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The problem of generating random quantum states is of a great interest from the quantum information
theory point of view. In this paper we present a package for Mathematica computing system harnessing a
specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating
statistical properties of quantum states. The described package implements a number of functions
for generating random states, which use Quantis QRNG as a source of randomness. It also provides
procedures which can be used in simulations not related directly to quantum information processing.
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1. Introduction

As full scale quantum computing devices are still missing, the
simulation of quantum computers has gained considerable atten-
tion as a method for investigation the behaviour of quantum al-
gorithms and protocols [1]. It also provides a valuable method for
inspecting the mathematical structure of quantum theory by pro-
viding information about statistical properties of quantum states
and operations [2].

Generating random numbers using the statistical nature of
quantum theory provides one of the first practical applications of
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quantum information theory. At the same time the high quality of
random numbers generated using quantum random number gen-
erators is based on the very basic principles of Nature [3]. Since
random numbers are important in many areas of human activity,
at the moment this provides one of the most important applica-
tions of quantum information theory.

During the last several years many simulators of quantum com-
puters have been developed and the most up-to-date list of avail-
able software is available at [1]. Many simulators of quantum infor-
mation processing were developed using Mathematica computing
system [4–8]. Also some attention has been devoted to utilising
CUDA programming model [9] and parallel processing model [10–
12]. The research effort in using parallel and distributed computing
for the purpose of quantum information processing was motivated
by the amount of computational resources needed in order to per-
form a simulation of quantum computation.
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In this paper we present a TRQS (True Quantum Random
States) package for Mathematica computing system harnessing a
specific piece of hardware, namely Quantis quantum random num-
ber generator (QRNG), for investigating statistical properties of
quantum states. The described package implements a number of
functions for using numbers and generating random states (i.e.
random state vectors and random density matrices), using Quan-
tis QRNG as the source of randomness. The presented package has
been developed for the purpose of quantum information theory,
but it can be easily utilised in other areas of science.

The motivation for utilising random numbers generated using
quantum devices is twofold. Firstly, QRNGs provide a high-quality
source of randomness which can be used in various areas of com-
putational physics. Recent progress in this area [13] suggests that
QRNGs are of a great interest for experimentalists, as well as theo-
rists, working in the field of quantum information theory. Secondly,
it has been shown that the statistical properties of obtained num-
bers cannot be reproduced using standard methods of generating
random numbers [3].

This paper is organised as follows. In Section 2 we introduce
basic theoretical facts concerning random states and operations.
In Section 3 we describe the functions implemented in the pre-
sented package and in Section 4 we use the described package
to analyse some problems related to quantum information theory.
We also use TRQS package be benchmark the speed of Quantis
random number generator. Finally, in Section 5, we provide some
concluding remarks and discuss the alternative sources of random
numbers generated using quantum random number generators.

2. Random quantum states

The problem of generating random quantum states is of a great
interest from the quantum information theory point of view. Ran-
dom states appear naturally in many situations in quantum in-
formation processing, especially when one must deal with the
unavoidable interaction of the system in question with the envi-
ronment.

We start by recalling some basic facts used in the rest of this
paper. For a more complete introduction to mathematical con-
cepts used in quantum information theory see e.g. [14,2]. Next, we
present the selected methods of generating random density matri-
ces implemented in the TRQS package. More detailed description
of the methods for generating random quantum density matrices
can be found in [15].

2.1. Basic definitions

In what follows we restrict our attention to finite-dimensional
spaces. We denote by |φ〉 ∈ C

n pure states i.e. normalised elements
of the vector space C

n . By Mm,n we denote the set of all m × n
matrices over C and the set of square n ×n matrices is denoted by
Mn . The set of n-dimensional density matrices (normalised, posi-
tive semi-definite operators on C

n) is denoted by Ωn . The set Mn

has the structure of a Hilbert space with the scalar product given
by (A, B) = tr A† B . This particular Hilbert space is known as the
Hilbert–Schmidt space of operators acting on C

n and we will de-
note it by HHS.

In particular, Ωn ⊂ Mn . Moreover, any element of Ωn can be
represented as a convex combination (mixture) of one-dimensional
projectors. For any ρ ∈ Ωn there exists a sequence of non-negative
numbers p1, p2, . . . , pn such that ρ = ∑n

i=1 pi P i , where {Pi}, i =
1,2, . . . ,n, is a sequence of orthonormal one-dimensional projec-
tors. Extreme elements of the set Ωn are exactly the pure states
and can be identified with ket vectors |ψ〉 � |ψ〉〈ψ |. Convex com-
binations of pure states are refereed to as mixed states.
2.2. Random pure states

In most cases to describe quantum algorithms and protocols
one assumes that it is possible to avoid unnecessary interactions
with the environment [2]. In such situation the state of the sys-
tem remains pure during the evolution, which is represented by a
unitary matrix.

In the case of a pure state (state vectors) there exists a natu-
ral measure in the set, namely the measure generated by the Haar
measure on the group of unitary matrices U(n). The algorithm for
generating random pure states is presented in Procedure 1. The
function RandomSimplex(n) used in this procedure returns an el-
ement of a standard simplex of dimension n.

Procedure 1 Generation of a random pure state.
Input: n � 0
Output: Random pure state v of dimension n

s ← RandomSimplex(n)
a[1] ← √

s[1]
p[1] ← 1
v[1] ← a[1] ∗ p[1]
for k = 2 to n do

a[k] ← √
s[i]

p[k] ← exp(i RandomReal(0,2π))

v[k] ← a[k] ∗ p[k]
end for
return v

Alternatively a random pure states can be obtained by generat-
ing a random unitary matrix and choosing its columns as random
pure states.

2.3. Random mixed states

The need for using a more general formalism to describe the
evolution of quantum systems is motivated by the fact that in a
real-world situation it is impossible to avoid the interaction of the
system with the environment. In this case one needs to represent
the system using quantum channels and introduce density matri-
ces to describe the state of the system [2].

The set of density matrices presents us with more complicated
structure than in the case of pure states. In particular, it is not
possible to distinguish one preferred probability measure in this
set and any metric on the set can be used to introduce one.

The package presented in this paper implements functions for
generating random density matrices distributed according to the
probability measure generated by the Hilbert–Schmidt metric

‖ρ1 − ρ2‖HS =
√

tr
[
(ρ1 − ρ2)2

]
, (1)

and the Bures metric

‖ρ1 − ρ2‖B =
√

2 − 2
√

F (ρ1,ρ2) (2)

where F (ρ1,ρ2) is a quantum fidelity F (ρ1,ρ2) = tr |√ρ1
√

ρ2| be-
tween two density matrices. In a particular case, when one of the
states is pure, ρ1 = |ψ〉〈ψ |, we have F (|φ〉〈φ|,ρ2) = 〈φ|ρ2|ψ〉 and
in this case the probability measure is reduced to the Fubini–Study
measure.

We also provide a function for generating density matrices dis-
tributed with a family of induced measures [2], which can be
derived by averaging over an external subsystem. One should note
that the Hilbert–Schmidt measure can be obtained as an induced
measure.

In each case, as a starting point of the algorithm, one needs to
use a Ginibre matrix, i.e. a complex matrix with elements having
real and complex parts distributed with the normal distribution
N (x, y) [2].
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Procedure 2 Generation of the random matrix from the Ginibre
ensemble.
Input: m,n > 0
Output: Matrix G of size m × n

for k = 1 to m do
for l = 1 to n do

G[k, l] ← RandomReal(0,1) + i RandomReal(0,1)

end for
end for
return G

Using Mathematica language, Procedure 2 can be written in a
compact form as

dist = NormalDistribution[0,1];
GinibreMatrix[m_,n_]:=

RandomReal[dist,{m,n}]
+ I RandomReal[dist,{m,n}]

2.3.1. Induced measures and the Hilbert–Schmidt ensemble
The Hilbert–Schmidt metric defined in Eq. (1) is commonly

used to describe the metric structure of the set of quantum states.
This distance introduces a Euclidean geometry in the space of den-
sity matrices. In the special case of one-qubit density matrices, the
space has the form of the Bloch ball.

The Hilbert–Schmidt measure belongs to the class of induced
measures [2, Ch. 14]. In a general case, one can seek a source of
randomness in a given system, by studying the interaction of the
n-dimensional system in question with the environment. In such
situation the random states to model the behaviour of the system
should be generated by reducing a pure state in N × K -dimensional
space. In what follows we denote the resulting probability measure
by μN,K .

In particular, the Hilbert–Schmidt probability measure on n-
dimensional space Ωn can be obtained by reducing a bi-partite
pure quantum state from C

N×N . However, it is easy to see that
this measure, as well as any measure μN,K , can be obtained by
using a simpler procedure.

We start by observing that any complex matrix X ∈ M(C) can

be used to construct a normalised, positive matrix X X†

tr X X† . Let us
now assume that we have a pure state in the N × K -dimensional
Hilbert space, |ψ〉 ∈ HN ⊗ H K = C

N×K . Any such state can be rep-
resented in a product basis |ψ〉 = ∑N

i=1
∑K

j=1 Xij|i〉 ⊗ | j〉, where

X ∈ MN,K . The matrix X X† is, in this case, equivalent to the
partial trace of |ψ〉〈ψ | with respect to the second subsystem,
trH K |ψ〉〈ψ | = X X†. Symmetrically we have trHN |ψ〉〈ψ | = X† X .

It follows from the above considerations that the spectrum of
a density matrix obtained using this method is the set of squared
and normalised singular values of the matrix X . In particular, if
one assumes that the pure states on H K ⊗ HN are distributed
according to the Fubini–Study measure, the resulting density ma-
trices are distributed with induced measures.

In the case of induced measures the elements of the coefficient
matrix are independent random variables and form a Ginibre ma-
trix.

Procedure 3 Generation of a random density matrix distributed
according to induced probability measure μn,k obtained by tracing
out the ancillary system of dimension k.
Input: n � 0,k � 2
Output: Random mixed state ρ of dimension n

G ← GinibreMatrix(n, k)
ρ ← GG†

ρ ← 1
trρ ρ

return ρ
In the special case of K = N we obtain the Hilbert–Schmidt
ensemble.

The statistical properties of the set of quantum states with
respect to the probability measure introduced by the Hilbert–
Schmidt metric were studied in [16,17].

2.3.2. Bures ensemble
Another popular measure of the distance between quantum

states is the Bures distance. Its usage is motivated by the fact that
this distance, when restricted to diagonal matrices, is equivalent to
the Hellinger distance in statistics, defined for two discrete prob-
ability distributions as H(p,q) = ∑

i
√

piqi . Moreover, the Bures
distance and quantum fidelity are related to the distinguishability
of quantum states, defined as a trace distance between the given
states.

The above features distinguish the Bures measure as an optimal
method for generating random density matrices in the situation
when no information about the source of state is present.

The algorithm for generating random density matrices dis-
tributed according to the probability measure based on the Bures
distance was provided in [18]. This algorithm is presented in Pro-
cedure 4.

Procedure 4 Generation of a random density matrix distributed
according to the probability measure induced by the Bures metric.
Input: n � 0
Output: Random mixed state ρ of dimension n

G ← GinibreMatrix(n, n)
U ← RandomUnitary(n)
ρ ← (1 + U )GG†(1 + U †)

ρ ← 1
trρ ρ

return ρ

3. Description of the package

The TRQS package implements a number of functions allowing
to obtain random state vectors and random density matrices.

It uses Quantis random number generator produced by ID
Quantique [19] for the purpose of generating random numbers. ID
Quantique provides drivers, example programs and a library for ac-
cessing Quantis devices on most popular operating systems. The
software package for using Quantis, including some examples of
how libQuantis library can be used, can be downloaded from
the ID Quantique support page [20].

Note that the functions implemented are independent from the
actual source of randomness. In particular it is possible to switch
to some other sources of random numbers.

The package consists of a set of source files, developed using
MathLink provided by Mathematica and a package file TRQS.m, im-
plementing the main functionality.

3.1. Communication with Quantis device

In the presented package the communication between Math-
ematica and Quantis device was implemented using MathLink – a
standard interface for interprogramme communication provided by
Mathematica.

We used libQuantis library that provides a number of func-
tions for reading random data from Quantis device. In particular
the presented package uses only functions for reading basic data
types. The functions of this kind implemented in libQuantis
can be divided into four categories:

• QuantisReadShort and QuantisReadScaledShort –
functions for reading short integers and short integers within
the given range,
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• QuantisReadInt and QuantisReadScaledInt – func-
tions for reading long integers and long integers within the
given range,

• QuantisReadFloat_01 and QuantisReadScaledFloat
functions for reading float numbers in the range [0,1] and
float numbers within the given range,

• QuantisReadDouble_01 and QuantisReadScaled
Double – functions for reading double numbers in the range
[0,1] and double numbers within the given range.

Moreover, the library function QuantisRead allows to read
raw random data. This function can be also used to read large
amount of data, which can be necessary in the case when one
needs to fill large matrices with random numbers.

3.2. Organisation of the package

The described package was designed to work in companion
with the QI package for Mathematica [7] and can be used along
with this package. The provided functions for generating random
states can be grouped into three categories: basic functions, func-
tions for generating pure states and unitary matrices and functions
for generating mixed states and channels.

The functions are defined within the TRQS name space. We fol-
low the naming convention which assumes that functions using
a true random number generator to produce results have names
starting with True and the rest of the name describes the gen-
erated object. The functions related to the configuration of the
back-end i.e. Quantis device, have names starting with Quantis
(see: Section 3.2.4).

Each function is provided along with some basic information
about its functionality.

3.2.1. Basic functions
The first group of functions implements basic structures utilised

for generating quantum states. The functions in this group imple-
ment communication with Quantis device and provide the gener-
ation of real and integer random numbers and some basic struc-
tures. In this group the following functions allow to access basic
types of random numbers:

1. TrueRandomReal – returns a random real (double) num-
ber; this function is based on libQuantis library function
QuantumReadScaledDouble and is implemented in three
variants:
(a) TrueRandomReal[{nmin,nmax}] – returns a real number

distributed uniformly in the interval [nmin,nmax],
(b) TrueRandomReal[nmax] – returns a real number dis-

tributed uniformly in the interval [0,nmax],
(c) TrueRandomReal[] – returns a real number distributed

uniformly in the interval [0,1].
2. TrueRandomRealNormal[x,y,{d1, . . . ,dl}] – returns a

(d1 × · · · × dl)-dimensional array of random numbers dis-
tributed according to N (x, y).

3. TrueRandomInteger – returns a random integer. This func-
tion, based on libQuantis library function QuantumRead
ScaledInt, is provided for convenience and implemented in
three variants:
(a) TrueRandomInteger[{nmin,nmax}] – returns an inte-

ger distributed uniformly in the interval [nmin,nmax],
(b) TrueRandomInteger[nmax] – returns an integer dis-

tributed uniformly in the interval [0,nmax],
(c) TrueRandomInteger[] – returns 0 or 1.
The following functions, built using these basic functions, allow
to obtain the structures used to construct random quantum states
and operations:

1. TrueRandomSimplex[n] – returns an element of a stan-
dard simplex, distributed uniformly on simplex,

2. TrueGinibreMatrix[m,n] – returns an n×m Ginibre ma-
trix,

3. TrueRandomChoice[{e1, e2, . . . , en}] – returns at random
one of the {e1, e2, . . . , en},

4. TrueRandomGraph[v,e, form] – returns a pseudo-ran-
dom graph with v vertices and e edges. Additionally, the last
argument can be set to “Graph” (default) to obtain a graphical
representation of the result or to “List” to obtain the result as
a list of vertices and edges.

3.2.2. Pure states and unitary matrices
The functions in this group allow to obtain random pure states

and random unitary matrices. Since product (or local) states and
operations are of a special interest in quantum information theory,
we provide functions allowing to generate pure states and unitary
matrices of the tensor product structure:

1. TrueRandomKet[n] – returns a random pure state in n-
dimensional space C

n ,
2. TrueRandomProductKet[{n1,n2, . . . ,nk}] – returns a ran-

dom pure state, which is an element of space with the tensor
product structure C

n1 ⊗ C
n2 ⊗ · · · ⊗ C

nk

3. TrueRandomUnitary[n] – returns a random unitary ma-
trix acting on n-dimensional space C

n ,
4. TrueRandomLocalUnitary[{n1,n2, . . .nk}] – returns a

random unitary matrix, which acts on the elements of space
with the tensor product structure C

n1 ⊗ C
n2 ⊗ · · · ⊗ C

nk .

3.2.3. Mixed states
The last group of functions implements the generation of ran-

dom mixed states. In particular we have:

1. TrueRandomStateHS[n] – a random density matrix of di-
mension n, generated according to the Hilbert–Schmidt mea-
sure,

2. TrueRandomStateBures[n] – a random density matrix of
dimension n, generated according to the Bures measure,

3. TrueRandomStateInduced[n,k] – a random density
matrix of dimension n, generated according to the induced
probability measure with an external system of dimension k,

4. TrueRandomProductState[{n1,n2, . . . ,nk},μ] – a prod-
uct random density matrix acting on the space with the tensor
product structure C

n1 ⊗ C
n2 ⊗ · · · ⊗ C

nk and with each local
component generated according to measure μ, where μ can
be set to "HS", "Bures" or some integer K describing an
induced measure.

Additionally TRQS package allows to generate random dynami-
cal matrices, representing the most general form of quantum sys-
tem evolution.

1. TrueRandomDynamicalMatrix[n,k] – a random dy-
namical matrix of dimension n, representing a quantum chan-
nel acting on n-dimensional space of density matrices, with k
eigenvalues set to 0. The last argument is set to 0 by default.

The above function is based on the algorithm described in [21].
The obtained random dynamical matrix can be easily transformed
into a set of random Kraus operators [2,22].
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3.2.4. Functions related to the back-end configuration
To provide some basic interaction with the underlying device,

the following functions were implemented in TRQS package.

1. QuantisGetLibVersion[] – returns a version number of
the installed libQuantis library.

2. QuantisGetSerialNumber[] – returns a serial number of
Quantis device used as a back-end.

3. QuantisGetDeviceID[] – returns an id number of Quan-
tis device.

4. QuantisGetDeviceType[] – returns a type of Quantis de-
vice.

Note that the functions QuantisGetDeviceID[] and
QuantisGetDeviceType[] provide only information about the
configuration options used during the compilation of MathLink
source files.

4. Examples

The main aim of the presented package is to provide a tool
for the analysis of the properties of random density matrices. Be-
low we present two examples of such analysis. First, we calculate
the distributions of eigenvalues for 4-dimensional mixed density
matrices and compare analytical and numerical results. Next, we
calculate numerically the average fidelity between random density
matrices with respect to measure μ2,K . In both cases we compare
the results obtained using the presented package and the results
obtained from a standard random number generator with the ana-
lytical results.

We also provide a comparison of speed between the standard
pseudo-random number generator from Mathematica and genera-
tor using libQuantis library. This example shows that the speed
of random number generation offered by the currently available
hardware is insufficient.

4.1. Distribution of eigenvalues

The Bures and Hilbert–Schmidt probability measures are of the
product form i.e. the distribution of eigenvalues is independent
from the distribution of eigenvectors.

In the case of the Hilbert–Schmidt measure the probability den-
sity of eigenvalues is given by the formula [2]

PHS(λ1, . . . , λN) = CHS
N

∏
i< j

(λi − λ j)
2, (3)

where
∑

i λi = 1, λi � 0, i = 1,2, . . . , N . The normalisation con-
stant CHS

N reads

CHS
N = Γ (N2)∏N

i=1 Γ (k)Γ (k + 1)
. (4)

Here we present some results for the Hilbert–Schmidt measure
and density matrices of dimension 4. The distribution of eigenval-
ues λ1, λ2, λ3, λ4 of the random density matrices from Ω4 gen-
erated uniformly with respect to the Hilbert–Schmidt measure is
presented in Fig. 1(a). In Fig. 1(b) the distribution of λ1, λ2, λ3, λ4
obtained using true random density matrices is presented. Numer-
ical results were obtained using a sample of 2000 random density
matrices.

4.2. Average fidelity

Quantum fidelity [2] is commonly used in quantum information
theory to quantify to what degree a given quantum state can be
approximated by some other state or a family of states [23].
(a)

(b)

Fig. 1. Distribution of eigenvalues for random density matrices distributed uniformly
according to the Hilbert–Schmidt probability measure. (a) Analytical results ob-
tained by a direct integration over appropriate subsets of the convex hull of the
spectrum. (b) Numerical results obtained using random states generated with TRQS
package.

The average fidelity between two random quantum states can
be used e.g. to provide an insight into the performance of quan-
tum protocols in the presence of noise. Since, in most cases, in
quantum information processing one is interested in the behaviour
of 2-dimensional systems (qubits), below we deal with this case
only.

As it has already been mentioned, the use of random states in
quantum information processing is commonly motivated by the in-
teraction of the system in question with the environment. In this
case one is interested in random density matrices generated uni-
formly with respect to some induced measure μ2,K , where K is
the dimension of the ancillary system.

The mean fidelity between two one-qubit random density ma-
trices generated uniformly with respect to measure μN,K was cal-
culated in [17] and reads

〈F 〉2,K = 1

2
+ 1

2

(
Γ (K − 1

2 )Γ (K + 1
2 )

Γ (K − 1)Γ (K + 1)

)2

. (5)

The average fidelity for one-qubit random states generated with
μ2,K is presented in Fig. 2. The results were obtained using a sam-
ple of 50 states and one can see that in this case it allows to obtain
a very good approximation of an exact result, especially in the case
of large K .
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Fig. 2. Average fidelity between one-qubit random mixed states generated uniformly
with respect to μ2,K . The dotted line represents the exact result. Numerical results
obtained using the presented package are marked with “×”.

Fig. 3. Comparison of speed for random number generators in log–log scale. Blue cir-
cles represent timings for samples generated using RandomReal[] functions using
pseudo-random number generator. Red squares represent timings for samples gen-
erated with TRQS package function TrueRandomReal[] using MathLink executa-
bles linked against libQuantis-NoHW library. Black diamonds illustrate timings
for an analogous method with MathLink executables linked against libQuantis
library.

4.3. Speed comparison

For the purpose of testing the speed of the TRQS package we
have performed three experiments involving generation of random
real numbers distributed uniformly on the unit interval. In each
experiment we have used a different method.

1. The first experiment was conducted using a standard pseudo-
random number generator provided by Mathematica. Addition-
ally we used ClearSystemCache["Numeric"] in order to
generate the results independent from previous computations.

2. In the second experiment the numbers were generated us-
ing TRQS package and MathLink executables linked against
libQuantis-NoHW library. While in this case the generated
numbers are still pseudo-random, this test was included in or-
der to measure the overhead stemed from the access to an
external library.

3. The last experiment was conducted with TRQS package using
data from the physical quantum random number generator.

In each experiment samples of size 101,102, . . . ,107 were gener-
ated.
The obtained results are presented in Fig. 3. The comparison
of timings for samples generated using pseudo-random number
generator provided by Mathematica with timings for data obtained
using Quantis device clearly shows that there is a tremendous dif-
ference in the speed of these generators. For example in order to
generate a sample of 102 real numbers using a Quantis device one
needs to wait about 1 s. Analogous sample is obtained in about
3 × 10−4 s when using a pseudo-random number generator pro-
vided by Mathematica.

At the same time, the sample of 102 can be obtained using
TRQS package if the used MathLink executables are linked against
libQuantis-NoHW library. This shows that the main overhead in
generating random numbers using Quantis generator steams from
the very slow physical scheme used to obtain random data.

5. Concluding remarks

Good random number generators are undoubtedly one of the
most crucial elements used in computational physics. In particular,
in simulations of quantum computing the use of random numbers
is required to imitate the statistical behaviour of quantum me-
chanical objects, e.g. quantum register after measurement [24] or
particle in quantum walks [25].

The described package can be used along with QI package for
Mathematica [7] and some of the described functions are imple-
mented in QI with the use of a pseudo-random number generator
available in Mathematica. As the functions implemented in the pre-
sented package operate on basic data types available in Mathemat-
ica, it is also possible to use the package with other Mathematica
packages developed for the simulation of quantum computing [5,6,
8]. However, the potential application of the presented package is
not limited to quantum information theory and the implemented
functions can be used in other fields where good quality random
numbers are required.

The obtained timings for different methods of producing ran-
dom numbers suggest that the main obstacle in using the pre-
sented software in large scale simulations using random numbers
is the speed of the random number generators. Clearly, at the
moment the built-in pseudo-random number generator in Math-
ematica outperforms the Quantis-based random number generator.
Quantis device provides a stream of random numbers generated
at 4 Mbits/s. Additionally, the speed of random number generation
is limited by the speed of the I/O operations. The speed of func-
tions using Quantis QRNG can be improved by using libQuantis
function QuantisRead for reading a larger amount of random data
in the situation when e.g. large arrays are filled with random num-
bers. However, for the needs of simulations connected to quantum
information theory, especially related to investigations of prop-
erties of low-dimensional systems the presented functions pro-
vide a satisfactory user experience. On the other hand, the re-
cent progress in quantum random generation provides the meth-
ods for delivering random numbers generated at a rate of up to
50 Mbit/s [13] or higher [26].

Clearly the application of the described package is limited by
the availability of Quantis quantum random number generator.
However, alternative sources of random numbers generated us-
ing hardware operating on the basis of quantum mechanics ex-
ist. In particular, QRNG Service provided by PicoQuant GmbH and
the Nano-Optics group at the Department of Physics of Hum-
boldt University [27] allows to obtain samples of random numbers
generated using quantum hardware. The samples can be down-
loaded directly via web page or, alternatively, using the provided
library libQRNG. This library can be used in 32- and 64-bit ver-
sions of Linux and Windows operating systems. Another option is
provided by the Quantum Random Bit Generator Service [28] de-
veloped by Centre for Informatics and Computing, Ruder Bošković
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Institute, Zagreb, Croatia. This service provides bindings for a vari-
ety of programming languages, including C, Java and Python. Both
services require registration and have some limitations concern-
ing the amount of random data that can be downloaded. However,
they provide free and relatively easy to use alternative for the com-
mercial solution provided by ID Quantique.
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[15] K. Życzkowski, K.A. Penson, I. Nechita, B. Collins, Generating random density
matrices, J. Math. Phys. 52 (2011) 062201.
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