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a b s t r a c t

We study the model of quantum walks on cycles enriched by the addition of 1-step mem-
ory. We provide a formula for the probability distribution and the time-averaged limiting
probability distribution of the introduced quantum walk. Using the obtained results, we
discuss the properties of the introduced model and the difference in comparison to the
memoryless model.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the last few years a considerable research effort has been made to develop new algorithms based on the rules
of quantum mechanics. Among the methods used to achieve this goal, quantum walks, a quantum counterpart of random
walks, provide one of the most promising and successful approaches.

Classical randomwalks can be applied to solve many computational problems. They are used, for example, to find span-
ning trees and shortest paths in graphs, to find the convex hull of a set of points or to provide a sampling-based volume
estimation [1]. Today a huge research effort is devoted to applying randomwalks in different areas of science. Classical ran-
domwalks find their application in a plethora of areas. This hasmotivated big interest in using a similarmodel for developing
algorithms which could harness the possibilities offered by quantum machines.

Quantum walks are counterparts of classical random walks governed by the rules of quantum mechanics [2,3,1] and
provide a promising method for developing new quantum algorithms. Among the applications of quantum walks one can
point out: solving the element distinctness [4] and subset finding [5] problems, spatial search [6], triangle finding [7] and
verifying matrix products [8]. The survey of quantum algorithms based on quantum walks is presented in Ref. [9].

The influence of memory on the behavior of quantumwalks has been considered by Flitney et al. [10] and Brun et al. [11].
In Ref. [12] Mc Gettrick proposed amodel of one-dimensional quantumwalk on line with one-stepmemory and studied the
limiting probability distribution for this model. This work was developed by Konno and Machida in Ref. [13]. More recently
Rohde et al. considered a quantumwalk with memory constructed using recycled coins and applied numerical experiments
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to study its properties. Moreover, an experimental proposal for implementing a quantum walk with memory using linear
optics has also been considered in Ref. [14].

In this paper we introduce and study the model of quantum walks on cycle [15,16] enriched by the addition of 1-step
memory [12]. Our main contribution is the calculation of the probability of finding the particle at each position after a
given number of steps, and the limiting probability distribution for the introduced model. We also point out the differences
between quantum walks on cycles with and without memory.

This paper is organized as follows. In Section 2we introduce themodel of a quantumwalk on cyclewith one-stepmemory.
In Section 3 we analyze the introduced model using Fourier transform method and we discuss the behavior of the time-
averaged limiting probability distribution of the discussed model. Finally, in Section 4 we summarize the obtained results
and provide some concluding remarks.

2. The model

In the model discussed in Ref. [16] the space used by a quantum walk is composed of two parts—1-qubit coin and
d-dimensional state space, i.e. H = H2 ⊗ Hd. The shift operator in this case is defined as

S0 =

1
c=0

d−1
v=0

|c⟩⟨c| ⊗ |v + 2c − 1 mod d⟩⟨v|. (1)

Here we adopt this model and extend it with an additional register, referred to as memory register, which stores the
history of a walk.

For a quantum walk with one step memory one needs a single qubit to store the history. In this case we use a Hilbert
space of the form H = H c

2 ⊗ Hm
2 ⊗ Hd, respectively for a coin, memory and a position.

As in the case of a memoryless walk, the first register is the coin register and the third register is used to encode the
position of the particle. The second register stores the history of the walk. The history is encoded as direction from which
the particle wasmoved in the previousmove. If this register is in the state |0⟩, the previous position of the particle was n+1.
If this register is in the state |1⟩, the previous position of the particle was n−1. The coin register indicates if the walk should
continue in the previously chosen direction (transmission in state |0⟩) or change the direction (reflection in state |1⟩).

Taking into account the above, we define a shift operator for a quantum walk with a 1-step memory on cycle with d
nodes as

S1 =

d−1
n=0


|0⟩⟨0| ⊗ |0, n − 1(mod d)⟩⟨0, n| + |0⟩⟨0| ⊗ |1, n + 1(mod d)⟩⟨1, n|

+ |1⟩⟨1| ⊗ |1, n + 1(mod d)⟩⟨0, n| + |1⟩⟨1| ⊗ |0, n − 1(mod d)⟩⟨1, n|

, (2)

or in a more consistent form as

S1 =


n,m,c

|c⟩⟨c| ⊗ |hm,c, n + 2hm,c − 1(mod d)⟩⟨m, n|, (3)

where hm,c = m + c(mod 2) represents a history dependence of the walk.
The walk operator is defined as toss-a-coin and make-a-move combination, i.e.

W1 = S1(C ⊗ 12 ⊗ 1d), (4)
where C is a coin matrix, e.g. Hadamard matrix H

H =
1

√
2


1 1
1 −1


(5)

or any matrix C ∈ SU(2).
The walk starts in some initial state |φ0⟩. After each step the state is changed according to the formula

|φn⟩ = W n
1 |φ0⟩ (6)

or as a recursive relation
|φn+1⟩ = W1|φn⟩. (7)

The probability of finding a particle at position v after n steps is obtained after averaging over the coin and the memory
registers

p(v, n) =


c,m

|⟨c,m, v|φn⟩|
2, (8)

or, in other words, by tracing out over the memory and the coin subspaces
p(v, n) = trc,m|φn⟩⟨φn|, (9)

where trc,m denotes the operation of tracing out with respect to the coin and the memory subspaces.
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In Ref. [15] it was shown that p(v, n) is quasi-periodic for memoryless walks on cycles and it was suggested to consider
quantity

p̄(n, t) =
1
t

t
s=1

p(n, s), (10)

which converges with t → ∞ to the limiting distribution p(v). As the parameter n in this formula corresponds to the time
required to perform n steps, we refer to so defined p̄(v) as time-averaged limiting distribution.

3. Probability distribution

In what follows we evaluate the probability distribution of finding the particle at each node of the cycle. We consider the
Hadamard walk only. Thus the walk operator is given as

W = S(H ⊗ 12d). (11)

The second factor in Eq. (11) can be written in the matrix notation as

H ⊗ 12d =
1

√
2


12d 12d
12d −12d


. (12)

3.1. Fourier analysis

In order to obtain expression for the probability distribution on the cycle we use the Fourier analysis method [17,18,13].
Below we calculate amplitudes for a walk on cycle with a 1-step memory with the Hadamard matrix acting on the coin

register. In this case we represent the vectors of amplitudes as

Φ(n, t) =


⟨0, 0, n|ψt⟩

⟨0, 1, n|ψt⟩

⟨1, 0, n|ψt⟩

⟨1, 1, n|ψt⟩

 . (13)

The shift operator is defined as in Eq. (2). In this case the interesting part of the shift operator reads

S1(n) = |0⟩⟨0| ⊗ |0, n⟩⟨0, n + 1| + |0⟩⟨0| ⊗ |1, n⟩⟨1, n − 1|

+ |1⟩⟨1| ⊗ |0, n⟩⟨1, n + 1| + |1⟩⟨1| ⊗ |1, n⟩⟨0, n − 1|. (14)

After one step of time evolution we have

Φ(n, t + 1) =


⟨0, 0, n + 1|(H ⊗ 12 ⊗ 1d)|ψt⟩

⟨0, 1, n − 1|(H ⊗ 12 ⊗ 1d)|ψt⟩

⟨1, 1, n + 1|(H ⊗ 12 ⊗ 1d)|ψt⟩

⟨1, 0, n − 1|(H ⊗ 12 ⊗ 1d)|ψt⟩

 .

Evaluating the action of the Hadamard gate on the coin register one gets

Φ(n, t + 1) =
1

√
2


⟨0, 0, n + 1|ψt⟩ + ⟨1, 0, n + 1|ψt⟩

0
⟨0, 1, n + 1|ψt⟩ − ⟨1, 1, n + 1|ψt⟩

0

 +
1

√
2


0

⟨0, 1, n − 1|ψt⟩ + ⟨1, 1, n − 1|ψt⟩

0
⟨0, 0, n − 1|ψt⟩ − ⟨1, 0, n − 1|ψt⟩

 .

Rewriting the above expression usingΦ(n + 1, t) andΦ(n − 1, t) one gets

Φ(n, t + 1) = M−Φ(n + 1, t)+ M+Φ(n − 1, t), (15)

where M+ (advancing) and M− (retarding) matrices read

M+ =
1

√
2

0 0 0 0
0 1 0 1
0 0 0 0
1 0 −1 0

 , (16)

M− =
1

√
2

1 0 1 0
0 0 0 0
0 1 0 −1
0 0 0 0

 . (17)
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In order to obtain the expression for the amplitudes of the quantum walk with memory on cycle we use the method
introduced in Ref. [17] and represent time evolution of the walk using the Fourier transform

Φ̃(k, t + 1) =

d−1
n=0

e2π ikn/dΦ(n, t + 1)

=

d−1
n=0

e2π ikn/d(M−Φ(n + 1, t)+ M+Φ(n − 1, t))

=

e−2π ikn/dM− + e2π ikn/dM+


Φ̃(k, t). (18)

From the above we get a recursive relation for the time evolution in the Fourier basis

Φ̃(k, t) = M t
kΦ̃(k, 0), (19)

where

Mk =
1

√
2


e−

2ikπ
d 0 e−

2ikπ
d 0

0 e
2ikπ
d 0 e

2ikπ
d

0 e−
2ikπ
d 0 −e−

2ikπ
d

e
2ikπ
d 0 −e

2ikπ
d 0

 . (20)

Let us now denote A = exp(−2π ik/d). MatrixMk has the following eigenvalues

λ1 = −1,

λ2 = 1,

λ3 =
1 + A2

+
√
A4 − 6A2 + 1

2
√
2A

,

λ4 =
1 + A2

−
√
A4 − 6A2 + 1

2
√
2A

,

with corresponding (orthogonal, but unnormalized) eigenvectors

v1 =



−

√
2A2

2A +
√
2

−
1

√
2A + 1

A
√

2A + 2


2A +
√
2

1


, v2 =



A2

√
2A − 1
1

√
2A − 1

A
√

2A − 2


√
2 − 2A
1


,

v3 =



1
2


A2

−


A4 − 6A2 + 1 − 1


A2

+
√
A4 − 6A2 + 1 − 1

2A2

−1
1


,

v4 =



1
2


A2

+


A4 − 6A2 + 1 − 1


−

−A2
+

√
A4 − 6A2 + 1 + 1

2A2

−1
1


.

3.2. Initial state and time evolution

In order to evaluate the probability distribution we need to choose the initial state of the walk. Again following Ref. [17]
we start from the position 0 with the coin in the state |0⟩. As in this case we have an extra register for storing memory, in
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the initial state the state vector reads

|φ0⟩ =
1

√
2

1
1
0
0

 ⊗ |0⟩, (21)

which means that the memory register is in the superposition 1
√
2
(|0⟩ + |1⟩) and the coin register is in the state |0⟩. The

vector of amplitudes in this situation reads

Φ(n, 0) =
1

√
2

1
1
0
0

 δn0. (22)

Thus in the Fourier basis we start from the state

Φ̃(k, 0) =
1

√
2

1
1
0
0

 , (23)

for any k = 0, . . . , d − 1.

3.3. Initial state decomposition

Using the eigendecomposition of the matrix Mk we can calculate the form of the amplitudes in the Fourier basis after t
steps. After t steps the vector of the amplitudes reads

Φ̃(k, t) = M t
kΦ̃(k, 0) = M t

k
1

√
2

1
1
0
0

 (24)

for any k.
Let us now write the initial state of the walk Φ̃(k, 0) in the {vi}i=1,...,4 basis as

Φ̃(k, 0) =

4
i=1

αi(k)vi(k) (25)

where

αi(k) = (vi(k), Φ̃(k, 0)) (26)

are components of Φ̃(k, 0) in {vi}i=1,...,4 basis. The evolution in the Fourier basis can be now written as

Φ̃(k, t) = M t
k

4
i=1

αi(k)vi(k) =

4
i=1

αi(k)λi(k)tvi(k). (27)

The original components can be expressed by the Fourier-transformed vectors as

Φ(n, t) =
1
d

d−1
k=0

e2π ikn/dΦ̃(k, t)

=
1
d

d−1
k=0

4
j=1

e2π ikn/dαj(k)λj(k)tvj(k). (28)

Using the above, the probability of finding the particle at n-th node after t steps reads

p(n, t) = |Φ(n, t)|2

=
1
d2

d−1
k,m=0

4
j,l=1

e2π i(m−k)n/dα⋆j (k)αl(m)v
Ď
j (k)vl(m)


λj(k)⋆λl(m)

t
. (29)

3.4. Time-averaged limiting probability distribution

Following Ref. [15], let us now consider time-averaged probability distribution p̄(n) = limt→∞
1
t

t−1
s=0 p(n, s).



168 M. Mc Gettrick, J.A. Miszczak / Physica A 399 (2014) 163–170

(a) d = 3. (b) d = 4.

(c) d = 6. (d) d = 11.

Fig. 1. Limiting probability distributions for Hadamard quantumwalks with one-step memory on cycle with d = 3, 4, 6 and 11 nodes for the initial states
given by Eq. (21) (solid red line) and |φ1⟩ = (1, 0, 0, 0)T (dashed black line). For each d the results are plotted in range [0, . . . , d] to illustrate the periodicity
of the limiting distribution. Nodes are numbered starting from 0.

Using the expression (29) for p(n, t) and the fact that the sums are finite, we get

p̄(n) =

d−1
k,m=0

4
j,l=1

Kn(k, j,m, l) lim
t→∞

1
t

t−1
s=0


λ⋆j (k)λl(m)

s (30)

where

Kn(k, j,m, l) ≡
1
d2
α⋆j (k)αl(m)v

Ď
j (k)vl(m)e

2π i(m−k)n/d. (31)

One can observe that the convergence of p̄(n) depends only on the behavior of the term

f (k, j,m, l) ≡ lim
t→∞

1
t

t−1
s=0


λ⋆j (k)λl(m)

s
. (32)

The value of this function depends on the product of eigenvalues as

f (k, j,m, l) =


1 if λ⋆j (k)λl(m) = 1
0 otherwise. (33)

Unfortunately, any further simplifications of Eqs. (29) and (30)were not possible. In particular, this simplification requires
a closed form for the product of eigenvalues, λ⋆j (k)λl(m). However, definition in Eq. (33) can be easily calculated using the
standard computer algebra systems, and thus allows for the evaluation of Eq. (30).

The examples of time-averaged limiting distribution for the discussed model calculated using Eq. (30) are presented in
Figs. 1 and 2.

In order to illustrate the influence of the initial state on the resulting distribution, two initial states were used to obtain
these plots. In the case of the input state given by Eq. (21), the memory register is in the superposition, and the resulting
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(a) d = 200, |φ0⟩. (b) d = 200, |φ1⟩.

(c) d = 300, |φ0⟩. (d) d = 300, |φ1⟩.

Fig. 2. Limiting probability distributions for Hadamard quantum walks with one-step memory on cycle with d = 200 ((a) and (b)) and d = 300 ((c) and
(d)) nodes. Results were obtained for initial state |φ0⟩—(a) and (c)—and initial state |φ1⟩—(b) and (d). For the large number of nodes the only significant
contributions stem from the nodes close to the starting node.

time-averaged probability distribution is symmetric with respect to the starting position. On the other hand, if the memory
register is set to |0⟩ in the initial state, the resulting time-averaged probability distribution does not have this property.

Comparison of the limiting probability distribution for larger numbers of nodes is presented in Fig. 2. One can see that in
these cases the only significant contributions stem from the nodes close to the starting node.

The important difference in comparison with the memoryless quantum walk on cycle is that the time averaged limiting
distribution depends on the initial state of the coin and the memory registers, but not on the parity of the number of nodes
d [19,16]. The dependency is expressed in the αj(k) coefficients, which are defined in Eq. (26).

4. Summary

We have introduced a model of quantum walk with memory on cycle and studied its basic properties. We have
calculated the probability of finding the particle at each position after a given number of steps and we have provided a
formula for the time-averaged limiting probability distribution for the discussed model. We have also pointed out the most
important differences between quantum walks on cycles with and without memory. The most important difference is that
the symmetry of the time-averaged limiting probability distribution is independent of the parity of the number of nodes.
However, this distribution is heavily influenced by the initial state of the memory register.
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