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We review Schmidt and Kraus decompositions in the form of singular value decomposition

using operations of reshaping, vectorization and reshuffling. We use the introduced notation to

analyze the correspondence between quantum states and operations with the help of Jamioł-
kowski isomorphism. The presented matrix reorderings allow us to obtain simple formulae for

the composition of quantum channels and partial operations used in quantum information

theory. To provide examples of the discussed operations, we utilize a package for the Mathe-

matica computing system implementing basic functions used in the calculations related to

quantum information theory.
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1. Introduction

Quantum information theory1�3 aims to provide methods of harnessing the quan-

tum nature of information carriers to develop more efficient quantum algorithms

and more secure communication protocols. Mathematically quantum systems are

described using the formalism of density matrices and the most general form of

quantum evolution is described by completely positive (CP) operators.2,4

In many situations in quantum information theory one deals with vector spaces

of the tensor-product form. For example, the description of composite quantum

systems is based on a tensor product of spaces describing sub-systems. This is

essential for the phenomenon of quantum entanglement, which is one of the most

important features of quantum information theory.5,6 Also the theory of quantum

channels, which are used, for example, to describe errors in quantum computation

and communication protocols, deals with the composite channels that are described

as tensor products of channels. The composition of quantum channels gives rise to

another phenomenon unique to quantum information theory, namely the non-

additivity of channel capacity.7,8
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The main aim of this report is to present a uniform view on Schmidt and Kraus

decompositions. Both decompositions provide very important tools used in quan-

tum information theory. Schmidt decomposition is used to describe quantum

entanglement in the special case of pure quantum states. Kraus decomposition, on

the other hand, is used in the analysis of quantum channels. We achieve our goal by

presenting both decompositions in the form of singular value decomposition (SVD)

and by using some matrix reorderings. As the reorderings are used in many branches

of mathematics, physics and computer science, our goal is also to clarify the used

notation. The presented concepts form the basis for the package of functions for

Mathematica computer algebra systems presented in the last part of this report.

This report is organized as follows. In Sec. 2 we review some basic algebraic facts

applied in this report. In particular we fix the notions of matrix reshaping, vec-

torization and reshuffling. In Sec. 3 we use the SVD theorem in the finite-dimen-

sional Hilbert space to obtain Schmidt decomposition for pure quantum states. We

also rephrase Schmidt decomposition in any unitary space and apply it to density

matrices to obtain the so-called operator Schmidt decomposition. In Sec. 4 we use

the conditions for quantum channels and SVD to derive the Kraus form of a

quantum channel and we analyze the composition of quantum channels and partial

operations. Finally, Appendix A contains some examples of the discussed concepts

using the package of functions for Mathematica computing system.

Notation. In what follows we denote by v, elements of finite vector space, and j�i,
pure states. By Mm;n we denote the set of all m � n matrices over C. The set of

square n � n matrices is denoted by Mn. The set of n-dimensional density matrices

(normalized, positive semi-definite operators on Cn) is denoted by �n.

The set Mn has the structure of the Hilbert space with the scalar product given

by the formula

ðA;BÞ ¼ trA†B: ð1Þ
This particular Hilbert space is known as the Hilbert�Schmidt space of operators

acting on Cn and we will denote it by HHS.

2. SVD and Matrix Reorderings

In this section we review some basic algebraic facts used in the following parts of this

report. One should note that the operations of reshaping and vectorization, intro-

duced in this section, are used in many areas of science and engineering ��� see for

example Refs. 9 and 10. For this reason in many cases, the naming conventions

differ depending on the authors’ preferences and backgrounds.

2.1. Singular value decomposition

For the sake of consistency we start by recalling SVD which is valid for any n �m

matrix over C.11
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Theorem 1. Let A 2 Mm;n has the rank k � m. Then there exist unitary matrices

U 2 Mm and V 2 Mn such that

A ¼ U�V †: ð2Þ
The matrix � ¼ f�ijg 2 Mm;n is such that

�ij ¼ 0; for i 6¼ j; ð3Þ
and

�11 � �22 � � � � � �kk > �kþ1;kþ1 ¼ � � � ¼ �qq ¼ 0; ð4Þ
with q ¼ minðm; nÞ.

The numbers �ii � �i are singular vales, i.e. non-negative square roots of the

eigenvalues of AA†. The columns of U are eigenvectors of AA† and the columns of V

are eigenvectors of A†A.

In the special case when A is positive semi-definite, the above decomposition is

equivalent to the eigendecomposition of A.

2.2. Reshaping and vectorization

SVD provides us with the particular form of a given matrix. This can be directly

applied in the case when we deal with linear maps on a finite-dimensional vector

space.

In order to use the SVD we need one or more algebraic tools, namely the mapping

between Mm;n and Mmn;1 (or Cmn). We define two functions, which can be used as

such mappings.

Definition 1. Let A ¼ ½aij �i;j 2 Mm;nðCÞ. We define the reshaping of A as

resðAÞ ¼ ða11; a12; . . . ; a1n; a21; a22; . . . ; a2n; . . . ; am1; am2; . . . ; amnÞT ; ð5Þ

and the vectorization of A as

vecðAÞ ¼ ða11; a21; . . . ; am1; a12; a22; . . . ; am2; . . . ; a1n; a2n; . . . ; amnÞT ð6Þ

where \T" denotes matrix transposition.

In other words, the vectorization of matrix A means its reordering in column

order and reshaping in row order. Note that resðAÞ is equivalent to vec ðAT Þ.
Both operations can be achieved using, for example, Flatten function in Mathe-

matica or reshape function in Matlab and GNU Octave.

Both vecðAÞ and resðAÞ, map Mm;n onto Mmn;1. Both operations can also be

interchanged as they are connected by the formula

resA ¼ vecAT : ð7Þ

Thus, it is rather a matter of taste which one to use.
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One should keep in mind that there are several notational conventions in

literature for denoting vectorization and reshaping operations. We use the definition

of vectorization as provided in Refs. 10, 12 and 13. The reshaping operation defined

above agrees with the convention used in Ref. 4 and it corresponds to the row-major

order method of turning a matrix into a vector. In Ref. 14 this operation is denoted

as col. In the recent preprint of Gilchrist et al.15 the authors refer to res operation

defined above as to vectorization.

Vectorization and reshaping have many useful properties, some of which we are

going to use in the following sections. In particular, if A;B;C 2 Mm then we have

the following.

(P1) vecðAÞ ¼ resðAT Þ for A 2 Mm,

(P2) vecðABC Þ ¼ ðCT � AÞ vecðBÞ and resðABCÞ ¼ ðA� CT ÞresðBÞ,
(P3) vecðABÞ ¼ ð1� AÞ vecðBÞ ¼ ðBT � 1ÞvecðAÞ,
(P4) vecðA 	 BÞ ¼ vecðAÞ 	 vecðBÞ, where \	" denotes the Hadamard product,11

(P5) trA†B ¼ vecðAÞ
 � vecðBÞ ¼ resðAÞ
 � resðBÞ, where \�" denotes the scalar

product of two vectors in Cn.

In particular, properties (P2), (P3) and (P4) from the above list also hold for

rectangular matrices of appropriate dimensions. According to Ref. 13 the property

(P2) appeared for the first time in Ref. 16 and it will be crucial in the next sections.

2.3. Reshu®ling

Our main goal is to use SVD to analyze composite quantum states and the dynamics

of quantum systems. In both cases we need to deal with the tensor-product struc-

ture. For pure quantum states this structure is fixed by the physical structure of the

system we aim to describe. For quantum channels this structure is introduced by

Jamiołkowski isomorphism, which uses the operation of reshuffling.

Reshuffling can be used to fix particular tensor-product structure in the set of

matrices. Roughly speaking a reshuffled matrix is a matrix represented in a par-

ticular tensor-product base.

Let us denote by f�i : i ¼ 1; . . . ;m2g and f"j : j ¼ 1; . . . ; n2g canonical bases in

Mm and Mn respectively. This is to say that resð�iÞ (resð"jÞ) has 1 at ith (jth)

position and zeros elsewhere and resð�i � "jÞ has 1 at the i � jth position.

Definition 2. Let A 2 Mk with k ¼ mn, i.e.Mk ¼ Mm �Mn. Matrix with elements

fARðm;nÞgij ¼def tr ð�i � "jÞ†A
� � ð8Þ

is called a reshuffling of matrix A with respect to subspaces Mm and Mn.

Using res operation a reshuffled matrix can be expressed as

fARðm;nÞgij ¼ resð�i � "jÞ � resðAÞ; ð9Þ
where we have used the fact that matrices �i and "j are real.
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Note that this type of matrix reordering was introduced without any connection

to quantum physics in Ref. 17.

One can also introduce the reshuffling operation using transposed canonical

bases, which are ordered accordingly in column order. This is to say that vecð�Ti Þ
(vecð"Tj Þ) has 1 at ith (jth) position and zeros elsewhere and vecð�Ti � "Tj Þ has 1 at

the (i � j)th position. We define alternative reshuffling by counting matrix elements

in column order.

Definition 3. Let A 2 Mk with k ¼ mn, i.e.Mk ¼ Mm �Mn. Matrix with elements

fAR0ðm;nÞgij ¼def tr½ð�Tj � "Ti Þ†A� ð10Þ
is called an alternative reshuffling of matrix A with respect to subspaces Mmand Mn.

Taking into account that base matrices are real we get

fAR0ðm;nÞgij ¼ tr½ð�j � "iÞA�: ð11Þ
Note that it is also possible to define reshuffling in more general case when matrix

A is of the form A ¼ X � Y with X 2 Mk;l and Y 2 Mm;n.

We usually work with a density matrix �, which is said to be an element of

SðHA �HBÞ. In such case the reshuffling operation is understood with respect to

canonical bases in SðHAÞ and SðHBÞ.
Moreover, while working with � 2 Mn �Mn we write simply �R as long as the

dimensions of matrices in question can be deduced from the context.

Example 1. To give a simple example of reshuffling operation one can use a square

matrix A 2 Mn2 . For example, if A 2 M4 it is given as

A ¼
�1;1 �1;2 �1;3 �1;4

�2;1 �2;2 �2;3 �2;4

�3;1 �3;2 �3;3 �3;4

�4;1 �4;2 �4;3 �4;4

0
BB@

1
CCA; ð12Þ

then we have

ARð2;2Þ ¼
�1;1 �1;2 �2;1 �2;2

�1;3 �1;4 �2;3 �2;4

�3;1 �3;2 �4;1 �4;2

�3;3 �3;4 �4;3 �4;4

0
BB@

1
CCA: ð13Þ

On the other hand taking the alternative definition of reshuffling we get

AR0ð2;2Þ ¼
�1;1 �3;1 �1;3 �3;3

�2;1 �4;1 �2;3 �4;3

�1;2 �3;2 �1;4 �3;4

�2;2 �4;2 �2;4 �4;4

0
BB@

1
CCA: ð14Þ

Example 2. Reshuffling operation is a linear map on Mn and as such it can be

represented as a matrix. For example the operation � 7! �Rð2;2Þ on M4 has the
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following matrix representation

MRð2;2Þ ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð15Þ

One can note that reshuffling and alternative reshuffling are connected by the

relation4

AR0 ¼ ðSARSÞT ; ð16Þ
where S is the swap operation.

In the next section we use the following simple fact connecting reshuffling and the

tensor product.

Proposition 1. Let A 2 Mn and B 2 Mm. Then we have

resððA� BÞRÞ ¼ resðAÞ � resðBÞ ð17Þ
and

vecððA� BÞR0 Þ ¼ vecðAÞ � vecðBÞ: ð18Þ
Proposition 1 follows directly from the definition of reshuffling and it allows us to

interchange between product base in Hilbert�Schmidt space and the one in Cn.

3. Schmidt Decomposition

Now we are ready to use the introduced tools for deriving some important results

from quantum information theory.

Our first goal is to prove a particular representation of vectors in finite-dimen-

sional vector space with inner product. This representation is known in quantum

information theory as Schmidt decomposition.4,18
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Schmidt decomposition was first stated for an infinite-dimensional Hilbert

space,19,20 but it is more often used in a version which deals with finite-dimensional

spaces only. It is frequently used in quantum information theory to distinguish

between separable and entangled states.6

3.1. Schmidt decomposition for pure states

We start with Schmidt decomposition for pure states, i.e. unit vectors in a finite-

dimensional Hilbert space Cmn ¼ Cm �Cn. This form is used in quantum infor-

mation theory to study quantum entanglement.

Theorem 2. Any pure state j i 2 Cm �Cn can be represented as

j i ¼
Xk
i¼1

ffiffiffiffiffi
�i

p
j�ii � j�ii; ð19Þ

where fj�iig 2 Cm and fj�iig 2 Cn are orthogonal in respective Hilbert spaces and

k � minðm; nÞ.
Proof. We can always represent j i 2 Cm �Cn using canonical basis as

j i ¼
Xm
i¼1

Xn
j¼1

Cij jeii � jfji; ð20Þ

where fjeiig 2 Cm and fjfjig 2 Cm are canonical bases in respective subspaces,

C 2 Mm;n and vectors jeii � jfji; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n have the following form

jeii � jfji ¼ ð0; . . . ; 0; 1; 0; . . . ; 0ÞT ; ð21Þ
with 1 at position ij and zeros elsewhere. In this particular basis j i ¼ resðC Þ. Using

the SVD and the property (P2) for the reshaping operation we get

j i ¼ resðU�V †Þ ¼ ðU � V 
Þresð�ij�ijÞ ð22Þ
and by using the canonical basis we get

j i ¼ ðU � V 
Þ
Xm
i¼1

Xn
j¼1

�ij�ij jbiji ð23Þ

¼
Xk
i¼1

�iiU jeii �V 
jfii; ð24Þ

where k is the order of C . Since �ii are square roots of eigenvalues of positive matrix

CC † we can write

j i ¼
Xk
i¼1

ffiffiffiffiffi
�i

p
j�ii � j�ii; ð25Þ

with �ii ¼
ffiffiffiffiffi
�i

p
, j�ii ¼ U jeii and j�ii ¼ V 
jfii.
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Definition 4. Number k of elements in Schmidt decomposition is often referred to

as the Schmidt number.

States of bipartite systems are among the most interesting objects in quantum

information theory. This is because the tensor-product structure of state space

results in the presence of states which cannot be mimicked using classical theory.

These special states are called entangled states and are used in quantum protocols

and algorithms.

Theorem 2 allows us to distinguish entangled pure states from non-entangled

(or separable) pure states. We have the following theorem, which provides us with

the simplest separability criterion.5,6

Theorem 3. Pure state is separable iff its Schmidt number is equal to 1.

3.2. Schmidt decomposition for unitary spaces

As one can easily see the line of reasoning used in the proof of Theorem 2, it can be

repeated for any finite-dimensional vector space H with scalar product. All we need

is a particular representation of elements in this space in the base of the tensor-

product form. This is to say that H has to be of the form H ¼ HA �HB. Moreover,

we do not need Hilbert spaces to spell-out this theorem. We require only for HA and

HB to be finite-dimensional vector spaces over C with inner product, i.e. HA and

HB have to be unitary spaces. Thus we can easily reformulate Schmidt decompo-

sition in somehow more universal language.

Theorem 4. LetHA andHB be unitary spaces. Any element v 2 H ¼ HA �HB can

be represented as

v ¼
Xk
i¼1

ffiffiffiffiffi
�i

p
ui �wi; ð26Þ

where vectors ui 2 HA and wi 2 HB, i ¼ 1; 2; . . . ; k are mutually orthogonal in

respective spaces and k � minðdimHA; dimHBÞ.
Proof. The line of reasoning is analogous to the one used to prove Theorem 2. In

this case �i are singular values of the matrix

Cij ¼ ðei � ej ;vÞ; ð27Þ
with ð�; �Þ being scalar product on H ¼ HA �HB.

This form of Schmidt decomposition allows us to use it not only for pure states, but

also for any space with an introduced scalar product. In many situations it is con-

venient, however, to use the isomorphism defined by reshaping (or vectorization).

Recently Schmidt decomposition applied to two-qubit unitary gates has been

used to study the properties of this particular set.21 Using this tool it was found, for

example, that locally equivalent non-local gates possess the same set of Schmidt

coefficients.
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3.3. Example: Bipartite density matrices

In quantum mechanics only a small fraction of states can be represented by nor-

malized vectors in some Hilbert space Cn. Especially when we are interested in

interactions of the system in question with the environment, we have to represent

the states of the system as density matrices, i.e. positive operators with unit trace.

As an example of Theorem 4 we will use it to analyze the space of bipartite

density matrices. Let us start by recalling the definition of bipartite separable

state.22,6

Definition 5. Let � be a state of a bipartite quantum system, � 2 SðHA �HBÞ. We

say that � is separable if it can be represented as a convex combination

� ¼
Xk
i¼1

pi�
ðAÞ
i � �

ðBÞ
i ; ð28Þ

with
P

pi ¼ 1, and for all i ¼ 1; . . . ; k we have �
ðAÞ
i 2 SðHAÞ and � ðBÞ

i 2 SðHBÞ. If �
cannot be represented in this form we say that it is entangled.

Although the space �m � �n of density matrices is not a vector space, we can

exploit the linear structure it inherits as a subset of HHS ¼ Mmn.

Any element � 2 �m � �n � Mmn can be written using the standard basis as

� ¼
Xm2

i¼1

Xn2

k¼1

Cij�i � "j ; ð29Þ

where �i 2 Mm; i ¼ 1; . . . ;m2 and "j 2 Mn; j ¼ 1; . . . ; n2 are standard bases in

respective spaces.

Using Schmidt decomposition 4 we can rewrite � as

� ¼
Xk
l¼1

�l�
0
l � " 0l ; ð30Þ

where �i are singular values of the matrix

Cij ¼ tr �†ð�i � "jÞ
� � ¼ resð�Þ
 � resð�i � "jÞ: ð31Þ

This representation can be also obtained using the isomorphism Mmn ’ Cm2n2

and by representing elements of Mn as vectors in Cm2n2
with the help of reshaping

operation

jXi ¼def resX ; ð32Þ
so that jXi 2 Cm2n2

for X 2 Mmn. Using this reasoning one can see directly how to

construct base vectors in Eq. (30).4

The representation given by Eq. (30) is sometimes referred to as an operator

Schmidt decomposition,23 but, as one can see, it provides only an example of the

application of Schmidt decomposition as presented in Theorem 4.

Singular Value Decomposition and Matrix Reorderings 905



4. Quantum Channels

Since we aim to apply SVD to quantum channels, we need to introduce some basic

facts about them. We restrict ourselves to the finite-dimensional case and the special

subclass of trace-preserving (TP) quantum channels.

A state in quantum mechanics is described using density matrices and thus any

quantum evolution � has to transform initial density matrix �in 2 �m into density

matrix �ð�inÞ ¼ �out 2 �n.

4.1. De¯nitions

The set of quantum operations has some particular structure.4,18 First of all we

assume that any such map � : �in 7! �out has to be linear. This is motivated by the

fact that any mixed state can be represented as a convex combination of other

states in infinitely many possible ways. The linearity of quantum channel � means

that its action does not depend on the particular representation of input density

matrix.

The main condition, however, for a linear map to be a proper quantum operation

follows from the positivity of input and output states. In order to get more infor-

mation about the form of � we need to use some physical arguments.

It is clear that any physical map � (i.e. any operation that can be implemented in

a laboratory) has to preserve positivity. However, by performing an operation � on

our system, we perform �� 1 on our system and on environment. As such, any

physical map has to be completely positive (CP), i.e. any extension of � of the form

�� 1m with 1m 2 Mm and m ¼ 1; 2; . . . has to be positive.

Definition 6. A map � is called CP if it preserves positivity and for any

n ¼ 1; 2; . . . the map

�� 1n; ð33Þ
where 1n is an identity operation on n-dimensional space of states, also

preserves positivity.

This definition introduces the Kronecker product of channels, which is described

in more details in Sec. 4.3.

Using the above definition we can define a quantum channel, which describes the

most general form of the evolution of quantum systems.

Definition 7. Any CP-map preserving trace is called a quantum channel or a

quantum operation.

We use the isomorphism Mmn ’ Cm2n2
to calculate the elements of its matrix

representation. As a linear map any � : �n 7! �n, �ð�inÞ ¼ �out, can be written as

a matrix M� 2 Mn2

resð�outÞ ¼ M� resð�inÞ; ð34Þ
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where

M� ¼ fð�k ;�ð�lÞÞgk;l ¼ 1;...;n2 ¼ ftr½�†k�ð�lÞ�gk;l ¼ 1;...;n2 ; ð35Þ
has n4 elements. Here again we have used the canonical basis f�kgk¼1;...;n2 in Mn2 .

Surprisingly more information about the positivity of a given map can be

obtained if we represent map � in a specific basis, namely the one obtained as

a tensor product of base matrices in subspaces of dimension n2. To exploit this

structure we define so-called dynamical matrix of the map �.

Definition 8. Let � be a linear map on Mn. The dynamical matrix for � is defined

as a matrix D� 2 Mn2

D� ¼ ftr½ð�i � �jÞM��gi;j¼1;...;n; ð36Þ
where f�igi¼1;...;n is a canonical basis in Mn, or, equivalently

D� ¼ M
Rðn;nÞ
� : ð37Þ

One should note that the elements of the matrix D� can be calculated according

to the formula

hði � 1Þn þ jjD�jðk � 1Þn þ li ¼ tr ð�i � �jÞ†�ð�k � �lÞ
� �

: ð38Þ
Note that this allows to use a four-index notation as introduced in Ref. 4. This

notation allows to express the idea behind reshuffling as (see Ref. 4)

hkj�ðjiihjjÞjli ¼ hk � ijD�jl � ji: ð39Þ
For quantum information theory the most important fact expressed using the

dynamical matrix is known as Choi theorem.24

Theorem 5. Linear map � is CP if and only if D� is positive.

This theorem allows us to check easily if a given map is CP. The detailed dis-

cussion of the CP conditions is presented in Refs. 4 and 18 for one-qubit quantum

channels and in Ref. 25 for one-qutrit channels.

Example 3. The operation of matrix transposition Tð�Þ ¼ �T on C2 can be

expressed as

MT ¼
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0
BB@

1
CCA; ð40Þ

which is equivalent to SWAP for a two-qubit system. In this case we have DT ¼
M R

T ¼ MT and, since the spectrum of this matrix is f�1; 1; 1; 1g, we can see that the

transposition is not CP.

In general, the transposition operation can be introduced on Mm;n. The general

form of this operation is given by the following theorem.13
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Theorem 6. For a matrix A 2 Mmn there exists a unique matrix Pðm; nÞ such that

resAT ¼ Pðm; nÞ resA ð41Þ
given by formula

Pðm; nÞ ¼
Xm
i¼1

Xn
j¼1

�ij � �Tij ð42Þ

where f�ijg, with i ¼ 1; . . . ;m and j ¼ 1; . . . ; n is a standard basis in Mmn and

Pðm; nÞ is a permutation matrix.

Note that, as it preserves the spectrum, the transposition is a positive map.

Operations which are positive, but not CP, play an important role in quantum

information theory since they are used to detect quantum entanglement.6

Another interesting feature of quantum theory is the correspondence between

quantum states and quantum channels.26

The dynamical matrix for the operations � is defined as D� ¼ M R
� , where \R"

denotes a reshuffling operation.4 The dynamical matrix for the TP operation acting

on N -dimensional system is an N 2 � N 2 positive defined matrix with trace N . We

can introduce the natural correspondence between such matrices and density

matrices on N 2 by normalizing D�. Such a correspondence is known as

Jamiol =kowski isomorphism.26,27

Let � be a completely positive map acting on density matrices. We define

Jamiołkowski matrix of � as

�� ¼ 1

N
D�: ð43Þ

Jamiołkowski matrix has the same mathematical properties as a quantum state

i.e. it is a semi-definite positive matrix with a trace equal to one. It is sometimes

referred to as Jamiol =kowski operation matrix.27

4.2. Kraus decomposition

Now we are ready to use the SVD to obtain a special representation of quantum

channels known as the Kraus form as we will see the Kraus decomposition of an

operation obtained as Schmidt decomposition of its linear representation.

Let us now consider quantum channel � acting on �n. Its matrix representation

M� is an element of Mn2 and so is its dynamical matrix D�.

One can represent D� in the basis

f�i � �j : i; j ¼ 1; . . . ; n2g; ð44Þ
composed of tensor products of elements of canonical bases in Mn. We get

M� ¼
Xn2

i¼1

Xn2

j¼1

D�ij
�i � �j : ð45Þ
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By taking into account the fact that the matrix D� is positive and by using

Schmidt decomposition (Theorem 4) we get

M� ¼
Xk
i¼1

�i	i � 	

i ; ð46Þ

where 	i; i ¼ 1; . . . ; k are mutually orthogonal elements of Hilbert�Schmidt space

of operators. Recall that M� acts on � 2 �n according to Eq. 34. Combining this

with Property 2 we get

resð�outÞ ¼ res�ð�inÞ ¼ M� resð�inÞ ¼
Xk
i¼1

�i	i � 	 

i resð�inÞ

¼
Xk
i¼1

�i resð	i�in	†
i Þ ¼ res

Xk
i¼1

�i	i�in	
†
i

 !
: ð47Þ

Thus we have obtained the following representation of quantum channels.

Theorem 7. Any CP map � : �N ! �N can be represented as

�ð�Þ ¼
Xk
i¼1

�i	i�	
†
i ; ð48Þ

where 	i are un-reshaped singular vectors of D� and �i are singular values of D�.

For an alternative proof based on Stinespring dilatation theorem see e.g. Ref. 18.

Operators fKi ¼ ffiffiffiffiffi
�i

p
	i : i ¼ 1; 2; . . . ; kg in the above decomposition are known

as Kraus operators.

The Kraus form of a quantum channel is non-unique. We can choose another

set of operators f
i : i ¼ 1; . . . ; lg such that it represents an action of channel �,

i.e.

�ð�inÞ ¼
Xl
i¼1


i�in

†
i : ð49Þ

Operators Ki ¼ ffiffiffiffiffi
�i

p
	i are usually referred to as canonical Kraus operators.

Example 4. Let us consider the completely depolarizing channel �n;p : �n 7! �n
28

defined as

�n;pð�Þ ¼ p�þ ð1� pÞ 1
n
tr �; ð50Þ

with n ¼ 1; 2; . . . and 0 � p � 1. A depolarizing channel acting on initial state

�in ¼ a bþ ic

b� ic 1� a

� �
ð51Þ

Singular Value Decomposition and Matrix Reorderings 909



results in an output state

�out ¼
1

2
þ a � 1

2

� �
p ðbþ icÞp

ðb� icÞp 1

2
� a � 1

2

� �
p

0
BB@

1
CCA: ð52Þ

In one-qubit case the dynamical matrix of �2;p reads

D�2;p
¼

pþ 1

2
0 0 p

0
1� p

2
0 0

0 0
1� p

2
0

p 0 0
pþ 1

2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð53Þ

and it has singular values

p

2
;
p

2
;
p

2
;
1

2
ð4� 3pÞ

� �
: ð54Þ

Un-reshaped singular vectors of D�2;p
are

� 1ffiffiffi
2

p 0

0
1ffiffiffi
2

p

0
BB@

1
CCA; 0 1

0 0

� �
;

0 0

1 0

� �
;

1ffiffiffi
2

p 0

0
1ffiffiffi
2

p

0
BB@

1
CCA

8>><
>>:

9>>=
>>;; ð55Þ

and we obtain the following collection of Kraus operators

�
ffiffiffi
p

p
2

0

0

ffiffiffi
p

p
2

0
BB@

1
CCA; 0

ffiffiffi
p

2

r
0 0

0
@

1
A; 0 0ffiffiffi

p

2

r
0

0
B@

1
CA;

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3p

p
0

0
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3p

p
0
BB@

1
CCA

8>><
>>:

9>>=
>>;: ð56Þ

It can be also easily checked that �2;p can be also represented by Kraus oper-

ators2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3p

p
2

1;

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
2

�x ;

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
2

�y;

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
2

�z

� �
; ð57Þ

where �x ; �y and �z are Pauli matrices. This representation is more appealing from

the physical point of view.

Using Kraus representation we can characterize specific types of quantum

channels. First of all we can distinguish a class of TP operations.
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Definition 9. A channel � given as a collection of Kraus operators fAign
i¼1 is TP ifXn

i¼1

AiA
†
i ¼ 1: ð58Þ

Another important class of quantum channels are random unitary channels.

Definition 10. A channel � is called a random unitary if it can be represented as

�ð�Þ ¼
Xk
i¼1

piUi�U
†
i ; ð59Þ

where operators Ui; i ¼ 1; . . . ; k are unitary, 0 � pi; i ¼ 1; . . . ; k and
P

i pi ¼ 1.

An important example of a random unitary channel is given by generalized Pauli

channel,28 which is an extension to any dimension of the one-qubit Pauli channel.

Example 5. We define two families of unitary operators:

Xd ¼
Xd�1

0

jj � 1mod dihjj; ð60Þ

and

Zd ¼ diagð1; e2i�=d�1; . . . ; e2i�=d�ðd�1ÞÞ: ð61Þ
The action of generalized Pauli channel �d of dimension d is defined as

�dð�Þ ¼
Xd�1

i;j¼0

pi;jX
i
dZ

j
d�ðX i

dZ
j
dÞ†; ð62Þ

where 0 � pi;j � 1 and
P

pi;j ¼ 1.

Generalized Pauli channel is an example of unital channel, i.e. it satisfies the

condition �dð1Þ ¼ 1.

4.3. Composition of channels

To this point we have been dealingwith simple quantum channels (i.e. channels acting

on the whole analyzed system) only. However, some features unique to quantum

information theory can be observedwhen one deals with composite quantumchannels.

Choi Theorem 5 deals with the extensions of a given map to a higher-dimensional

space. Such extensions are maps on Mm �Mn.

Definition 11. Let � and � be quantum channels. Quantum channel ��� is

defined using its matrix representation as

M��� ¼ MR�1ðM� �M�ÞMR; ð63Þ
whereMR�1 ¼ M �1

R ¼ MR is the matrix representation of the reshuffling map � 7! �R

given in Eq. (15) or, equivalently, as a channel acting on the initial state � as

resðð���Þð�ÞÞ ¼ ðM� �M�ðresð�RÞÞÞR: ð64Þ
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As the reshuffling operation represents the exchange between canonical and

tensor-product base, this definition is simply the standard definition known from the

standard multi-linear algebra.

4.4. Partial operations

Representation (63) can be used to calculate composition ��� of any two quan-

tum channels � and �. If we take one of them to be identity � ¼ 1we get so-called

partial operations.

Definition 12. Let � be a quantum channel acting on m-dimensional state space.

We say that the channel

�� 1n ð65Þ
is a partial application of � on m � n-dimensional space or that it is an extension of

� to m � n-dimensional space.

Partial operations are used extensively in quantum information theory,

especially in the context of quantum entanglement.5

Let us return to the transposition operation on one-qubit system and let us see

how it behaves under the extension to a two-qubit system.

Example 6. We define a partial transposition on the first subsystem as

T 1 ¼ T � 12. This map has a matrix representation

MT1
¼ MR�1ðMT � 14ÞMR; ð66Þ

where MR ¼ M �1
R is a matrix representation of the reshuffling operations given by

Eq. (15) andmatrix representation of transpositionMT is given by Eq. (40). In this case

MT1
¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð67Þ

See Appendix for more examples.
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The operation of partial transposition is important in quantum information theory

due to the Peres�Horodecki criterion for distinguishing separable and entangled

states. In the particular case of C2 �C2 system (i.e. two qubits), this criterion states

that the state � 2 SðC2 �C2Þ is separable if and only if �T1 is positive.

5. Summary

We have presented a simple derivation of Schmidt decomposition for pure states

and density matrices and Kraus decomposition for quantum channels. Using matrix

reordering one can easily construct matrices corresponding to the composition of

quantum channels. In particular we have discussed partial operations, which play a

prominent role in quantum information theory.

The main advantage of the presented formulae is that they can be used directly in

computer algebra systems. Full implementation of the procedures discussed in this

report can be found in the source code of theMathematica package.29 For the sake of

consistency we provide some examples of the discussed procedures in Appendix A.
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Appendix A. Examples in Mathematica

Below we provide some examples of the discussed procedures using Mathematica

computing system (see e.g. Ref. 30 for an introduction to Mathematica). The fol-

lowing examples are based on the QI package for Mathematica, which can be freely

downloaded from the project home page. This package provides the implementation

of various procedures helpful during the calculation related to quantum information

processing. For the full list of functions implemented in this package see Ref. 29.

After the proper installation the package can be loaded as

<<QI`

After loading the package one should get some information about the used version

and release date. The examples provided in this report were tested with the version

0.3.21 of the package.

A.1. Matrix reorderings

QI Package provides four functions for the matrix operations described in Sec. 2.
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. Res — reshaping operation,

. Vec — vectorization operation,

. Unres — inverse map for reshaping,

. Unvec — inverse map for vectorization.

In the above functions it is assumed that vectors can be rearranged into square

matrices. Nevertheless, it is possible to rearrange a vector into a general m � n

matrix by specifying the second argument in Unres and Unvec functions.

In the simple case of M4 we can use the above functions as

mA = SymbolicMatrix[a, 4];

vA = Res[mA];

mB = SymbolicMatrix[b, 4];

vB = Vec[mB];

Here function SymbolicMatrix[a,4] returns 4� 4 matrix filled with elements ai;j .

The reshuffle operation can be implemented directly using the Definition 2.

Unfortunately this implementation is inefficient as it requires the calculation of

m2 � k2 matrix elements in order to reshuffle the matrix from Mmk.

QI Package provides three methods for performing the reshuffle operation in

matrices:

. Reshuffle— functions based on the Definition 2 and can be used to construct the

reshuffle matrix,

. ReshuffleGeneral— functions based on the index manipulation and can be used

to reshuffle matrices which are not necessarily square,

. ReshufflePermutation — can be used to construct permutation matrices for

reshuffling operation.

For example with

mA = SymbolicMatrix[a, 4];

mR = ReshufflePermutation[2, 2];

the following should return True

Unres[mR.Res[mA]] == Reshuffle2[mA, 2, 2];

Each function implementing the reshuffle operation has an equivalent function

implementing the alternative reshuffling given by Definition 3 (e.g. Reshuffle and

Reshuffle2).

A.2. Schmidt decomposition

Usually Schmidt decomposition is used in the context of vectors (i.e. elements of

CN ). If we define maximally entangled pure state as

vA = MaxEnt[4]
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we can obtain its Schmidt decomposition as

vAsd = SchmidtDecomposition[vA, 2, 2];

The initial vector can be reconstructed as

Plus @@ Table[

vAsd[[i]][[1]](vAsd[[i]][[2]]�vAsd[[i]][[3]])

fi, 1, 2g
]

The meaning of the \�" symbol is defined in the QI package to provide the

required shape of the output.

To demonstrate Schmidt decomposition on the space of matrices we use the

maximally entangled mixed state on Mnð4Þ.
mA = Proj[MaxEnt[4]];

Its decomposition can be obtained as

mAsd = SchmidtDecomposition[mA, 2, 2];

The initial matrix can be easily reconstructed.

Plus @@ Table[

mAsd[[i]][[1]](mAsd[[i]][[2]]� mAsd[[i]][[3]]),

fi, 1, 4g
]

Note that SchmidtDecomposition function works for vectors as well as for

matrices. However, it is possible to use VectorSchmidtDecomposition and Oper-

atorSchmidtDecomposition for an appropriate input instead.

A.3. Quantum channels

QI Package defines quantum channels using pure functions mechanism. For ex-

ample, the transposition map can be implemented as

TransposeChannel =

IdentityMatrix[#1].Transpose[#2]&;

and its matrix representation can be obtained as

mT = ChannelToMatrix[TransposeChannel[#]&, 4];

for a map acting on M4.

Similar construction for the swap operation reads

SwapChannel = Swap[#1].(#2).Swap[#1] &;

and this function requires information about the system dimension. Here we have

used the SWAP gate predefined in the package. For example the SWAP operation on

two qubits is defined as

cS4 = SwapChannel[4,#];
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Again, one can obtain a matrix representation of this channel as

mS = ChannelToMatrix[cS4, 4];

Alternatively, the same result can be obtained using

mS = Superoperator[cS4, 4];

A.3.1. Spontaneous emission channel for qutrits

Following Ref. 31, QI package provides a definition of a spontaneous emission

channel for a three-level system (qutrit).

seK = QutritSpontaneousEmissionKraus[A1,A2,t];

Here A1 and A2 are Einstein coefficients.

This channel was used as e.g. in Ref. 32 to investigate the behavior of quantum

games under decoherence.

The superoperator corresponding to the above channel can be obtained as

seS = Superoperator[seK];

Note that the Superoperator function has two forms and can be used to obtain

matrix representation of the channel either from the list of Kraus operators or from

the pure function.

A.3.2. Partial operations

The notion of partial operation is very common in quantum information theory and

the presented package allows to construct and analyze such operations in a very

straightforward manner.

Let us consider an operation � on n-dimensional system defined as a pure

function fPsi. In order to obtain the operation �� 1 acting on n �m-dimensional

system one needs to

. construct the matrix representation of the map �:

sPsi = Superoperator[fPsi,n]

. construct the reshuffle matrix in order to transform the obtained matrix to a new

base matrix of the appropriate size:

mR = ReshufflePermutation[n n, m m]

. use the matrix sPsi according to the Definition 11, using the 1-channel on the

second subsystem:

extPsi = mR.(sPsi� IdentityMatrix[m^2]).mR

The extension of the operation constructed in the above procedure acts on the

n �m-dimensional states � as

Unres[extPsi.Res[�]]
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Note that this procedure requires to construct a matrix of dimension which grows

like Oðn4Þ and can be slow for larger systems.

The simplest case of such construction is the partial transposition on

n2-dimensional space. The matrix representation of the transposition operation of

dimension n, is a SWAP operation on n2-dimensional system. The matrix rep-

resentation of the partial transposition can be obtained as

mR = ReshufflePermutation[n n, n n];

tA = mR.(Swap[n n]� IdentityMatrix[n n]).mR

Similar procedure is implemented in QI as PartialTraceA function. However, as

this implementation is not very efficient, QI provides an alternative version of this

operation as a PartialTraceGeneral function, which operates on indices. For ex-

ample, for a given matrix

mA = SymbolicHermitianMatrix[a, 4]

the results of

PartialTraceA[mA, 2, 2]

and

PartialTraceGeneral[mA, 2, 2, 1]

are identical.

The matrix representation of the partial transposition with respect to the first

subsystem, given in Eq. (67), can be obtained as

Superoperator[PartialTransposeA[#, 2, 2] &, 4]

Here PartialTransposeA[#,2,2] is a map which is not positive.

References

1. R. S. Ingarden, Rep. Math. Phys. 10, 43 (1976).
2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information

(Cambridge Univ. Press, Cambridge, UK, 2000).
3. D. Bouwmeester, A. K. Ekert and A. Zeilinger (eds.), The Physics of Quantum Infor-

mation: Quantum Cryptography, Quantum Teleportation, Quantum Computation
(Springer, Berlin, 2000).

4. I. Bengtsson and K. Życzkowski, Geometry of Quantum States (Cambridge Univ. Press,
Cambridge, UK, 2006).

5. R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865
(2009).

6. O. Gühne and G. T�oth, Phys. Rep. 474, 1 (2009).
7. M. B. Hastings, Nat. Phys. 5, 255 (2009).
8. F. G. S. L. Brandao and M. Horodecki, Open Syst. Inf. Dyn. 17, (2010).
9. H. V. Henderson, F. Pukelsheim and S. R. Searle, Linear Algebra Appl. 14, 113 (1983).
10. C. F. van Loan, J. Comput. Appl. Math. 123, 85 (2000).
11. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge,

UK, 1990).
12. D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with Application to

Linear Systems Theory (Princeton Univ. Press, Princeton, USA, 2005).

Singular Value Decomposition and Matrix Reorderings 917



13. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge Univ. Press,
Cambridge, UK, 1994).

14. T. F. Havel, J. Math. Phys. 44, 534 (2003).
15. A. Gilchrist, D. R. Terno and C. Wood, Vectorization of quantum operations and its use

(2009).
16. W. E. Roth, Bull. Amer. Math. Soc. 40, (1934).
17. C. J. Oxenrider and R. D. Hill, Linear Algebra Appl. 69, 205 (1985).
18. T. Heinosaari and M. Ziman, Acta Phys. Slovaca 58, 487 (2008).
19. E. Schmidt, Math. Ann. 63, 161 (1907).
20. A. Pietsch, Math. Nachr. 283, 6 (2010).
21. S. Balakrishnan and R. Sankaranarayanan, Operator-Schmidt decomposition and the

geometrical edges of two-qubit gates, to appear in Quantum Inf. Process. (2011).
22. R. F. Werner, Phys. Rev. A 40, 4277 (1989).
23. M. A. Nielsen, Ph.D. thesis, The University of New Mexico, Albuquerque, New Mexico,

USA (1998).
24. M.-D. Choi, Linear Algebra Appl. 10, 285 (1975).
25. A. Checińska and K. W�odkiewicz, Phys. Rev. A 80, 032322 (2009).
26. K. Życzkowski and I. Bengtsson, Open Syst. Inf. Dyn. 11, 3 (2004).
27. A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
28. M. Hayashi, Quantum Information: An Introduction (Springer, Berlin, Germany, 2006).
29. J. A. Miszczak, Z. Puchała and P. Gawron, QI package for Mathematica, 2010. Software

freely available at http://zksi.iitis.pl/wiki/projects:mathematica-qi.
30. R. Hazrat, Mathematica: A Problem-Centered Approach, Springer Undergraduate

Mathematics Series (Springer, London, UK, 2010).
31. A. Checińska and K. W�odkiewicz, Phys. Rev. A 76, 052306 (2007).
32. P. Gawron, J. A. Miszczak and J. Sładkowski, Int. J. Quantum Inf. 6, 667 (2008).

918 J. A. Miszczak


	SINGULAR VALUE DECOMPOSITION AND MATRIX REORDERINGS IN QUANTUM INFORMATION THEORY
	1. Introduction
	2. SVD and Matrix Reorderings
	2.1. Singular value decomposition
	2.2. Reshaping and vectorization
	2.3. Reshuffling

	3. Schmidt Decomposition
	3.1. Schmidt decomposition for pure states
	3.2. Schmidt decomposition for unitary spaces
	3.3. Example: Bipartite density matrices

	4. Quantum Channels
	4.1. Definitions
	4.2. Kraus decomposition
	4.3. Composition of channels
	4.4. Partial operations

	5. Summary
	Acknowledgments
	Appendix A. Examples in Mathematica
	A.1. Matrix reorderings
	A.2. Schmidt decomposition
	A.3. Quantum channels
	A.3.1. Spontaneous emission channel for qutrits
	A.3.2. Partial operations


	References


