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Abstract 
This article presents an algorithm for fast factorization on quantum computer. Quantum me-
chanic introduces to information processing new effects that can be used to solve efficiently 
problems classical known as hard. Simon algorithm was one of the first proofs that quantum 
computer has some advantages over classical model of computation. Shor generalized ideas 

introduce by Simon and show that real world problems are in range of quantum computation. 
Article presents also general description of quantum Fourier transform (QFT), which is with-
out doubt the most powerful tool used in algorithms described in this paper. Generalization of 

algorithms for Simon problem and fast factorization gives new class of problems for which 
fast quantum algorithms can be construct. 

  
 

1. Introduction 
First quantum algorithms [1] – Deutsch algorithm or in generalized form Deutch-Jozsa algo-
rithm – demonstrate that quantum computer can potentially solve some problems faster than 
classical computer. These algorithms where build to solve some special problems (see [1] for 
details), which have no real-world applications. On the other hand it turns out that those early 
algorithms can be deduced from Simon and Shor results.   
Main purpose of this work is presentation of general scheme of fast factorization algorithm. 
In section 2 first algorithm of Shor-type – Simon algorithm – is described. In addition, quan-
tum Fourier transform used in both algorithms is presented. Section 3 consists of presentation 
of factoring algorithm. This algorithm is very similar to another one developed also by Shor, 
used for discrete logarithms computation [3]. We show how factorization problem can be re-
duced to order finding problem. Section 4 deals with main problem of quantum information 
theory – physical implementations of theoretical results – and we give short description of 
implementation of Shor’s algorithm. In section 5, we present RSA cryptosystem and simple 
scheme for its cryptanalysis with quantum computer. If implemented for large numbers Shor 
algorithm would make this and some other public key cryptosystem useless. 

2. Hidden subgroup and fast factorization problems 
Every integer can be represented uniquely as a product of prime numbers. The art of factori-
zation is almost as old as mathematics itself. However, the study of fast algorithms for factor-
ing is only a few decades old. In 1994, Peter W. Shor in his paper [1] presented a polynomial-
time algorithm for finding the order of integer in on quantum computer. This algorithm 
can be used to solve two problems, which are believed to be hard. In other words, there are 
not known any efficient classical algorithms for those problems. Shor’s algorithm is an im-
proved version of Simon’s algorithm for finding the XOR mask invariance for some function 

. Simon’s algorithm and Shor’s algorithm are both based on quan-
tum Fourier transform and they solving problems very similar from the mathematical point of 
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view. Simon’s problem can be generalized on any abelian group, not only [5], and this 
generalized problem is known as hidden subgroup problem. 
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2.1. Simon’s algorithm 
Daniel R. Simon in 1994 in his paper [3] presented an algorithm for quantum Turing ma-
chine3 (QTM) that can solve XOR mask invariance problem: for a given Boolean function 

 find – if there exists – a non-zero string such that for all nmf mn ≥→ ,}1,0{}1,0{:
y
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,  iff . Simon gave an algorithm that can find in expected time 
 where T  is the time required to compute  and G  is the time re-

quired to solve linear equation over .  
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Detailed description and discussion of this algorithm can be found in Simon’s original work. 
This algorithm uses quantum Fourier transform over to extract information about func-
tion . As we will see, this is the main task of order finding algorithm.  
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2.2. Quantum Fourier transform 
This section shortly describes the most important part of many quantum algorithms – quan-
tum Fourier transform. Construction of QFT is based on some simple facts about quantum 
information theory. An introduction to quantum computation can be found, for example, in 
work [4]. 
Quantum computer is a quantum system. Description of this system is based on Hilbert space 
Η and evolution – i.e. computation – is described by unitary matrices. Let },, naK{  be 
a basis in Η . Every quantum state (i.e. vector in Η ) can be represented by its coefficients 

},, ncK{ 0c
4 in this basis.  
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Quantum Fourier transform is a discrete Fourier transform of (real) function assigning coeffi-
cients to vectors from the basis. Every such function defines the state in unique way. For a 
base state a  we have 
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This equation allows us to compute QFT for any state – every state is in general linear com-
bination ob base states. QFT on group  is equivalent to multiplication of the state vector 
by matrix. 
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In the simplest case of quantum Fourier transform is represented by matrix 2Z 2×
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This transformation is called Walsh-Hadamard transformation or Hadamard gate.  

                                                 
3 Quantum Turing machine is an extension of classical Turing machine, which is ruled by laws of quantum 
physics. See [5]. 
4 In general, coefficients can be complex numbers, but for the purpose of the quantum information theory, we 
can use real number without loosing generality. 



Quantum Fourier transform in  can be done on quantum computer in time O . Its 
classical counterpart – discrete Fourier transform – can be implemented using FFT algorithm 
in time O . 
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3. Shor’s algorithm 
Shor’s algorithm proved that quantum computer could be used to solve real problems. In [3] 
two algorithms are presented: for fast factorization and for discrete logarithms computation.   
Instead of giving a quantum algorithm for factorization Shor presents an algorithm for find-
ing the order of an element in multiplicative group . The two main components of this 
algorithm: modular exponentiation and the inverse quantum Fourier transform (QFT) take 
only O operations on quantum machine. Classically factorization takes an exponen-
tial number of operations, which makes this problem intractable as n  increases. The best 
classical algorithm for large integers factorization is number field sieve algorithm, which run 

in expected time 
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nnc(logO  for some constant . For an integer n , 
is its length in bits, so classical algorithm need an exponential time to factorize n . Clas-

sical algorithm for finding discrete logarithms in a modification of number filed sieve algo-
rithm. 
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3.1. Modular exponentiation 
To perform order finding algorithm we must be able to compute for a given 
andm modular exponential i.e. m . On classical computer this can be done in ex-
pected time 
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O . On quantum computer this stem must be – 
like any othe – reversible. Technique for compute on quantum computer is the 

same as in classical case. First we compute for all 
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powers of where appears in the binary expansion ofa . )(mod2 n
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Construction of reversible gate array for this operation is given in [1]. This gate can compute 
 in expected time O . )(modnma ))((log 3n

3.2. Order finding and factorization 
In this section, we present how to construct efficient algorithm for factorization using Shor’s 
algorithm for order finding [3].  
Our input is an integer n . Let n  where . We can efficiently check if kx

k
x pp K1
1= 2≥k 1=k , 

so w may assume that n is not a prime power. This means that the Shor’s algorithm fails for 
even or a prime power. n

 
The first step of our algorithm is to choose at random an integer nZa∈ . Using Euclid’s algo-
rithm we can decide if 1),gcd( == nad . If 1=d then is a factor of . Now using Shor’s al-
gorithm we can find an order . 
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So divides and it must have common factors with n 1−ra 12 −
r

a and 12 +
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a . Again we can 

use Euclid’s algorithm to find )1,gcd( 2
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what is imposisible by the definition of 
order. In [8] one can find proof that, with chosen at random, the probability that the 

is even and that )ar = (nord )n(mod12a
r

−≠ is at least 
16
9 . This result is base on two lem-

mas, which are given here without proofs.  
Let is a number of different prime factors of . k n

Lemma 1. The probability that is odd for a uniform chosen a is at most )(ord ar n= k2
1 . 

Lemma 2. If )(mod12 n
r

=a is even, then the probability that )(mod12 n
r

−=a is at most k2
1 . 

3.3. Finding the order 
Algorithm for order finding is based on quantum computer ability for fast computation of 
Fourier transform. Problem of finding the order on an integer a nZ∈  is equivalent to finding 
the period of function defined as follows: nn ZZf →:

)(mod)( naxf x=          (5) 
Fourier transform in its classical version can be use for extracting information about the pe-
riod of the function. Quantum version of this transformation can also be used for this pur-
pose. QFT is also unitary transformation [4] so it can be easy implemented on quantum com-
puter. 
By the definition the order of  is the smallest number nZa∈ ran =)(ord such that 

. For every l , , so the function (2) has period )(modnaar = Z a x+∈ )(modnaaa xlrxlr == r . 
States of quantum computer can’t represent every integer and that is why we can’t compute 
Fourier transform on Z . We must choose sum subset }1,,1,0{ −= mKZm
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k

as a domain. Inte-
ger must be large enough for period to appear. It is also reasonable to choose  
because of natural representation of by qubits. 
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Here is an algorithm presented by Shor in [1]: 
 

1. Start with the state 00 . 
2. Using Walsh-Hadamard on the first register transform prepare superposition 
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3. In the second register compute  (modular exponentiation).  )(modnak
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4. Perform inverse QFT on the first register to extract information about period 
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Because function has period rwe can write this state as 
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where is the smallest integer such that s mlqs ≤+  
5. Observe the state. The probability that the state of the machine is in the state 
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If there is a such that d

22
rdmrpr

≤−≤
−  

then the probability of seeing state )(modnap l  will be at least 23
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 for sufficient large n . 

More detailed discussion of this algorithm can be found in [1]. 
The above condition can be rewritten 
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There is at most one fraction 
r
d  with nr <  that satisfies an inequality (9). We can compute 

this fraction in polynomial time on classical computer by using continued fraction expansion 

of 
r
c . Rounding 

r
c to the nearest fraction with a denominator smaller than nwe will get 

r
d in 

lowest term. If gcd( this will give us an order 1), =rd r . It can be proofed that the probability 

that we fin the fraction of this king is equal 
r

t
loglog

for some constant t . So repeating the 

above procedure  times, we are assured to get an order with high probability.  )log(log rO
 

3.4. Complexity of Shor’s algorithm 
Shor’s algorithm runs in expected time . This include 
three steps: 

))loglog)(loglog(log)((log 2 nnnO

1.  for Hadamard gates for state preparation )(lognO
Hadamard gates can be implemented in linear time. 

2. for modular exponentiation ( ) ( )( )loglogloglogloglog( 2 nnnO )
Complexity of this part of algorithm is equal to complexity of classical algorithm. 

3. Quantum Fourier transform take only   ))((log 2nO
As we mention in section 2 QFT is the most important of Shor’s algorithm. Without 
the ability of computing Fourier transform in polynomial time quantum computer 
wouldn’t gave us an ability for factoring integers efficiently. 

More information on quantum complexity theory can be found in [11]. 



3.5. Note on implementation 
Nowadays NMR6 technology gives us the most important device for performing quantum 
computation. Other devices like trapped ions, atoms and light are also proposed [10]. 
Experimental realization of Shor’s algorithm on NMR quantum computer is presented in [6] 
(See also [7]). The method of using nuclei to store quantum information is in principle scal-
able to many quantum bit systems. In [6] authors report an implementation of the simplest 
instance of Shor's algorithm: factorization of 15=n . Quantum bits (qubits [4,10]) where 

seven spin-
2
1  molecules7. The significance of this experiment lies in the demonstration of 

techniques for precise control of quantum computers. Main problem for further implementa-
tions is control over much larger quantum systems and proper entanglement processing. 
 

4. Some examples 
 
In this section we give two examples of quantum algorithm for fast factorization. Firt using 
Shor’s algorithm we compute prime factors of number 15. This task was realized by NM 
quantum computer and described above. Second example is connected with cryptography. 
We consider a cryptanalysis of RSA block cipher. A short description of RSA algorithm is 
also given. 

4.1. Example of factorization 
The smallest number that can be factorized using Shor’s algorithm is 15=n

1)15
. Let us choose at 

random an integer , which satisfy condition gcd(7=a ,7gcd(), ==na . The order of  7 is 
. Fortunately this number is even so we can compute that and 4)7(ord15 = )15(mod3=172 −

)15(mod5172 =+ . Using Euclid’s algorithm we check that gcd( 3)15,3 = and so 
we found nontrivial factors of 15. 

5)15,5gcd( =

4.2. RSA cryptanalysis 
 
RSA cryptosystem was developed by Ron Rivest, Adi Shamir and Leonard Adleman in 1978. 
Nowadays RSA is the most commonly used public key algorithm. It can be used both for en-
cryption and for digital signatures. The security of RSA is generally considered equivalent to 
factoring, although this has not been proved. It is also used for key exchange purposes, for 
example in PGP software.  
RSA is a block chipper; it encrypt message in blocks (block by block). Detailed description 
of this and many others algorithms can be found in [16,17] 

4.3. RSA cryptosystem 
 
In this section the algorithm for creating key, encryption and decryption in RSA cryptosys-
tem is described. The signing is the same like decryption and verification is the same like en-
cryption. These three main functions are very simple. 

1) Creating keys: 
                                                 
6 NMR = Nuclear Magnetic Resonance 
7 Molecule used as the quantum computer for this experiment contains five 19 and two 13  spin-½ nuclei as 
qubits 
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a) Find or generate two large prime numbers  )and( qp
b) Calculate pq=n 8 
c) Calculate Euler totient function9 for n ; )1)(1()( −−== qppqm φ  

me < 1),gcd( =med) Select at random a positive integer , such that , i.e. co-prime to  m
1−=e) Calculate d  such that e  or equivalently  )(mod1 md =× )(modmed

Pair (  forms public key and the number  is private key. Numbers ),ne d p and should be 
forgotten. The integers and d are called the encryption exponent and the decryption expo-
nent, respectively, while  is called the modulus. 

q
e
n

2) Encryption 
a) Original plain text (a block value) nXX <, . Each block X must have unique repre-

sentation . n
X e=

mod
b) Chipertext  C  )(modn

3) Decryption 
a) Chipertext =  C
b) Dechiper text Y  )(modnC d=

Proof that decryption works can be found in [15] 

RSA is currently the most important public key algorithm. The problem for the attacker is 
that computing the reverse of is assumed to be no easier than factorizing . It is clear that 
polynomial time algorithm for factorization can be use to attack this algorithm. 

d e n

4.4. Simple attack on RSA 
Efficient algorithm for factoring numbers allows us to decipher message encrypted with RSA 
algorithm. Let us assume that we have encrypted message M and public key ( . To find 
original message we need to find prime factors of . This will allow us to find 

),ne
(nn )φ and re-

produce private key – that is . In this step we can also use quantum Fourier transform. 
Schönhage-Strassen algorithm for fast multiplication uses itself Fourier transform. We could 
perform Euclid’s algorithm to find using super-fast multiplication on quan-
tum computer. Next, we can perform decryption on our message 

d

))(n(mod1ed φ−=
M . This step is essentially 

the same as modular exponentiation used in order finding algorithm. 
 
This leads to simple protocol for RSA cryptanalysis: 

1. Input: encrypted messageM and public key (  ),ne
2. Using Shor’s algorithm find the prime factors of  n
3. We knew what number was selected in step 1.d) of key generation – it is part of pub-

lic key, so we need to calculate )(nφ and find an inverse of ,  e ))((mod1 ned φ−=
4. The last step is decryption of a message M . 

 

                                                 
8 The key size (the size of the modulus) should be greater than 1024  bits (i.e. it should be of magnitude 10 ) 
for a reasonable margin of security. 

300

9 Euler totient function (or Euler phi function) )(nφ for  denotes the number of integers in the interval 
, which are relatively prime. 
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This algorithm is rather out of range of present-day quantum computers because of technical 
problems we need to deal when implementing Shor’s algorithm. Scalable NMR quantum 
computation requires coherent control over many qubits in the course of a long sequence of 
controlled interactions, even after maximal reduction of the quantum circuit. In realization of 
Shor’s algorithm interactions between almost all pairs of qubits are needed. To realize real 
attack on RSA algorithm NRM quantum computer need to operate on more then 1024 qubits. 
The complexity of apparatus needed for such operation is the best protection for present-day 
cryptosystems. 
 

5. Conclusions and further work 
 
Algorithms presented in this paper exploit quantum Fourier transform to solve problems 
known as hidden subgroup problems [9]. All quantum algorithms know at present time can 
be divided in two classes: Grover’s type algorithms [12,13] and hidden subgroup algorithms 
[10]. Algorithms from second group uses quantum Fourier transform for manipulating quan-
tum states. General formulation of these algorithms can lead us to new quantum algorithms. 
Other algorithms of that type can be important from complexity theory point of view and can 
answer if quantum mechanical model of computation is indeed more powerful then classical 
model. 
Another matter which can gave us ability to solve wider class of problems is entanglement 
and its usage in quantum algorithms. Entanglement is an effect specific for quantum mechan-
ics and it is believe to be one of the most important resources in quantum information proc-
essing. It can be also used to ensure secure communication and replace old cryptographic 
methods with quantum cryptography. 
Any classical algorithm can be made reversible and thus implemented on quantum computer. 
In contrast, not every quantum algorithms can be simulated efficiently on classical probabilis-
tic Turing machine. Simulation of order finding algorithm would give us an efficient solution 
of factoring problem on classical computer. But the presence of entanglement in Shor’s algo-
rithm [17] makes this simulation impossible. This doesn’t mean that there is no efficient 
classical algorithm for factorization, but it shows that the entanglement is important resource 
in quantum information processing. 
Physical implementation of new paradigm of computation and known quantum algorithms 
will be the best proof that quantum computation can be used to solve problems. Physical re-
alization of quantum computer would give us also a key to new concepts in physics. 
 
 

Streszczenie 
Artykuł prezentuje algorytm szybkiej faktoryzacji na komputerze kwantowym. Mechanika 

kwantowa wprowadza do informatyki nowe efekty, które pozwalają na efektywne rozwiązy-
wanie problemów klasycznie uważanych za trudne. Algorytm Simona był jednym z pierw-
szych dowodów na to, że komputer kwantowych posiada pewną przewagę nad klasycznym 

modelem obliczeń. Shor uogólniając idee Simona pokazał, że komputer kwantowy może słu-
żyć do rozwiązywania rzeczywistych problemów takich jak kryptoanaliza systemu RSA. W 
artykule omówiona jest także kwantowa transformata Fouriera, która jest bez wątpienia naj-

potężniejszym narzędziem wykorzystywanym w omawianych algorytmach. Uogólnienie 
kwantowych algorytmów dla problemu Simona i faktoryzacji liczb pierwszych daje nową 

klasę problemów, dla których możliwa jest konstrukcja szybkich algorytmów kwantowych. 
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