of the networks shown in Figs. 4(a)–(d)

Fig. 4. The state of the network for the [2, 2] game on non-periodic lattice (a), A + B game on
non-periodic lattice (b), [2, 2] game on periodic lattice (c) and A + B game on periodic lattice (d)
after 1000 iterations. The initial coin state is the separable state. (e) Shows the payoff for games
A, B, [2, 2] and A + B as a function of the number of players. (f) Shows the average capital gain
of an agent in the network after 1000 iterations.
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(a) [2, 2] non-periodic (b) A + B non-periodic (c) [2, 2] periodic (d) A + B periodic
lattice lattice lattice lattice

(e) Average payoff as a function of the number of players. The bars show the payoff for game A,
game B, game [2,2] and game A + B going from left to right

(f) The average capital of the networks shown in Figs. 5(a)–(d)

Fig. 5. The state of the network for the [2, 2] game on non-periodic lattice (a), A + B game on
non-periodic lattice (b), [2, 2] game on periodic lattice (c) and A + B game on periodic lattice
(d) after 1000 iterations. The initial coin state is the GHZ state. (e) Shows the payoff for games
A, B, [2, 2] and A + B as a function of the number of players. (f) Shows the average capital gain
of an agent in the network after 1000 iterations.

1450012-11

Fl
uc

t. 
N

oi
se

 L
et

t. 
20

14
.1

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

05
/2

9/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

June 2, 2014 14:49 WSPC/S0219-4775 167-FNL 1450012

J. A. Miszczak, �L. Pawela & J. S�ladkowski

(a) [2, 2] non-periodic (b) A + B non-periodic (c) [2, 2] periodic (d) A + B periodic
lattice lattice lattice lattice

(e) Average payoff as a function of the number of players. The bars show the payoff for game A,
game B, game [2,2] and game A + B going from left to right

(f) The average capital of the networks shown in Figs. 6(a)–(d)

Fig. 6. The state of the network for the [2, 2] game on non-periodic lattice (a), A+B game on non-
periodic lattice (b), [2, 2] game on periodic lattice (c) and A+B game on periodic lattice (d) after
1000 iterations. The initial coin state is the W state. (e) Shows the payoff for games A, B, [2, 2]
and A + B as a function of the number of players. (f) Shows the average capital gain of an agent
in the network after 1000 iterations.

Finally, we show results for the W state in Fig. 6. Figures 6(a) and 6(b) show
the results of the simulation for the non-periodic network and Figs. 6(c) and 6(d)
show the results for the periodic network. The capital distribution in the case of the
A + B resembles the GHZ case, whereas the distribution for the [2, 2] is flat. This
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is due to the fact that, the game does not show paradoxical behavior in the three
player case, as game B is a winning one. Nevertheless, the paradox is observed for
the four and five player A + B games as shown in Fig. 6(e). This leads to high
average capitals of the network in the case of the A+ B game. As game [2, 2] is a
losing one for all studied number of players, the average capitals of the networks
are always negative in this case as shown in Fig. 6(f).

5. Conclusions

We introduced a general scheme for executing quantum games on regular lattices,
which allows for the usage of entangled states and enables uniform analysis of
different scenarios. To demonstrate the merits of the introduced scheme, we studied
the quantum Parrondo effect and the quantum Prisoner’s dilemma game in regular
lattices of agents.

The results for the Prisoner’s dilemma game suggest that addition of the quan-
tum strategy Σ to the classical strategies: cooperation (C) and defection (D) gives
a higher average capital gain of an agent than in the classical case.

In the case of Parrondo paradox, the games showing paradoxical behavior were
modeled using quantum walks. We obtained results, showing that the average cap-
ital of an agent in the lattice grows in the following setups of the game:

• [2, 2] game on a periodic lattice with the GHZ coin state,
• A+B game on a periodic lattice with the GHZ coin state,
• [2, 2] game on a non-periodic lattice with the GHZ coin state,
• A+B game on a non-periodic lattice with the GHZ coin state,
• A+B game on a periodic lattice with the W coin state,
• A+B game on a non-periodic lattice with the W coin state.

The above results show that entanglement is a necessary condition for the lattice
to gain capital as a whole.
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