
ARCHIWUM INFORMATYKI
TEORETYCZNEJ I STOSOWANEJ

Tom 17 (2005), z. 4
pp 265-272

Description and visualisation of quantum circuits with XML

Jaros law A. Miszczaka

aInstitute of Theoretical and Applied Informatics
Polish Academy of Sciences

Ba ltycka 5, 44-100 Gliwice, Poland
email: miszczak@iitis.gliwice.pl

Abstract: This paper describes software for transformation of XML-based description of
quantum circuits into graphical representation. It uses Quantum Markup Language introduced
in [8] and produces Scalable Vector Graphics (SVG) representation of data.

Because XML is a popular data format supported by many programming languages, pre-
sented converter does not depend on simulation environment and can be easily connected with
existing software for simulation of quantum computing.

Problems with visualisation of quantum circuit description point out some limitations of
quantum circuits model in practical application e.g. quantum programing languages.

1. Introduction

Introduced in late nineties XML became de facto standard for representing and
interchanging data. Abundance of tools based on it allows to process XML doc-
uments on any hardware and software platform.

Recently few XML based file formats for interchanging and storing informa-
tion on quantum circuits were proposed [10, 8]. In first example XML is used as
a language of commands for the simulator. In the second work Quantum Markup
Language was introduced for interchanging data between simulation engine and
web based user interface. Also software from others fields of science utilises XML
for storing information about various physical objects [3] or data required for
computation or simulation [4].

This paper describes module, written in Python [1] programming language,
which converts Quantum Markup Language description of quantum circuit into

graphical representation using Scalable Vector Graphics [9]. Python was chosen
because of easy integration with existing infrastructure of Fraunhofer Quantum
Computing Simulator.

This paper is organised as follows. First we present basic elements of Quantum
Markup Language1 and discuss advantages and disadvantages of this language.
Next we briefly present method of transformation used in described software and
include some examples. We conclude pointing out limitations of the quantum
circuit model as a language for description of the quantum information processing.

2. Platform independent notation for quantum circuits

Quantum circuits model [6] is one of the most popular among scientists inter-
ested in quantum information theory. It is mainly used for representation of
unitary gates but it also to some extend allows to represent arbitrary quantum
computational process, including measurement.

As we will see this model does not allow to express some elements useful
in simulations of quantum computers. In that sense described software shows
limitations of the quantum circuits model as a quantum programming technique.

2.1. Quantum gates as markups

Extensible markup languages can be used for representation of quantum gates
in a very convenient way. Here we present basic elements of Quantum Markup
Language [8].

Quantum Markup Language (QML) document contains <QML> element, which
is a parent for five elements, namely: <Job>, <Circuit>, <GateLib>, <CircuitLib>
and <Results>

Listing 1 presents an example of QML document. Its graphical representation
is presented in Fig. 1.

Only <Circuit> element is required for definition of quantum circuit. It con-
tains the description of quantum circuits and it contains <Operation> elements,
which represent steps of the quantum algorithm. Attribute Size of tag <Circuit>

defines number of qubits required for execution of the presented circuit.
Each <Operation> defines – using attribute bits of <Application> element –

bits on which gates should be performed. It is natural since information required
for proper execution of gates is independent from their location. This can be
used to include parts of external descriptions of circuit into QML document and
is similar to mechanism of functions in procedural programming languages.

1Complete reference with description of all gates can be found in [8].

2

Since every popular programming language include support for XML it is
easy to add support for QML to any existing software for simulation of quantum
computers and to integrate it with existing simulation platform.

One of the disadvantages of QML is the lack of precise specification which
prevents validation of documents.

<?xml version="1.0"?>

<QML>

<Circuit Name="test1"

Id="simple.qml" Size="4" >

<Operation Step="0">

</Operation >

<Operation Step="1">

<Application Name="G" Bits="0,1">

<Gate Type="CNOT"/>

</Application >

<Application Name="G" Bits="2">

<Gate Type="HADAMARD"/>

</Application >

<Application Name="G" Bits="3">

<Gate Type="HADAMARD"/>

</Application >

</Operation >

<Operation Step="2">

<Application Name="G" Bits="2,3">

<Gate Type="CNOT"/>

</Application >

</Operation >

<Operation Step=’3’>

<Application Bits=’1’>

<Gate Type="PHASE" Divisions="2"/>

</Application >

</Operation >

<Operation Step=’4’>

<Application Bits=’1,2,3’>

<Gate Type="TOFFOLI"/>

</Application >

</Operation >

</Circuit >

</QML>

Listing 1: Example of a QML document. This document contains only <Circuit>

section which defines sequence of gates executed by simulation engine. Also every
gate presented here can be directly implemented by unitary operation. This is
not always true because QML allows for conditional execution of gates.

2.2. External circuits

3

Fig. 1: Simple circuit with controlled gates. Controlled qubits are marked with
filled circles. SVG documents can use CSS for specification of many attributes
of graphical elements like colour or line thickness. More examples can be found
in [5].

Fig. 2: Circuit containing calls to other circuits. Group of gates in frame is
included in circuit using <Circuit> element, which is a child of <Operation> ele-
ment.

4

<?xml version="1.0"?>

<QML>

<Circuit Name="external" Id="external.qml" Size="5">

<Operation Step="0">

</Operation >

<!-- ... -->

<Operation Step=’4’>

<Application Bits=’1,2,3’>

<Gate Type="CIRCUIT"

href="http://path/to/file.qml"/>

</Application >

</Operation >

<!-- ... -->

</Circuit >

</QML>

Listing 2: QML document can contain <Circuit> gates with link to external
definition of gate. Such construction can be used to build library of circuits and
connect them dynamically during execution. Attribute href of the tag <Circuit>

contains URL of the file with the definition of the circuit.

One of the most interesting features of QML is the possibility of including
external descriptions of circuits. This allows to prepare parts of simulation using
different tools and connect them using common XML format. This also allows
use simulation engine of the FHG simulator [8] with tools such QCL [7], providing
conversion of their output to QML.

Visual representation of circuit (see: Listing 2) containing reference to exter-
nal circuit is presented in Fig. 2.

External elements of circuit are included using <Circuit> element using its
href attribute as it is presented in Listing 2. Since most of the programming
languages support popular Internet protocols (e.g. HTTP org FTP), it is easy
to divide generation of resulting QML document among many remote hosts.

2.3. QML processing in Python

Python [1] is a very popular, general purpose programming language. It is plat-
form independent and provides rich set of module for processing XML docu-
ments [2].

The conversion of QML description is straightforward in Python. Package
qml2svg contains classes qml.Circuit and qml.Gate for internal representation of
circuit and its elements and class qml.svgGate, which contains methods respon-
sible for visualisation of gates. Class qml.svgGate contains the code specific for
gates used in Fraunhofer Quantum Computer Simulator, but new types of gates

5

can be added easily.
Process of conversion is carried out by qml.qmlConverter class, which stores

information about output format – SVG is default and simple text format, use-
ful for debugging purpose, is also supported. Method parseQML of the class
qml.qmlConverter reads data stream and produces internal representation of cir-
cuit. The method showCircuit using this representation calls appropriate meth-
ods for gates in circuit and produces an output document.

import qml

import liburl

open and read remote resource

file = open(options.qml)

qml = file.read()

parameter of defines output format

converter = qml.qmlConverter(of="svg")

print converter.showCircuit(qml)

Class qml.Gate is used as a container for information about parameters of
gate (they are stored in params list) and contains the method show, which calls
appropriate methods in qml.svgGate.

Beacause gates’ tags do not contain information about qubits on which gates
are supposed to be executed class qml.Gate uses information from qml.Circuit

while calling methods responsible for drawing specific gates. Some gate must
have defined specific parameters which are necessary for visualisation, e.g. gate
<CPHASE> must have parameter Division in its params list. There is only one object
of class qml.Circuit needed for representation of <Circuit> and it contains the
list of executed gates and information about their target.

Gate <CIRCUIT>2 has attribute href which contains URL of the file with the
definition of the circuit. Since Python provides liburl standard module which
allows to use remote resources similarly like local files, it easy to process informa-
tion about quantum circuit contained remote file. Reference to external circuit is
used to read data and create SVG representation for every gate, but it does not
create full SVG document. Gates form external circuit are appended to output
document as a new group of graphical elements.

3. Conditional execution

QML contains not only description of quantum gates but also information for
simulation engine. This information is expressed by markups which are problem-

2Note that this gate is a child of the tag <Circuit>

6

atic for visualisation. Example of them is <Random> gate, which produces random
unitary transformation or usage of CaseIndeces arttribute in <CIRCUIT> gate (see:
Listing 3), which allows to include conditionally external circuits.

<?xml version="1.0"?>

<QML>

<Circuit Name="cond" Id="cond.qml" Size="5">

<Operation Step="0">

</Operation >

<!-- some operations. -->

<Operation Step=’4’>

<Application Bits=’1,2,3’>

<Gate Type="CIRCUIT" Size="5" CaseIndices="0,1"

href0="http://qc.fhg.de/clib/c0.qml"

href1="http://qc.fhg.de/clib/c1.qml"

href2="http://qc.fhg.de/clib/c2.qml"

href3="http://qc.fhg.de/clib/c3.qml"/>

</Application >

</Operation >

</Circuit >

</QML>

Listing 3: Example of circuit with conditional execution of gates. CaseIndeces

defines on which qubits should be performed measurement in order to obtain
classical bits. Next different subcircuits defined by URLs href0, href1, . . . ,
hrefN are called to according to the values of those bits.

Though this elements are trivial for realisation by simulation engine, they
show that quantum computational model described in XML allows to express
some elements better than quantum circuit model, based only on unitary trans-
formations. Thus there is a need for language which allows to incorporate control
structures more complicated than those commonly used in standard quantum cir-
cuits model.

4. Final remarks

We have presented method of description and visualisation of quantum circuit
model based on XML. We have shown that Quantum Markup Language is pow-
erfull enough to controll quantum machines better then quantum circuits. It
provides many features which should be implemented in quantum programming
language to get precise control over process of quantum computation.

The most interesing features are those using probabilistic execution. Since
quantum computing is probabilistic those elements should be implemented in the
high level quantum programming language.

7

Acknowledgements

This paper has been supported by the Polish Ministry of Scientific Research and
Information Technology under the (solicited) grant No PBZ-MIN-008/P03/2003.

Author would like to thank Dr. Helge Rosé and Fraunhofer Quantum Com-
puting team for cooperation.

References

[1] Python programming language home page. http://www.python.org/.

[2] Python/XML Libraries. http://pyxml.sourceforge.net/.

[3] D. Binosi and L. Theußl. JaxoDraw: A graphical user interface for drawing
Feynman diagrams. Computer Physics Communications, 161, 2004.

[4] G. Collecutt and P. D. Drummond. xmds: eXtensible multi-dimensional
simulator. Computer Physics Communications, 142, 2001.

[5] J. A. Miszczak. Converter qml2svg. Web page with software and examples:
http://www.iitis.gliwice.pl/zksi/stuff/qml2svg/.

[6] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum In-
formation. Cambridge University Press, 2000.

[7] B. Ömer. Quantum programming in QCL. Master’s thesis, TU Vienna,
2000.

[8] H. Rosé, T. Asselmeyer-Maluga, M. Kolbe, F. Niehoerster, and
A. Schramm. The fraunhofer quantum computing portal –
www.qc.fraunhofer.de – a web-based simulator of quantum computing
processes. http://www.arxiv.org/abs/quant-ph/0406089, 2004.

[9] Scalable vector graphics (SVG) 1.1 specification. W3C recommendtaion,
W3C, 2003. http://www.w3.org/TR/SVG11/.

[10] P. Wocjan, M. Eck, and R. M. Zeier. Quasi – Quantum Circuit Simulator.
Technical report. http://iaks-www.ira.uka.de/QIV/QuaSi/.

8

Opis i wizualizacja obwodów kwantowych z wykorzystaniem XML

Streszczenie

Artyku l omawia oprogramowanie suce do transformacji opartego na XML-u for-
matu opisu obwodów kwantowych do reprezentacji graficznej. Oprogramowanie
to bazuje na jȩzyku Qunantum Marku Language, stworzonego w ramach pr-
jektu Fraunhofer Quantum Computing Simulator i wykorzystuje format SVG do
reprezentacji graficznej obwodu.

Poniewa XML jest popularnym formatem danych wspieranym przez wiele
jȩzyków programowania, prezentowany konwerter nie zależy od konkretnego
symulatora i może być po la̧czony z istnieja̧cym oprogramowaniem s luża̧cym do
symulacji obliczeń kwantowych.

Jednocześnie problemy z wizualizacja̧ obwodów kwantowych wskazuja̧ na
ograniczenia modelu obwodów kwantowych w praktycznych zastosowaniach ta-
kich jak kwantowe jȩzyki programowania.

9

