
Proceedings of

Applications of Computer Algebra

ACA 2013. Málaga

July 2nd-6th, 2013

Hotel Málaga Palacio.

Málaga, Spain

Editors:

José Luis Galán Garćıa

Gabriel Aguilera Venegas

Pedro Rodŕıguez Cielos

ISBN–10: 84–616–4565–0

ISBN–13: 978–84–616–4565–7

Reg. Number: 201336327



Proceedings of Applications of Computer Algebra 2013.

Editors:
José Luis Galán Garćıa
Gabriel Aguilera Venegas
Pedro Rodŕıguez Cielos

ISBN–10: 84–616–4565–0

ISBN–13: 978–84–616–4565–7

Reg. Number: 201336327

Contact: aca2013@ctima.uma.es

Web: http://aca2013.uma.es/

Printed in Spain
July 2013

Composition developed by editors using LATEX.



Functional framework for representing and transforming

quantum channels

Jaros law Adam Miszczak
Institute of Theoretical and Applied Informatics,

Polish Academy of Sciences
Ba ltycka 5, 44-100 Gliwice, Poland

miszczak@iitis.pl

Abstract

We develop a framework which aims to simplify the analysis of quantum states and quan-
tum operations by harnessing the potential of function programming paradigm. We show that
the introduced framework allows a seamless manipulation of quantum channels, in particular
to convert between different representations of quantum channels, and thus that the use of
functional programming concepts facilitates the manipulation of abstract objects used in the
language of quantum theory.

For the purpose of our presentation we will use Mathematica computer algebra system.
This choice is motivated twofold. First, it offers a rich programming language based on the
functional paradigm. Second, this programming language is combined with powerful symbolic
and numeric manipulation capabilities.

Keywords
quantum channels, functional programming, scientific computing

1 Introduction

Functional programming is frequently seen as an attractive alternative to the traditional methods
used in scientific computing, which are based mainly on the imperative programming paradigm [3].
Among the features of functional languages which make them suitable for the use in this area is
the easiness of execution of the functional code in the parallel environments.

The main aim of this work is to show that the functional programming concepts facilitate
the use of abstract objects used in the language of quantum theory. We develop a framework
which aims to simplify the analysis of quantum states and quantum operations by harnessing the
potential of functional programming paradigm. For the purpose of our presentation we will use
Mathematica computer algebra system. This choice is motivated twofold. First, it offers a rich
programming language based on the functional paradigm. Second, this programming language is
combined with powerful symbolic and numeric manipulation capabilities.

During the last few years a number of simulators of quantum information processing has been
developed using Mathematica computing system [8, 5, 7, 2]. Unfortunately, these packages do not
use functional programming capabilities of this system and are focused on pure states and unitary
operations. Moreover, they focus on the quantum mechanical systems which can be represented
using state vectors and include only a basic functionality required for the purpose of manipulating
and analyzing quantum states.

In this paper we follow the pragmatic approach and we provide a set of useful constructions
which can be helpful for the analysis of quantum channels. At the same time we advocate the use of
functional programming in this approach. We argue that by using the functional language elements
provided by Mathematica one can easily and efficiently convert between different representations
of quantum channels.

276



2 Functional syntax for quantum channels

2.1 Notation

In the following we assume that the quantum systems are represented by finite-dimensional density
matrices, i.e. positive semidefinite complex matrices with unit trace. The space of density matrices
of dimension d is denoted by Ωd. We use res, unres operations [6] for converting between matrix
and vector forms of states and operators. In the Mathematica language function res is defined as
a synonym for a built-in function Flatten

Res = Function[m, Flatten[m]];

This function transforms a matrix m into a vector in a row order. Function unres, which is a
reverse transformation, is defined in Mathematica as

Unres = Function[m, Partition[m, Sqrt[Length[m]]]];

and it uses built-in function Partition to get back from a one-dimensional list to a matrix.
As the space of density matrices is unitary with Hilbert-Schmidt scalar product, we introduce a
function

HSInner = Function[x, Function[y, Tr[x.ConjugateTranspose[y]]]];

which, thanks to the curried form, allows using a partial application in the application of this
scalar product.

Unfortunately Mathematica does not provide a straightforward support for the partial applica-
tion of functions. The language does not allow using functions with too few parameters and one
has to explicitly use empty slots (#-signs) to define a partially applied function. For this reason in
order to use the functional version of some procedures, it is necessary to provide a curried version
of these functions.

2.2 Simple channels

Let us illustrate the above considerations with the simplest example – the transposition map. This
map is defined as

ρ 7→ ρT , (1)

and can be expressed in Mathematica as

trans = Function[x, Transpose[x]]

or using more compact syntax as trans = Transpose[#]&.
One should note that this map is not completely positive, hence it does not represent a valid

quantum channel. Nevertheless, it is useful for presenting basic transformations which can be
performed on quantum channels.

If we would like to apply this function on some state ρ we simply write trans[ρ]. In many
situations however, one needs to apply a map on a list rhos of states or matrices. In this case we
simply map the functions representing the map on the list using Map function as

Map[trans, rhos]

or using more compact syntax as trans /@ rhos.

2.3 Channels with parameters

In order to use channels defined by parametrized expression, one can employ partially applied
functions. The simplest example of such channels is a depolarizing channel ΨD(p,d) defined as

ΨD(p,d)(ρ) = (1− p)ρ+ p
1

n
1n, (2)

where we assume that ρ ∈Mn and 1n denotes the identity matrix of the appropriate size.
Using the notation introduced in Section ??, this channel can be represented by a function

dep = Function[d, Function[p, Function[x,
(1-p)x + p IdentityMatrix[d]/d

]]];

277



Here we follow the convention that the function parameters should be organized in such a way, that
by providing all but one of them, we obtain a function accepting quantum state as an argument. In
the above case the first two parameters represent the dimension and the reliability of the channel
(the probability of introducing no errors).

Function dep requires three arguments and its application on state ρ is achieved by first
declaring the instance of the channel for a fixed dimension (e.g d=4)

dep4 = dep[4];

and next using this function with a specific probability p

dep4[p][ρ];

However, one can use dep function to define the expression in which only two arguments are
provided

g = (dep[#1][p][#2]) &

and this allows obtaining a general definition of the depolarizing channel with a fixed parameter
p, identical to the following definition

Function[d, Function[x, (1-p) x + p IdentityMatrix[d]/d]];

Function g accepts two arguments representing the dimension and the input state. Its appli-
cation on some state ρ ∈M4 reads

g[4][ρ];

and this syntax allows the selection of an argument which should be fixed during the manipulation.

3 Representations of quantum channels

3.1 Natural representation

As channels are linear mappings, it is possible, at least in finite-dimensional case, to represent
them by matrices. Let us assume that we are dealing with d = n× n dimensional matrices.

The base in n2-dimensional space Mn is given by matrices, which can be obtained by using
Unres operations on the base vectors in the d-dimensional space Cd, d = n2, as

base = Map[Unres[UnitVector[d, #]] &, Range[d]];

where Range[d] returns a list containing numbers 1, 2, . . . , d. In the following we assume that
the d-dimensional matrix base can be obtained using function BaseMatrices[d] defined as

BaseMatrices = Function[d, Map[Unres[UnitVector[d, #]] &, Range[d]]];

If the list fBase contains the images of the quantum channel f on the base

fBase = f /@ base

then the natural representation can be calculated by unreshaping the images of the map on the
base matrices in Md2 ,

{Res /@ fBase}

Combining this into one function gives

NaturalRepresentation = Function[f, Function[d,
With[{base=BaseMatrices[dˆ2]}, Map[Res[f[#]]&, base]]

];

We denote the natural representation of the channel Φ by MΦ, assuming that this matrix is
obtained in the standard basis. Matrix MΦ is sometimes called a supermatrix for the channel Φ.

The above considerations can be summarized as the following definition.

Definition 1 (Natural representation) For a given channel Ψ, the natural representation of
Φ by MΦ is defined as

(MΦ)i. = res Φ(bi) (3)

where (A)i. denotes i-th column of the matrix A and bi, i = 1, n2 denotes base matrices in Mn.

278



For example, in order to obtain the matrix representation of the depolarizing channel dep
acting on one qubit, one should use NaturalRepresentation function as

NaturalRepresentation[dep[2][p]][2]

In a similar manner one can check that the natural representation of the one-qubit transposition
channel trans

NaturalRepresentation[trans][2]

is equal to the SWAP gate.

3.2 General natural representation

Clearly one can represent a given channel in a matrix form using not only a canonical base, but
any orthonormal basis in Cn2

. In this situation one cannot use the method described above as it
relies on the special form of the canonical base matrices.

The straightforward method of calculating a matrix representation, is based on the formula

(M b
Φ)ij = tr[biΦ(bj)

†], (4)

where bi, i = 1, . . . , n2 denotes the base.

Definition 2 (General natural representation) For a given channel Ψ, the general natural
representation of Φ in base b is defined as

(Mb
Φ)ij = tr[Φ(bi)b

†
j ], (5)

where bi, i = 1, n2 denote base matrices in Mn.

This definition can be implemented using Outer function as

Function[f, Function[b,
Outer[HSInner[#1][#2]&, Map[f,b], b, 1]

]];

where base is a given base or, alternatively, by using Map function as

Function[f, Function[b,
Map[Map[#, b] &, Map[HSInner, Map[f, b]]]

]];

This method requires n4 multiplications of n× n matrices and is highly inefficient.
The simplest method is to reconstruct a change of basis matrix MB ,

MB = Map[Res, b]

and use it to obtain M b
Φ as

M b
Φ = MBMΦM

†
B . (6)

3.3 Choi-Jamio lkowski representation

Complete positivity, one of the requirements for the map between finite-dimensional spaces can
be formulated using Choi-Jamiolkowski representation of a map [4, 1]. This representation in the
context of quantum channels is known as Jamiolkowski isomorphism and here the image of this
isomorphism is denoted as JΦ.

The Choi-Jamiolkowski representation is closely related to the natural representation. The
natural representation of the channel acting on n×n-dimensional matrices is always obtained with
respect to some bases {bi}i=1,n2 , where n2 is the dimension of the state space.

If one uses base bi to obtain the natural representation of the channel Φ resulting in matrix
M b

Φ, then the Choi-Jamiolkowski matrix for this channel is obtained as

{J b
Φ}i,j = tr[M b

Φ(bi ⊗ bj)], (7)

for i, j = 1, n2.

279



Definition 3 (Choi-Jamiolkowski matrix) Let {bi} be a base in Cn2

. The Choi-Jamiolkowski
matrix corresponding to a general natural representation in base {bi} is defined as

{J b
Φ}i,j = tr[M b

Φ(bi ⊗ bj)]. (8)

The Choi-Jamiolkowski representation of the channel Φ can be also obtained using several other
methods. One of the simplest formulas is the one expressing JΦ as a sum

JΦ =

d∑

i=1

Φ(ei)⊗ ei. (9)

Assuming that base represents matrix base in d-dimensional space, this representation can be
used by mapping

cjBase = Map[KroneckerProduct[f[#], #] &, base]

and accumulating the results

Plus /@ cjBase

Combining the above into one function gives

ChoiJamiolkowskiRepresentation = Function[f, Function[d,
With[{base=BaseMatrices[d]},

Map[Plus,[Map[KroneckerProduct[f[#],#]&, base]]]
]];

The Choi-Jamiolkowski representation of a channel is related to the natural representation,
one can easily construct a Choi-Jamiolkowski matrix corresponding to a given generalized natural
representation.

Acknowledgements This work was supported by the Polish Ministry of Science and Higher
Education under the grant number IP2011 036371 and by the Polish National Science Centre under
the grant number DEC-2011/03/D/ST6/00413. Author would like to acknowledge stimulating
discussions with Z. Pucha la, P. Gawron, D. Kurzyk, V. Jagadish and P. Zawadzki.

References

[1] M.-D. Choi. Completely positive linear maps on complex matrices. Linear Algebr. Appl.,
10(3):285–290, 1975.

[2] J. L. Gómez-Muñoz and F. Delgado-Cepeda. Quantum 2.3 for Mathematica 8, 2011-. Software
available on-line at http://homepage.cem.itesm.mx/lgomez/.

[3] K. Hinsen. The promises of functional programming. Comput. Sci. Eng., 11(4):86–90, 2009.

[4] A. Jamio lkowski. Linear transformations which preserve trace and positive semidefiniteness of
operators. Rep. Math. Phys., 3(4):275–278, 1972.

[5] B. Juliá-Dı́az, J.M. Burdis, and F. Tabakin. QDENSITY—a Mathematica quantum computer
simulation. Comput. Phys. Commun., 174(11):914934, 2006.

[6] J.A. Miszczak. Singular value decomposition and matrix reorderings in quantum information
theory. Int. J. Mod. Phys. C, 22(9):897–918, 2011.

[7] F. Tabakin and B. Juliá-Dı́az. QCWAVE – a Mathematica quantum computer simulation
update. Comput. Phys. Commun., 182(8):16931707, 2011.

[8] H. Touchette and P. Dumais. The quantum computation package for Mathematica 4.0. Software
available on-line at http://crypto.cs.mcgill.ca/QuCalc/, 2000-.

280


