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We analyze the problem of finding sets of quantum states that can be deterministically discriminated. From
a geometric point of view, this problem is equivalent to that of embedding a simplex of points whose distances
are maximal with respect to the Bures distance (or trace distance). We derive upper and lower bounds for the

trace distance and for the fidelity between two quantum states, which imply bounds for the Bures distance
between the unitary orbits of both states. We thus show that, when analyzing minimal and maximal distances
between states of fixed spectra, it is sufficient to consider diagonal states only. Hence when optimal discrimi-
nation is considered, given freedom up to unitary orbits, it is sufficient to consider diagonal states. This is

illustrated geometrically in terms of Weyl chambers.

DOLI: 10.1103/PhysRevA.77.042111

I. INTRODUCTION

In quantum state discrimination, given a set of candidate
states, our task is to find out which of the states we have in
our possession to the best of our ability [ 1-3]. A fundamental
property of quantum mechanics which adds to the difficulty
of this problem is that, on top of possible mixing (that is,
statistical sampling over pure states), if two pure states are
not orthogonal, they cannot be discriminated perfectly. Two
common strategies for discriminating possibly nonorthogo-
nal quantum states are the so-called ambiguous [1] and un-
ambiguous [4] discrimination. In ambiguous discrimination
we always end up with an answer, but may sometimes be
wrong (and the task is to minimize the probability of being
wrong). In unambiguous discrimination we must never be
wrong, but (to be consistent with quantum mechanics) may
sometimes give a nonanswer, that is we say, we do not know
(the task then is to minimize the probability of a nonanswer).
Finding an optimal procedure of unambiguous discrimina-
tion is particularly interesting if the states analyzed are
mixed [5-10].

More generally, the standard approach to the quantum dis-
crimination problem is to begin by considering the discrimi-
nation of classical probability distributions and then extend
to the quantum setting. This is done via optimizing over
measurements. A quantum measurement takes a quantum
state to a classical probability distribution over the possible
outcomes. For a given measure in the classical setting (quan-
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tifying how well we can discriminate probability distribu-
tions by some particular figure of merit), the quantum mea-
sure is found by taking the classical measure on the
probability distributions induced by a measurement, opti-
mized over all possible measurements. Different concepts of
the “best” discrimination induce different measures of distin-
guishability in the space of classical probability distributions.
In this way the problem of discriminating quantum states has
led to several distance measures associated with the ability to
discriminate well (see, e.g., [11-13]). On the other hand, the
geometry of state space depends on the distance measure
chosen. In this work we would like to consider the geometry
induced by these measures, and how the problem of state
discrimination can be expressed geometrically.

To be more precise, let M denote the set of mixed quan-
tum states acting on an N-dimensional Hilbert space Hy. It is
a convex, compact set of dimensionality N?>— 1. Its geometric
structure depends on the metric used. The following dis-
tances are often used [12,13]:

Dys(p1.py): =[Tr(p; — py)*1", (1.1)
1
Dylp1.p): = 5 Trlpr = pal, (1.2)
—
Dy(p1,pa): =[2(1 = Tr[Vp Vo) 12, (1.3)

denoting the Hilbert-Schmidt (HS) distance, the trace dis-
tance, and the Bures distance respectively. The last quantity
is a function of fidelity [14],

!’_ /_
F(py,py): = (TrNpiVpy))?,

and the root fidelity JF (which in some papers is also called
the fidelity). The Bures and the trace distance are monotone,

(1.4)
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and do not grow under the action of an arbitrary quantum
operation (completely positive, trace-preserving map), while
the Hilbert-Schmidt distance is not monotone. These mea-
sures can induce different geometries. For instance, the set
M., of mixed states of a qubit is equivalent to the standard
Bloch ball (the Bloch sphere and its interior) for the trace or
HS metric, and to the Uhlmann hemisphere %53 for the Bures
distance [15]. For higher N the geometries induced by the HS
and the trace distances also differ.

In the following we consider systems of dimension N
greater than or equal to 2. We begin our discussion of state
discrimination by introducing the diameter of a set of quan-
tum states. The diameter of the set M is given by the maxi-
mal possible distance between any of its elements. It is equal
to the distance between two orthogonal pure states. This
quantity is independent of N, but it does depend on the met-
ric used. A simple calculation shows that the diameter of the
set of mixed states reads

DEr=\2, DI=1. DRt=\2, (15

for HS, trace, and Bures distances, respectively. Any two
states separated by D™** are supported on orthogonal sub-
spaces. The reverse implication holds for Bures and trace
distances,

_
supp(p;) L supp(p,) & Dy(py.p2) = 1 & Dy(py.po) = V2,
(1.6)

but is not true for the Hilbert-Schmidt distance for N> 2. For
instance, the HS distance between two diagonal density ma-
trices p;=diag(1,0,0) and p,=diag(0,1/2,1/2) is equal to
V3/2<Dys", although they are supported on orthogonal
subspaces. To witness an even more dramatic example, con-
sider the Hilbert space of even dimension N and two diago-
nal states p,;=diag(N/2,...,N/2,0,...,0) and p,
=diag(0,...,0,N/2,...,N/2). Although they live in or-
thogonal subspaces, so that their Bures and trace distances
are maximal, their HS distance reads 2/ VN and tends to zero
in the limit of large N. This indicates that, when analyzing
problems of distinguishability, one cannot therefore rely on
the standard Euclidean geometry induced by the Hilbert-
Schmidt distance, but should rather use Bures or trace dis-
tances.

The trace distance and the Bures distance are, in several
respects, good measures for quantifying the ability to dis-
criminate states. In [16] Englert introduced the notion of dis-
tinguishability between two quantum states and showed that
it is equal to the trace distance between them. Hence two
states can be deterministically discriminated if they can be
perfectly distinguished, so their distinguishability is equal to
unity. Fuchs and van de Graaf found a bound between the
Bures distance and the trace distance based on the following
inequality [12]:

1=\F(py,p2) = Di(p1,p2) = V1= F(py,po).

This implies that, if the fidelity between both states is equal
to zero (so the states are distinguishable and their Bures dis-
tance is maximal) their trace distance is equal to unity, and is
hence maximal. In fact, the trace distance is a simple func-

(1.7)
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tion of the probability to successfully discriminate two states
in a single-shot measurement (optimized over all allowed
quantum measurements) [12]. Similarly, the Bures distance
can be seen as the optimized Kullback-Leibler distance be-
tween output statistics over all quantum measurements
(again, an optimized cost function for discrimination) [11].
In the special case where both density matrices are
diagonal and read p,=diag(p;,ps,....py) and p,
=diag(q,,q,,...,qy), the operators commute. Such a case is
often called classical since the distances between quantum
states reduce then exactly to their classical analogs. The trace
distance D (p;,p;) is equal to the L, distance between vec-
tors p and ¢ (with a normalization constant 1/2) between

both probability vectors. The Bures distance reads
Dg(py,p)={2[1-B(p,q)]}'*, where
N
B(p.q): = 2 \pidi (1.8)

i=1

denotes the Bhattacharyya coefficient [17,13]. This quantity
is equal to the root fidelity between any two diagonal states,
B(p.q)=\F(p,,p,), so its square B> is sometimes called the
classical fidelity between two probability distributions.
In Sec. IV we prove general bounds for the fidelity be-
tween two arbitrary quantum states p; and p,,
B(p'.q") = F(p1.po) = B*(p'.q"). (1.9)
where the vectors p and g represent the spectra of p; and p,,
while the arrows up (down) indicate that the eigenvalues are
put in nondecreasing (nonincreasing) order. These results im-
ply equivalent bounds for the Bures distance,

1 1 r1
\2-2\p"-\g' = Dy(pr.p) = ¥2-2\p! g
(1.10)

Analogous bounds for the trace distance proved in the same
section read

Dlr(pT’qT)SDtr(pl’p2)SDtr(pT’ql)’ (111)
where the symbols p' and ¢' denote here diagonal density
matrices with all eigenvalues in nondecreasing (nonincreas-
ing) order.

In this paper we set out to give a geometric interpretation
to the problem of state discrimination in terms of the geom-
etries induced by the trace and Bures distances. We are going
to use algebraic tools presented by Horn and Johnson [25,26]
and Bhatia [27]. We begin in Sec. II by giving a set of con-
ditions on states such that they may be perfectly discrimi-
nated. In Sec. III we present some geometrical consequences
of these conditions and phrase the problem of state discrimi-
nation in terms of the embedding of simplices with respect to
different distance functions. In Sec. IV we investigate the
distance between states under unitary orbits and its geomet-
ric interpretation, and prove the above bounds. We finish in
Sec. V with conclusions. More technical proofs needed for
Sec. IV are left to the appendixes.
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II. PERFECT DISCRIMINATION OF STATES

We begin by looking at some conditions on the set of
states that can be perfectly discriminated. By perfect dis-
crimination, we mean that by choosing an appropriate mea-
surement we can say with absolute certainty which state we
have out of the set, unlike the unambiguous and ambiguous
discrimination discussed in the introduction. Our condition
will follow from simple analysis of the measurements [in
terms of the associated positive operator valued measure
(POVM)], and give general conditions which, in the next
section, will be used to give some geometrical consequences
of the problem.

Theorem 1. Two states p; and p, can be deterministically
discriminated if and only if their supports do not overlap.

Proof. Any perfect state discrimination strategy for two
states p; and p, can be written as a three-element POVM
{A|,A,,A,}, where the outcomes correspond to concluding it
is the state p,, p,, and allowing for inconclusive outcomes,
respectively.

Note that, although in general we can have far more pos-
sible outcomes than three, this formalism does include all
possible discrimination strategies—this is because we can
always group the outcomes corresponding to state p, to give
A, and those to state p, to give A,, and the remaining ele-
ments we group to give A,. The probability of success of the
strategy can always be written in terms of such POVMs; thus
we can restrict ourselves to only these three-element POVMs
for perfect discrimination.

The conditions on the POVM for deterministic state dis-
crimination are

Tr(Apy) = 1, (2.1)
Tr(Aspp) =1, (2.2)
Al+A,+A,=1, (2.3)
1=A,=0 (2.4)

(this is the same logic as in [18], only without the separabil-
ity condition). The first two are necessary for perfect state
discrimination since the probability of state p returning out-
come A; is given by Tr(A;p). As a side note, these conditions
can easily be extended to consider imperfect discrimination,
by allowing different values for the probabilities on the right-
hand side of conditions (2.1) and (2.2). Any optimizing strat-
egy would then optimize over the POVM according to the
given cost function (for example, unambigious or ambiguous
discrimination, or the distance functions mentioned in the
Introduction). For now we consider only perfect discrimina-
tion. Conditions (2.3) and (2.4) are just the conditions for
{A;} to be a POVM.

Conditions (2.1) and (2.2) imply that the elements A; and
A, include projections onto the support of p; and p,, respec-
tively. To see this, rewrite (2.1) in the eigenbasis of p;
=3\,|i)(i| [we extend this basis to the full space for writing
A, in (2.6)]
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Tr(Aip) = 2 NGlA = 2 Ngi=1. (2.5)
where g;:=(i]A,|i) is a probability, hence 2\;¢;=1 and
equality is obtained only when ¢;=1 for all i such that \;
#0. If we also demand conditions (2.3) and (2.4) the most
general A; can be written

Ak = Pk + 2
i,j & Supp(p}),Supp(p;)

ai,j|i><j > (2.6)
where P =2 csupp(p,|1)(i] is the projector onto the support of
state p;. The projectors onto the support of a state p, with
eigendecomposition p=3,a/j){j| is given by P=3j)(j|.
From here, condition (2.3) clearly says

Pi+P,=1
=Tr(P,P,)=0
=Tr(p;p,) =0
=Tr|p, - ps|i2=1. (2.7)
Hence the supports have zero overlap. |

The theorem is easily extended to sets of states {p;},.
Theorem 2. The states {p;}?, can be deterministically dis-
criminated if and only if their supports do not overlap.
This directly leads to the following proposition.
Proposition 1. Consider K states acting on the
N-dimensional Hilbert space, which can be discriminated de-

terministically. Then

K

> rank(p;) = N.
i=1

(2.8)

This proposition is clear from the theorem, but also can be
derived from the result in [18]. This is done by taking the
zero-entanglement case of the main result presented there.
Specifically, the left-hand side of the inequality in [[18], Eq.
(8)] for zero entanglement, along with [[18], Eq. (1)] give
exactly (2.8).

III. SOME GEOMETRICAL CONSEQUENCES

We now look at what the above results have to say in
terms of the geometric interpretation of the problem of state
discrimination. Due to property (1.6), the above theorem can
also be formulated as the condition that the trace (or Bures)
distance between states is maximal. This fact has an imme-
diate geometric implication. Let us start to work with the
trace distance and denote by A,CR* a maximal regular
k-simplex defined by k+1 points with mutual trace distance
between points equal to Dp*™*=1. As a consequence of
Proposition 1 we obtain the following result.

Proposition 2. Let R be an arbitrary convex subset of M.
Assume that there exists a maximal simplex A,CR and as-
sume that R does not contain A, ;. Then the maximal num-
ber of states of R which can be discriminated deterministi-
cally is equal to k+1.
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Py

a) k=1 b) k=2

FIG. 1. Set R of positive operators with k+1=(a) 2 and (b) 3
distinguishable states py, ..., p;,; Which form a k-dimensional sim-
plex A of maximal side length D™, with respect to the Bures (or
the trace) metric.

An analogy of Proposition 2 may be formulated for the
geometry induced by the Bures distance.

Thus the problem of finding the maximal number of dis-
tinguishable states on a certain set is equivalent to the prob-
lem of embedding inside it a regular simplex of maximal
dimensionality with the diameter given by D™ (see Fig. 1).

At this point it is worth mentioning a different quantum
problem of finding “symmetric, informationally complete
positive operational valued measures” (SIC POVMs) [19].
This has a similar geometric interpretation of inscribing in-
side the set My of mixed states an (N?>—1)-dimensional sim-
plex spanned by N? pure states |d>j), the overlap of which is
constant, F=|(¢;| ¢)[*=1/(N+1) for any i # j. Therefore, in
this case, the side of the simplex with respect to the Bures
distance reads DSBIC= \e’/2(1 —\F)= \/2_2/ N+ 1, and for a fi-
nite dimension N, this is smaller than DF™=12.

So in the distinguishability problem we wish to embed
into the set My of mixed states a simplex of the maximal
side length D™ with dimensionality not larger than N, while
in the SIC POVM problem we try to inscribe inside the same
se;I Ca higher-dimensional simplex of a smaller side length
Dy

IV. DISTANCES BETWEEN UNITARY ORBITS

In this section we shall be concerned with the distances
between orbits generated from quantum states by unitaries.
That is, given two states p; and p, with fixed spectra, we
wish to know how “distant” or how “close” we can make
these states by unitary action. We will find that for the Bures
and trace distances the closest and the farthest that can be
achieved are given when both states are diagonal in the same
basis. This has a geometric interpretation in terms of the
Weyl chambers as will be discussed.

This problem can be interesting in many areas of quantum
information. Operationally the problem of finding the best
unitary separation of two density matrices may be interesting
if we are restricted to certain spectra or mixedness. For ex-
ample, in coding for noisy channels, if we know that the
output of some channel will imply a certain mixedness (or
even specific spectra), we naturally want to choose to encode
on states that are least affected by this. If we are encoding
classical information, this will be those states that remain
most distinguishable afterward. A simple example of such a
channel would be one that probabilistically adds white noise.
Freedom of the input state would correspond to unitary free-
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dom of the outputs states which we wish to optimize over,
hence considering the optimum over unitary orbits of the
output mixed states is equal to finding the optimum encod-
ing. We will see that, in such cases, when only the spectra are
restricted, the worst and best cases are given by taking them
diagonal in the same basis.

Consider first two classical, N-point, normalized probabil-
ity distributions p=(p,,...,py) and ¢=(q,,...,qy) such that
7:,¢;=0 and 2;p;=,q;=1. As earlier, let p' denote the vec-
tor ordered in decreasing order, p! = p!. ,, while let p/ repre-
sent components of the probability vector in increasing order,
p zT Sp iT+l'

Any quantum state p,; generates an orbit of unitarily
equivalent states, Up,U'. Two states p, and Up,U" are some-
times called geometrically uniform and they have been re-
cently considered in the context of unambiguous discrimina-
tion [6,7,10].

We are going to discuss another problem of distinguishing
states from two orbits. Consider two diagonal quantum states
p=diag(p) and p,=diag(q) from which we construct two
orbits of unitarily equivalent states. We shall analyze the
minimal and maximal distance D, between the orbits,

M(pl’pZ): = nl}a\} Dx(Upl UT’ VPZVT) = mV[E/lX Dx(pl’ WPZWT) >
(4.1)
m(py,p): = min D(Up,U",Vp,V') = min D,(p;, Wp, W',
u,v w

(4.2)

since performing maximization over two unitary matrices U
and V is equivalent to finding a single unitary matrix W
=U'"V. Here D, stands for one of the monotone distances Dy
or Dy,.

We conjecture that extrema for these distances are ob-
tained for diagonal matrices. Then the extremization has to
be performed only over the group P of permutation matrices,
which change the order of the spectra,

M(pl’pZ) = m}‘;ix Dx(p’q) = Dx(pi’qT) = Dx(pT’qi)»

(4.3)

m(P],pz) = mgn Dx(p’Q) = Dx(pl’ql) = Dx(stqT)
(4.4)

The minimum is then achieved for the same order of com-
ponents in both vectors, while the maximum occurs for op-
posite ordering, so by using the above formula one can
evaluate analytically the extremal distances for both dis-
tances in consideration. A similar statement for the non-
monotone Hilbert-Schmidt distance (1.1) was already proved
in [20], encouraging this conjecture, and it will give some
intuitively sensible and pleasing geometric interpretations in
terms of Weyl chambers as will be discussed. We will pro-
ceed to prove the validity in the following.

Let us first show that this conjecture holds for the Bures
distance.

042111-4
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Theorem 3. The maximum and minimum Bures distances
between the unitary orbits of two states are given by diago-
nal states with

M(py,py) = max Dg(p.q) = Dg(p*,q") = Dg(p'.q")
(4.5)

and
m(py.py) = min Dy(p.q) = Dg(p*,q") =Dg(p'.q").

(4.6)
Proof. (a) We start by providing an upper bound for the
Bures distance (1.3). Let us start with the inequality

_
Vpl Vg = TripVp, = Vo' - Vg, (4.7)

which is a particular case ofAAl) from Lemma 3 proved in
Appendix A. Since Tr|\p;\p,|=TrVp;\p,, we immediately
infer that the root fidelity is bounded from below by the
Bhattacharyya coefficient between the spectra put in opposite
order,

@ =Bp'q).
(4.8)

R
VF(p1.p2) = Tel\pi\pal = TrvpVp, = \p!

This implies an upper bound for the Bures distance which is

clearly achievable, M(p;,p,)=Dz(p',q"). [ |

In this way we obtain a general upper bound (4.5) for the

Bures distance between any two density operators with spec-
tra p and ¢,

—

Dy(p1.p2) = Du(p.q") = [2(1 = \pT - Vg2,

(b) Next we provide a lower bound for the Bures distance

(1.3). To prove the case for minimization our task is to show

(4.9)

(4.10)

= — -
\’rpT . \qu = Tr|\p1 \ s

or equivalently to get an upper bound for the root fidelity

VE(py,pa).
First we note that for any operator A we have [12,21,26]

TrVAAT = Tr|A| =

max|Tr UA| = (4.11)
U

where the maximum is taken over all unitaries U. We will
also use the von Neumann inequality [22], which concerns
the absolute value of the trace of a product of two matrices
and their singular values.

Lemma 1 (von Neumann inequality). Let o(A), ... ,0,(A)
and o((B),...,0,(B) denote singular values of the matrices
A and B arranged in nonincreasing order. For any matrices A
and B the following inequality holds:

n

= > 0i(A)a(B).

i=1

|Tr AB| (4.12)

For a recent exposition see [23] and [24].
Without losing generality we can assume that p; is diag-
onal, p,;=diag(p) and p,=V diag(q)V'. Then
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= — — = s
max\F(p;,p,) = max Tr|\p;Vp,| = max Tr[NpVigV].
14 14 14
(4.13)
Using (4.11) and the cyclic property of the trace we get
[ - 7 N
max\ F(p,,p,) = max|Tr UNpVNqV'| = max|Tr\pV\qgV'U|
14 V.U V.U
(4.14)

=max | Tr\pVgW| (4.15)
where W=V'U is unitary. Since the vectors \rp and \q con-

tain singular values of matrices v pV and \qW respectively,
it follows from (4.12) that

T\ pVgW| < E (pV)ol(lgw).  (4.16)

Thus we get the bound for the maximal root fidelity of the
unitary orbit,

n

maxVF(pi,p) = X ol (\pV)al(VgW)  (4.17)
v i=1
=\p' Vgl (4.18)

This result implies the desired upper bound for the root fi-
delity,

— 7
VF(p1.p2) = \p' Vg, (4.19)

which finishes the proof of the lower bound (4.6). Squaring
the relations (4.8) and (4.19) we establish the inequalities
(1.9) and (1.10). |

Now we are going to formulate and prove an analogous
conjecture for the trace distance.

Theorem 4. The maximum and minimum trace distances
between the unitary orbits of two states are given by diago-
nal states with

M(P],Pz) = Hl;lX Dtr(p’q) = Dtr(pl’qT) = Dtr(pT’ql)

(4.20)

and
m(py.py) = min Dy(p.q) =Dy(p*.q") =Dy(p'.q").
(4.21)

Proof. The above theorem can be expressed in term of
singular values as

n

> loip) = i)l = 2 oi(pr = p2)
i=1

i=1
=2 oip) = Giilpa)]. (4.22)
i=1

Here o;(p;) and o;(p,) denote decreasingly ordered singular
values of both operators.
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(001)
a) N=2 b) N=3
b
M
/
a by 2 m
(10) <> v (01) (100) (010)

FIG. 2. Simplex of eigenvalues for N=(a) 2 and (b) 3, split into
21=2 (left and right) and 3!=6 (indicated by dotted lines) Weyl
chambers, respectively. The minimal distance m between the orbits
of unitarily similar states stemming from two quantum states is
equal to the distance between the corresponding spectra a and b
belonging to the same Weyl chamber shown for N=(a) 2 and (b) 3.
The maximal distance M is achieved for points a and b’ belonging
to the opposite Weyl chambers.

The lower bound follows from the special case (k=n) of
the following lemma from [26].

Lemma 2. Let A,BEM,, and suppose A,B,A—B have
decreasingly  ordered  singular  values o (A)=---
=o,(4), oB)=--=0,B), 0(A-B)=---=0,(A-B).
Define s5,A,B)=|0,(A)-0y(B)| and let s1(A,B)=""-
=51,](A,B) denote a decreasingly ordered rearrangement of
the values s;(A,B). Then

k k
> si(AB) = X 0i(A-B) for k=1,2,....n.
i=1 i=1
(4.23)

The upper bound in (4.22) follows from Lemma 5 in Ap-
pendix B if A and B are positive semidefinite. Since any
density matrix p is positive, its eigenvalues and singular val-
ues are equal. Making use of the definition (1.2) we obtain
therefore the required bounds for the trace distance

2Dlr(pl’ql) = Tr|pl - P2| = 2Dtr(pl’qT) (424)

equivalent to Eq. (1.11). |

We now consider what this means geometrically, and we
will do this in terms of the so-called Weyl chamber. A Weyl
chamber is a simplex of ordered eigenvalues, i.e., it is
formed of part of the simplex of eigenvalues in which all of
the eigenvalues follow a prescribed order. Since in a set of N
elements there exist N! permutations, the regular simplex of
eigenvalues of a density matrix of size N contains N! Weyl
chambers (see, e.g., [13]). Any unitary orbit is generated
from an ordered spectrum of the density matrix, which cor-
responds to a point inside a single Weyl chamber. Thus the
minimal distance between a diagonal state p; and a unitary
orbit stemming from p, is obtained at the point in which the
orbit intersects the Weyl chamber distinguished by p;. This
implies that the mimimum is achieved if both matrices are
diagonal and both spectra follow the same order. On the
other hand the maximum is achieved for a diagonal p, with
permuted eigenvalues, which belongs to another Weyl cham-
ber with the opposite ordering of the spectrum (see Fig. 2 for
N=2 and 3).

Let us analyze the simplest case N=2, for which the sim-
plex of eigenvalues is equivalent to an interval [0,1], while

PHYSICAL REVIEW A 77, 042111 (2008)

the intervals [0,1/2) and (1/2,1] form two Weyl chambers.
A unitary orbit generated by each point of a Weyl chamber
has the structure of the sphere S2. The above statement has
an intuitive interpretation: the minimal distance between two
concentric spheres is equal to the distance between two of
their points belonging to the same radius of the ball. The
maximal distance between these spheres equals the distance
between their points placed at the diameter of the ball on the
other sides of its center. For example, consider two states in
the Bloch ball. The radius of a given state is determined by
its entropy, which in this case completely determines the
entire spectrum. Hence two unitary orbits form two concen-
tric spheres of different radii. Common eigenbases corre-
spond to a common axis; hence the closest and furthest states
both lie on the same axis, either both on the same side or on
opposite sides of the center, respectively.

The above property shows that, in looking for a set of
perfectly distinguishable states in a certain set R of mixed
states that is invariant with respect to the unitary rotations, it
is enough to analyze the subset of diagonal matrices.

Proposition 3. Let R, be an arbitrary convex subset of the
(N—1)-dimensional simplex of the eigenvalues. Let R denote
the set of quantum states obtained from this set by any uni-
tary rotation R:={p & My:p=U[diag(p)]U’, and pER,}.
Let k=N be a number such that A;,_; ER, and there exists
no A €R,. Then the maximal number of perfectly distin-
guishable states in R is equal to k, so it is equal to the maxi-
mal number of diagonal distinguishable states.

As before, the symbol A, represents a regular
k-dimensional simplex containing k+1 points separated by
the maximal distance D™ with respect to the trace (or
Bures) distance. Let us emphasize again that the geometry
induced by the Bures metric differs considerably with respect
to the flat Euclidean geometry induced by the HS metric. For
instance, the simplex of eigenvalues for N=3 forms a flat
equilateral triangle (of side 2) in the HS case, while it is
equivalent to the octant of a sphere S? for the Bures distance.

V. CONCLUSIONS

In this work we commenced with the analysis of the ge-
ometry of the problem of quantum distinguishability. We
showed that the problem of finding the maximal number of
perfectly distinguishable states in a certain set R containing
quantum states is equivalent to finding the dimension of the
largest simplex of a fixed side size which can be embedded
inside the set R. For this purpose one cannot use Euclidean
simplices defined by the HS distance, but must use simplices
with respect to Bures or trace distances.

The fidelity between any two quantum states is shown to
be bounded by the classical fidelities between both spectra
put in the same order (upper bound) or in the opposite order
(lower bound). This observation implies that bounds for the
Bures distance between two quantum states are achieved for
diagonal states. Thus, in looking for distinguishable states in
a rotationally invariant subset of the set of quantum states it
is sufficient to restrict analysis to a smaller set of classical
states, which correspond to diagonal density matrices.

Phrasing problems in geometric terms can be useful in
developing intuition, often leading to connections to other
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problems, and even helping with calculations. Although we
have only started in the development of this approach here,
we hope that these foundations and techniques will prove
useful in the future for quantum state discrimination.

Note added in proof. Recently, we have learned that our
Theorem IV follows from certain consequences of the theo-
rem of Lidskii presented in chapters II1.4 and IV.3 of the
book of Bhatia [27]. We are grateful to J. Eisert for this
remark.
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APPENDIX A: BOUND FOR THE TRACE
OF A PRODUCT OF STATES

Let p=p' and o=0" denote two Hermitian operators act-
ing on an N-dimensional Hilbert space. As throughout the
paper, their spectra will be denoted by p=eig(p) and ¢
=eig(0), respectively. Let p! and ¢! denote the N-element
vector of eigenvalues ordered in decreasing order, while the
same spectra ordered increasingly will be written as p' and
g'. The symbol (p')* denotes the vector consisting of ordered
elements of p', each component raised to power s.

Lemma 3. Let p=0 and 0=0 and let s, denote positive
real numbers. Then

) (@) =Trp'd’ = (p")' - ().
Proof. Let |w;) and |v;) denote the eigenvectors of the

states p and o. We will start by finding a form of Tr p*c”, in
terms of overlaps with a doubly stochastic matrix,

(A1)

Trp'o’ = Tr(Z Pf45'|ﬂi><l’«i| Vj><Vj|) (A2)
ij
=Z P}?CI}|<M1‘|U|MJ‘>|2 (A3)
ij
(A4)

=2 P}?Q;‘Bi,j,
ij

where U is the unitary relating the two eigenbases U|u;)
=|v) V iand B: =3, |U; [*|u){u;| so that B;;=|U,|*. Hence
the matrix B is by construction unistochastic [28] and thus
bistochastic.

It is convenient to introduce here two non-normalized
vectors |¢):=2p;|p;). and [): =2qj|w;), where pi=p; and
¢;=¢q; are non-negative. Then the trace can be rewritten in
the form

Tr p*o’ = (1 B|¢). (AS)

Birkhoff’s theorem [25] states that any doubly stochastic ma-
trix can be written as a finite convex combination of permu-
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tation matrices O;; hence we write B=2,;r,0;, Z;r;=1. Thus
the extremum of a linear function of the bistochastic matrix
B will be realized at one of its extremal points. There are
exactly N! of them, and among all possible permutations O;
the maximum is obtained if the orders of elements of both
vectors are the same, while the minimum is achieved if the
two spectra are in opposite order,

(YBl¢) =2 rd{Yl0]d) = (HOmnl$) = (01~ (¢")' (A6)

S<¢|0max|¢> = (PT)S : (CIT)I'

Since all components of the vector p (and ¢) are non-
negative, raising each element to a positive exponent s (or )
will not change the order of the vector (p!)*=(p*)!. Putting it
all together we arrive at (A1) and complete the proof. W

For concreteness let us write down explicitly some special
cases. In the simplest case s=r=1 one obtains

(A7)

plgt=Trpo=pl-q¢', (A8)

while on setting s=¢t=1/2 one obtains inequality (4.7) used
in the proof of inequality (4.9).

An analog of Lemma 2 may be obtained in the case where
one of the two operators is not positive.

Lemma 4. Consider a positive number s>0, a state p
=0, and a Hermitian operator o=0" not necessarily positive.
Then

P ¢t =Trp'o=(p)'q'. (A9)

Proof of this lemma is similar to the proof of Lemma 2. In
this case the vector g of eigenvalues of operator o contains
in general also negative entries, so the vector |¢):= quj| )
is given by a pseudomixture with some weights negative.
Constructing unitary bases U and the bistochastic matrix M,
one may write the analyzed trace in the form (A5) and make
use of the Birkhoff theorem. Since the operator p with spec-
trum p is positive, raising its components to a positive power
will not change the order, (p')*=(p*)!. Therefore we may
perform the last step analogous to (A7), obtaining the desired
result. |

APPENDIX B: BOUND FOR THE TRACE
OF A DIFFERENCE OF TWO STATES

In this appendix we prove the following lemma.

Lemma 5. Let A and B denote Hermitian matrices of size
n. Let us order their eigenvalues in decreasing order, \;(A)
=---=)\,(A) and \{(B)=---=\,(B). Then the following
upper bound for the trace of the absolute value of the differ-
ence holds:

Tr|A - Bl = >, 0i(A = B) = 2, [N(A) = N1_i(B)).
i=1 i=1

(B1)

Proof. Let us express both operators in their eigen-
representation A=3"p;|u; (1| and B=="¢q,|v;}{v,|, where for
convenience we have introduced the notation p;=\,(A) and
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¢;=\;{(B). Making use of Eq. (4.11) and basic properties of
the trace, we get

Tr|A - B| = max|Tr AU — Tr BU| (B2)
U
=max E pi</'Li| U|Mi> -q{ Vi| U| )
i=1
(B3)
Since  Ku|lUlp=1,  [vlUlp)|=1, and TrU
=3 (| Uiy =2 (v{ Ul vy), we have
Tr|A - Bl < max{ | X &p;— (g | :|&] = [=1
i=1
for i:l,...,n,z §i=2§,~ (B4)
i=1 i=1

For fixed values of ¢ and {; we denote s=2_,§p;—{;q;- Let
s=ce'?; we have

c=|s|=

|2 i 70%-

Because | ‘=1 and | | =1, we can without loss of gener-
ality assume that s € R. Note now that under this assumption
we have

> Epi- L &l = |=1
i=1
for i=l,...,n,2§,~=2{,~, (BS)
i=1 i=1
=max) | X Re(&)p; - Re({)q; & = |=1
i=1
for i=1,....n,2 &= 0 (B6)
i=1 i=1
=max| | X épi—Lgi| - 1=&=<1-1=(=<1
i=1
for i=1,...,n,2 §i=2§i, (B7)
i=1 i=1
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The term 2, &p;—{iq; is a linear function of 2n variables
&,...,¢&, &,...,, so it reaches its extreme value at the
edges of the polygon defined by

for i=1,...,n,§n:§i=é§i (B8)
i=1 i=1
Thus we can focus on the edges of the polygon
Gel{-L1}, se{-1.1}
fori=1,...,n,§n:§,-=é§i (B9)
i=1 i=1

Note that we obtain the maximum if in the sum X! &p;
+(=¢;)q; the n maximum values of {p;,....p,.q1.-. qu}
will be equipped with coefficient +1 and n minimum values

with —1. Because p;=p,=---=p, and ¢, =¢, ="'+ =q,,
we can thus write the » maximum values as
max{pl’qn}’max{prIn—l}? cee ’max{pmql}7 (B 10)
and the n minimum values as
min{pl’Qn}’min{pZ’ qn—1}5 e ’min{pn’QI}' (B 1 1)
So the maximum value of
- giCIi :gi € {_ 1’1}9 gi € {_ 171}
for i=1,...,n, 2 &= 4 (B12)
i=1 i=1
is equal to
2 max{p;,q,_ir1} — min{p;,q, i1} | = E |Pi - qn—i+1|-
i=1 i=1
(B13)
This gives us the required upper bound (B1). |
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