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Abstract
The main results of our work is determining the differences between limiting 
properties in various models of quantum stochastic walks. In particular, we 
prove that in the case of strongly connected and a class of weakly connected 
directed graphs, local environment interaction evolution is relaxing, and in 
the case of undirected graphs, global environment interaction evolution is 
convergent. For other classes of directed graphs we show, that the character 
of connectivity has a large influence on the limiting properties. We also study 
the limiting properties for the non-moralizing global interaction case. We 
demonstrate that the digraph observance is recovered in this case.

Keywords: quantum stochastic walks, stationary states, state convergence, 
relaxing

(Some figures may appear in colour only in the online journal)

1. Introduction and preliminaries

1.1. Motivation

Results from the past few decades show that the choice of the quantum analogue of classical 
random walk is highly non-unique. Some of the most popular models include the discrete 
coined quantum walk [1], continuous quantum walk [2], Szegedy walk [3], open walk [4], 
staggered quantum walk [5], and quantum stochastic walk [6]. They have found applica-
tions in the designing PageRank algorithm [7–9], search algorithms [10–13], solving triangle 
problem [14], and describing chemical reactions [15]. All of them outperform their classical 
counter part at least for some large class of graphs. From the algorithmic perspective, it is 
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crucial to understand the limiting behaviour of the walks. This includes the propagation speed, 
which decides about efficiency of the search algorithm [16], mixing time and relaxing, which 
find applications in PageRank algorithm [8, 17], limit theorem [18, 19, 20], and trapping [21].

A special kind of continuous quantum evolution is the quantum stochastic walk, which 
generalizes both the classical and quantum walk [6]. The model has been investigated in 
the context of relaxing property [8, 17], propagation speed [22], and applications to various 
physics [15] and computer science [8] problems. The difference comparing to the original 
continuous-time quant um walk is the Lindblad operators appearance. The choice of Lindblad 
operators is highly nontrivial, and in the case where each one-dimensional subspace corre-
sponds to different vertex, two models are of particular interest: local environment interaction 
and global environment interaction [6, 22].

The local environment interaction case has been extensively used and analysed. The model 
has been analysed in context of relaxation [17] and application in PageRank algorithm [8]. In 
particular, it was shown that in the case of undirected graphs, the QSW is always relaxing [17]. 
However, the evolution is decohering, and hence it destroys the ballistic propagation [23].

The ballistic propagation was one of the basic motivations for the analysis of quantum 
walk. Fortunately, the global environment interaction QSW is proved to have ballistic propa-
gation [22]. However, the global environment interaction suffers from graph topology change 
[16], due to its character called moralization. Thanks to the correction scheme it is possible 
to bound the QSW with the global interaction to the digraph structure. Such evolution, called 
non-moralizing global environment QSW, is verified numerically to have at least superdif-
fusive propagation [16].

The main contribution of this paper is the description of the limiting properties of various 
models of quantum stochastic walks. We describe how the connectivity of the graph influences 
the convergence or the relaxation. Numerical analysis suggests, at least in some cases, that 
the convergence/relaxation appears on all graphs in the sense of Erdős–Renyi random graph 
model G(n, p). Furthermore, our results includes the directed graph preservation analysis for 
directed graphs in the case of non-moralizing evolution. The main results are collected in 
table 1

The paper is organized as follows. In the following part of this section we provide some 
basic definitions concerning graph theory and QSW. In section  2 we analyse the limiting 
properties of the local environment interaction case. In sections 3 and 4 we analyse the limit-
ing properties of the global environment interaction case, the standard and the non-moralizing 
respectively. We conclude our results in section 5.

1.2. Graph theory terminology

Let G = (V , E) be a digraph with vertex set V and arc set E. The underlying graph Gu(V , Eu) 
is an undirected simple graph, for which every arc from G is replaced with an edge. We say 
that digraph is weakly connected if its underlying graph is connected. We say that digraph is 
strongly connected, if for arbitrary v, w ∈ V  there is a directed path from v to w. The strongly 
connected components are the maximal strongly connected subgraphs. We call v a sink vertex, 
if its outdegree (number of outgoing arcs) is zero. We denote S(G) to be a set of sink vertices.

Let G = (V,E) be condensation of G = (V , E), i.e. a directed graph constructed as fol-
lows. We make a partition V  of vertex set V in such a way, that each block forms a maximal 
strongly connected component in G. Then (v, w) ∈ E iff there exists v ∈ v, w ∈ w such that 
(v, w) ∈ E. In other words there is an arc from one maximal strongly connected component to 
the other, if there is at least one arc (in consistent direction) between their elements. Note that 

A Glos et alJ. Phys. A: Math. Theor. 51 (2018) 035304



3

G is directed acyclic graph, hence S(G) �= ∅. Furthermore, if G is weakly connected, then for 
each w ∈ V there exists s ∈ S(G) such that there exists directed path from w  to s.

The directed moral graph GM = (V , EM) of the directed graph G = (V , E) is defined as 
follows. For each v, v′ ∈ V  we have (v, v′) ∈ EM iff (v, v′) ∈ E  or there exists w ∈ V  such 
that (v, w), (v′, w) ∈ E . In other words, directed moral graph is constructed by adding edge 
between the vertices which have common child. Note that original moral graph is defined as 
underlying graph of the directed moral graph [24, 25].

In this work we are using Erdős–Rényi model of random graphs. The Erdős–Rényi random 
graph G(n, p) is a graph with n vertices such that any pair of vertices is connected with prob-
ability p [26].

Throughout this paper we will assume that the graph is at least weakly connected.

1.3. GKSL master equation and quantum stochastic walks

To define quantum stochastic walks in general, let us start with the Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) master equation [27–29]

d
dt
� = M[�] = −i[H, �] +

∑
L∈L

(
L�L† − 1

2
{L†L, �}

)
, (1)

where {A, B} is the anticommutator and M is the evolution superoperator. Here H is the 
Hamiltonian, which describes the evolution of the closed system, and L is the collection of 
Lindblad operators, which describes the evolution of the open system. This master equa-
tion describes general Markov continuous evolution of mixed quantum states. Note, that in 
the case of L = ∅ and H being an adjacency matrix of some graph we recover the original 
continuous quantum walk, however on mixed states.

The GKSL master equation was used for defining quantum stochastic walks (QSW), which 
are a generalization of both classical random walks and quantum walks [6]. Both H and L 
correspond to the graph structure, however one may verify that at least a choice of Lindblad 
operators may be non-unique [6, 22]. Suppose we have a directed graph G = (V , E). Since 
Hamiltonian H needs to be hermitian, we always choose adjacency matrix of the underlying 
graph graph. In the local environment interaction case each Lindblad operator corresponds 
to a single arc, L = {c(v,w)|w〉〈v| : (v, w) ∈ E} for c(v,w) ∈ C �=0. In the global environment 
interaction case we choose a single Lindblad operator, which is adjacency matrix of directed 
graph.

To analyse the impact of Lindbladian part, we add the smoothing parameter ω ∈ [0, 1]

Table 1. Main analytical results. Case ω ∈ (0, 1] is only considered here.

Local interaction Global interaction
Non-moralizing global  
interaction

Convergence – Unknown in general 
case

– Undirected graphs – Counterexample for  
undirected graphs

– Counterexample for 
digraphs

Relaxing – Strongly connected 
digraphs

– Never for undirected 
graphs

– Counterexample for  
undirected graphs

– Weakly connected  
digraphs with one sink 
in condensation graph

– Counterexample for 
digraphs
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d
dt
� = −i(1 − ω)[H, �] + ω

∑
L∈L

(
L�L† − 1

2
{L†L, �}

)
. (2)

In [23] it was shown, by infinite path graph analysis, that the local interaction case leads to the 
classical propagation of the walk. Oppositely, in the case of the global interaction, the ballistic 
propagation is obtained for arbitrary middle value ω. Since for ω = 0 we recover continuous 
quantum walk (CQW) on closed system, we are particularly interested in ω ∈ (0, 1] case.

In [16] it has been noted that the global interaction QSW suffers for the graph topology 
change and the resulting process fails to reproduce the structure of the original graph. The 
resulting graph, according to which the system is evolving, is the directed moral graph [24, 
25], of the original one. This effect is called a spontaneous moralization and to prevent this 
a correction scheme based on the system enlargement has been proposed [16]. The scheme 
consist of following steps: first we combine with each vertex a subspace of the system of 
dimension equal to the indegree of the vertex (in the case of source vertices the subspace is 
onedimensional). Next, we choose a family of orthogonal matrices for new Lindblad opera-
tor L̃, which destroys the spontaneous moralization. The last step is to add a Hamiltonian 
H̃local acting locally on the subspaces corresponding to different vertices. The Hamiltonian 
H̃  corresponding to the graphs structure is a 0-1 matrix, for which zero values coincides with 
zero values of L̃. For details we refer the reader to the original paper. Since in this model we 
combine each vertex with some orthogonal subspaces, a natural measurement is the collec-
tion of operations which projects the state onto the subspaces corresponding to the vertices. 
We call this model of evolution as non-moralizing global environment interaction QSW, or 
simply non-moralizing QSW. Similar to equation (2) we add smoothing parameter ω and the 
evo lution takes the form

d
dt
� = −i(1 − ω)[H̃, �] + ω

(
−i[H̃local, �] + L̃�L̃† − 1

2
{L̃†L̃, �}

)
. (3)

Numerical simulation of the QSW with non-moralizing global environment interaction is 
difficult because of enlarging of the system. With the increase of the input graph density, the 
size and density of output Lindblad operator L̃ increases rapidly.

Throughout this paper we analyse the limit behaviour of QSW in all of three mentioned 
cases: local environment interaction, global environment interaction, and corrected non-
moralizing environment interaction. We analyse the evolution in context of convergence and 
relaxation. We say that evolution is convergent, if for arbitrary initial state �0 there exists sta-
tionary state �∞ such that �t

t→∞→ �∞. We say that evolution is relaxing, if there exists unique 
stationary state. In GKSL master equation uniqueness of stationary state is equivalent to relax-
ing property, see theorem 1 from [30]. Similarly one can define convergence and relaxing in 
the context of probability distribution of quantum measurement. Note that relaxation implies 
convergence, but the opposite does not hold in general.

In the case of QSW H and L do not depend on time. Henceforth, we can solve the differ-
ential equation analytically: if we choose initial state �0, then

|�t〉〉 = exp(tF)|�0〉〉, (4)

where

F = −i (H ⊗ 1l − 1l ⊗ H̄) +
∑
L∈L

(
L ⊗ L̄ − 1

2
(
L†L ⊗ 1l + 1l ⊗ L†L

))
, (5)
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and | · 〉〉 denotes the vectorization of the matrix (see eg. [31]). Note that the eigenvalues of F 
implies the behaviour of the evolution. If there exists purely imaginary nonzero eigenvalues, 
the evolution is non-convergent for some initial state �0, otherwise it is convergent. If the 
null-space is one-dimensional, then the evolution is relaxing. Hence our numerical analysis is 
mostly based on analysing the spectrum of F.

2. Convergence of local interaction case

The local environment interaction case is relaxing for undirected graphs [17] and arbitrary 
Hamiltonian. The proof is based on the Spohn theorem [32], which requires the self-adjointess 
of the set of Lindblad operators, hence its applications is limited to the undirected graphs case. 
Nevertheless we show, that the result can be extended to strongly connected digraphs and 
weakly connected graphs with single sink vertex in G graph. Our proofs utilise the Condition 
2. and Condition 3. from [30], recalled here as lemmas 1 and 2. By interior we mean collection 
of density matrices with full rank.

Lemma 1 ([30]). Let H be a Hilbert space. If there is no proper subspace S � H, that is 
invariant under all Lindblad generators L ∈ L then the system has a unique steady state in 
the interior.

Lemma 2 ([30]). If there do not exist two orthogonal proper subspaces of H that are si-
multaneously invariant under all Lindblad generators L ∈ L, then the system has unique fixed 
point, either at the boundary or in the interior.

Using the above lemmas we can prove the following.

Theorem 1. Let G = (V , E) be a strongly connected digraph and let L = {Lvw = c(v,w)

|w〉〈v| : (v, w) ∈ E} for some c(v,w) ∈ C �=0. Then evolution described by equation (1) is relax-
ing for arbitrary Hamiltonian H with stationary state in the interior.

Proof. Let H be a Hilbert space spanned by {|v〉 : v ∈ V} and S �= {0} be arbitrary subspace 
of H invariant under L. Furthermore, suppose that |ψ〉 ∈ S is a nonzero vector and v ∈ V  is such 
that 〈v|ψ〉 �= 0. Since G is strongly connected, there is a directed path (v1 = v, v2, . . . , vk, w) 
for arbitrary w ∈ V . Then cw|w〉 = LvkwLvk−1vk · · · Lv2,v1 |ψ〉 ∈ S  for some cw ∈ C �=0. Since 
{|w〉 : w ∈ V} forms a basis of H, we have S = H. By lemma 1 the theorem is true.  □ 

Theorem 2. Let G = (V , E) be a weakly connected digraph such that |S(G)| = |{s}| = 1 
and let L = {c(v,w)|w〉〈v| : (v, w) ∈ E} for some c(v,w) ∈ C �=0. Then the evolution described by 
equation (1) is relaxing for arbitrary Hamiltonian H.

Proof. Suppose S1 �= {0}, S2 �= {0} are two subspaces of H and let |ψ1〉 ∈ S1, |ψ2〉 ∈ S2 . Sim-
ilarly to method in theorem 1 one can show that there exist L1

1, . . . , L1
k ∈ L and L2

1, . . . , L2
k′ ∈ L 

such that c1
w|w〉 = L1

kL1
k−1 . . . L1

1|ψ1〉 and c2
w|w〉 = L2

k′L
2
k′−1 . . . L2

1|ψ2〉 for some w ∈ s and 
c1

w, c2
w ∈ C �=0. Hence S1 and S2 are not orthogonal and by lemma 2 the theorem holds.  □ 

Note that no information about the graph structure needs to be encoded in the Hamiltonian—
the graph structure is encoded in the L only.

The remaining class of weakly connected graphs is those for which |S(G)| > 1. However 
in this case one can shown that the Hamiltonian has an impact on the limiting behaviour of the 
evolution. In the case of ω = 1, one can show that the evolution is equivalent to the classical 
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one. Because of that, there are different stationary states in each of the sinks. Hence, the evo-
lution is not relaxing. However, due to the de-cohering character of the evolution, it should be 
convergent to the state from the sinks subspace.

Similarly convergence is expected in the case of ω ∈ (0, 1). In this case, if the Hamiltonian 
impact is sufficiently large, one can observe the relaxation of the evolution. As an exam-
ple, we analyse a bidirected path with vertex set {−n,−(n − 1), . . . , n − 1, n}, and edge set 
E = {(i, i + 1) : i < 0} ∪ {(i − 1, i) : i > 0} (see figure 1). The Hamiltonian is chosen to be 
the adjacency matrix of the underlying graph, i.e. the path graph. In figure 2 the values of ω for 
which the evolution is relaxing are presented. One can see that for each n there is ωt  such that 
for ω < ωt  evolution is relaxing, and for ω > ωt  is not. As the value of ωt  decreased with n, 
one can observe that for larger graphs the stronger influence of the coherent part is necessary 
to ensure the relaxing property.

We have analysed the graphs from Erdős–Rényi model G(n, 1
10 ) with |S(G)| > 1. For each 

size n = 10, 15, . . . , 45 we have tested 200 graphs with values ω ∈ {0.05, 0.1, . . . , 1}. We 
have ignored the graphs for which |S(G)| > 1 was not satisfied or which were not weakly con-
nected. We have not found any example of graph for which the evolution was non-convergent. 
All graphs yield convergent evolution for ω = 1. Moreover, for all graphs it was possible to 
find such ωt , that for all ω ∈ (0,ωt) the evolution is relaxing, while for (ωt, 1] the evolution is 
convergent.

However, we were able to identify graphs which are non-relaxing for all ω ∈ (0, 1). Let 
us consider a star graph in figure 3. One can show, that for arbitrary ω ∈ (0, 1] the evolution 
operator F consists of at least 4 zero eigenvalues. Hence, the evolution for such graph is never 
relaxing. Star graphs of bigger size yield similar properties. On th other hand, we were not 
able to find any graph, which yields relaxing evolution for all ω ∈ (0, 1).

3. Convergence of global interaction case

3.1. Undirected graphs

We start this section with providing the general result for the commuting operators. The result 
generalizes the case of quantum stochastic walk with global interaction for all undirected 
graphs and for some directed graphs [22], including circulant matrices.

Proposition 3. Let us consider equation (4) in the case of commuting Lindbladian opera-
tors L and Hamiltonian H. Then the evolution operation is of the form

(U ⊗ Ū) exp(tDFω
)(U ⊗ Ū)†, (6)

where

DFω = −i(1 − ω)(DH ⊗ 1l − 1l ⊗ DH) + ω
∑
L∈L

(DL ⊗ D̄L −
1
2

D̄LDL ⊗ 1l − 1
2

1l ⊗ DLD̄L)

 (7)

Figure 1. Biderected path graph of size 2n + 1.
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is a diagonal matrix. Here we assume that U is a unitary operator and DH , DL are diagonal 
operators such that H = UDHU† and L = UDLU†.

Proof. The proof comes directly from the eigendecompositions of the operators. Since all 
operators commute, it is possible to find common eigendecomposition with the same unitary 
matrix. By this we can easily find the result. □ 

One can note the global interaction quantum stochastic walk on undirected graphs is a 
special case of the evolution described in the above theorem. In the walk model the difference 
comes from the size of L, where we choose only single Lindbladian operator. Hence we prove 
a result concerning undirected graphs.

Theorem 4. The stationary states in the GKSL master equation  evolution for which 
L = {H} are precisely the stationary states of the pure continuous quantum evolution. The 
evolution is convergent for ω ∈ (0, 1], but not relaxing iff the system size is greater than one.

Figure 2. Values of ω for which the evolution on bidirected path graph is relaxing 
on local environment interaction evolution. Note that for each n there is a threshold 
ωt , before which the evolution is relaxing. Numerical analysis was performed for 
n = 10, 14, . . . , 94 and for ω = 0.01, 0.03, . . . , 0.99.

Figure 3. Star graph of size 4, which yields non-relaxing evolution for ω ∈ (0, 1].
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Proof. By the model construction we have L = H. Hence the formula equation (7) simpli-
fies to

DFω = −i(1 − ω)(D ⊗ 1l − 1l ⊗ D) + ω(D ⊗ D − 1
2

D2 ⊗ 1l − 1
2

1l ⊗ D2).
 (8)

Here we assume H = UDU†. Since H is Hermitian, operator D is a real-valued diagonal ma-
trix. The diagonal entries of operator DFω are eigenvalues which characterize the evolution. 
We have

〈i, j|DFω |i, j〉 = −i(1 − ω)(〈i|D|i〉 − 〈 |jD| 〉j) + ω(〈i|D|i〉〈j|D| 〉j − 1
2
(〈i|D2|i〉+ 〈j|D2|j〉))

= −i(1 − ω)(〈i|D|i〉 − 〈j|D|j〉)− ω

2
(〈i|D|i〉 − 〈j|D| 〉j)2.

 

(9)

Note −i(1 − ω)(〈i|D|i〉 − 〈j|D|j〉) corresponds to purely Hamiltonian evolution, and hence 
to continuous quantum walk. Since 0-eigenvalues of Fω correspond to 0-eigenvalues of H 
Hamiltonian part of the system, which furthermore correspond to the stationary states of the 
continuous-time quantum walk, we obtained the first part of the theorem.

Note that there are no purely imaginary eigenvalues od Fω. Hence, we have that the evo-
lution is convergent. Since the set of stationary states of continuous-time quantum walk of size 
n has at least n elements, we obtain that QSW with global interaction is never relaxing. □ 

Note that the result from the above theorem implies that we can generate the stationary 
states from the continuous quantum walk by adding the same Lindbladian operator.

Remark 5. Global interaction case QSW is convergent, but not relaxing for arbitrary undi-
rected graph with number of vertices greater than one 1 and for arbitrary ω ∈ (0, 1]. Further-
more, the stationary states are precisely those from CQW.

In the next section we show that theorem 4 cannot be generalized for directed graphs.

3.2. Directed graphs

In this section we provide an example of a directed graph for which we do not necessary 
obtain a stationary state. It has been proven that the evolution converges for arbitrary initial 
state iff all nonzero eigenvalues of Fω have a negative real part [33, theorem 5.4]. We found an 
example of a digraph which does not satisfy the condition, and provide an exemplary initial 
state which results in non-convergent evolution. One should note, that it is possible (and more 
probable) to find non-convergent states.

Theorem 6. Let us take the evolution for which the only Lindbladian operator is an adja-
cency matrix of the directed graph and the Hamiltonian is an adjacency matrix of the underly-
ing graph. Then there exists a directed graph G and an initial state �0 for which the evolution 
is non-convergent for an arbitrary value of the smoothing parameter ω ∈ (0, 1].

Proof. As an example we choose a circulant graph of size 4k for k > 1 and with extra jump 
every two vertices. An example for k = 2 is presented in figure 4. The graph and its underlying 
graph are circulant matrices. Therefore, we can use equation (7) to find out that there exists 
one eigenvalue of the form 2(1 − ω)i with corresponding eigenvector |Ck〉|C2k〉, where (·) 
denotes the element-wise conjugation and |Ci〉 is the i-th eigenvector of a circulant matrix of 

A Glos et alJ. Phys. A: Math. Theor. 51 (2018) 035304



9

the form

|Ci〉 =
1

2
√

k

4k∑
j=0

exp

(
2πiij

4k − 1

)
|i〉. (10)

We need to find a matrix which is not orthogonal to |Ck〉〈C2k|. Our exemplary initial state is

�0 =
1
2
(|Ck〉+ |C2k〉)(〈Ck|+ 〈C2k|). (11)

The �t  takes the form

�t =
1
2
(|Ck〉〈Ck|+ |C2k〉〈C2k|+ e2i(1−ω)t|Ck〉〈C2k|+ e−2i(1−ω)t|C2k〉〈Ck|).

 (12)

Since �t  is periodic with period π
(1−ω), we obtain the result. □ 

Note, that for different t we can obtain different states in the sense of possible measurement 
output. For example we have 〈0|�0|0〉 = 1

2k, but at the same time we have 〈0|�( π
2(1−ω) )|0〉 = 0.

Remark 7. The evolution for which the only Lindbladian operator is an adjacency matrix of 
the directed graph and the Hamiltonian is an adjacency matrix of the underlying graph, does 
not converge in general, even in the sense of the canonical measurement probability distribu-
tion.

Circulant graphs provide an infinite collection of directed graphs for which the conv ergence 
does not hold. Note that the example used in the proof is strongly connected directed graph. 
This shows, that the convergence in the local interaction case does not imply the convergence 
in the global interaction case.

Contrary, it is very difficult to find a directed graph for which the convergence does not hold. 
We have made numerical analysis for Erdős–Rényi model G(n, 0.5) for n = 10, 15, . . . , 45 and 

Figure 4. An example of strongly connected directed graph, for which the global 
interaction case evolution is not convergent.

A Glos et alJ. Phys. A: Math. Theor. 51 (2018) 035304
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for ω = 0.05, 0.1, . . . , 1. We have guaranteed that the graph is weakly connected by ignoring 
such cases if they appear. For each n we chose 200 graphs and we have not found any graph 
which is not convergent. At the same time it is possible to find the relaxing evolution. We 
were not able to identify graph properties causing such behaviour. From all 1600 graphs, 1599 
were relaxing for all value of ω, and there was one graph of size 10 which was relaxing for 
ω ∈ {0.05, . . . , 0.95} and convergent for ω = 1. Therefore, relaxing property is statistically 
common for directed graphs in the global environment interaction case.

4. Convergence of non-moralizing global interaction case

4.1. Non-convergent in the space state

The non-moralizing model has been introduced in [16] and provides a similar example of a 
graph and initial state such that it does not converge. Similarly we found a digraph, for which 
an evolution operator St,ω has an imaginary part. Again, it is easy to find a state for which the 
evolution is non-convergent.

Theorem 8. Let us take the non-moralizing evolution described in [16]. Then there exists 
a directed graph G and initial state �0 for which the evolution is periodic in time for an arbi-
trary value of the smoothing parameter ω ∈ (0, 1].

Proof. Let us take a graph presented in figure 5. Using the scheme presented in [16], new 
graph will consist of five copies of vertex v0, two copies of vertices v4 and v5, and a single copy 
of other vertices. As the orthogonal matrices we choose the Fourier matrices and in order to 
remove the premature localization we choose the rotating Hamiltonian H̃rot constructed from 
the Hamiltonians of the form




0 i

−i
. . .

. . .

. . .
. . . i
−i 0




. (13)

Let us choose two eigenvectors of the rotating Hamiltonian

|λ1
H̃rot

〉 = 1
2
√

3
|v0

0〉 −
i
2
|v1

0〉 −
1√
3
|v2

0〉+
i
2
|v3

0〉+
1

2
√

3
|v4

0〉, (14)

|λ2
H̃rot

〉 = 1
2
√

3
|v0

0〉 −
i
2
|v1

0〉 −
1√
3
|v2

0〉+
i
2
|v3

0〉+
1

2
√

3
|v4

0〉. (15)

One can show that the vectors |λ1
H̃rot

, λ̄1
H̃rot

〉, |λ1
H̃rot

, λ̄2
H̃rot

〉, |λ2
H̃rot

, λ̄1
H̃rot

〉, |λ2
H̃rot

, λ̄2
H̃rot

〉 are the ei-
genvectors of the increased evolution operator S̃t,ω for arbitrary ω ∈ (0, 1]. Corresponding 
eigenvalues are respectively 0,−2i

√
3ω, 2i

√
3ω, 0. Similarly to the example presented in the 

previous section, the state

�̃0 =
1
2
(|λ1

H̃rot
〉+ |λ2

H̃rot
〉)(〈λ1

H̃rot
|+ 〈λ2

H̃rot
|) (16)

is the required initial state. The state after time t takes the form

A Glos et alJ. Phys. A: Math. Theor. 51 (2018) 035304



11

�̃t =
1
2
(|λ1

H̃rot
〉〈λ1

H̃rot
|+ e−2it

√
3ω|λ1

H̃rot
〉〈λ2

H̃rot
|+ e2it

√
3ω|λ2

H̃rot
〉〈λ1

H̃rot
|+ |λ2

H̃rot
〉〈λ2

H̃rot
|).

 (17)

The function �̃t  is periodic with period π√
3ω

, hence we obtained the result. □ 

4.2. Convergence in the sense of the measurement

The example from theorem 8, the probability distribution obtained from the measurement in 
the canonical basis of the system changes in time. However, when we analyse the canonical 
measurement from [16], where as the measurement operators we choose the projections onto 
the subspaces corresponding to different vertices, we can observe that the probability does not 
change—in this case the probability of measuring vertex v0 for each time point is one.

We have performed numerical analysis for graphs of size n = 9 from Erdős–Rényi G(n, 0.5) 
model for ω ∈ {0, 0.1, . . . , 1}. We have checked 200 random graphs and the non-moralizing 
QSW on each of them was convergent.

Conjecture. Let us choose the non-moralizing evolution model. Let Π(�0, t) denotes the 
probability distribution of canonical measurement onto the subspaces of vertices in time t 
with the initial state �0. Then for arbitrary �0 there exists probability distribution Π∞ such that

lim
t→∞

Π(�0, t) = Π∞. (18)

Note, that the probability distribution may be nonunique. To see that let us analyse the graph 
presented in figure 6. We choose ω = 1

2 and two initial states �̃0 = |v0
6〉〈v0

6| and �̃1 = |v0
7〉〈v0

7|. 
We have found the limiting probability distribution

Π0 := lim
t→∞

Π(�0, t), (19)

Π1 := lim
t→∞

Π(�1, t). (20)

Figure 5. An example of graph for which non-moralizing global interaction evolution 
is not convergent.
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The probability distributions differs, for example Π0(v0) = 0.666 616 and Π1(v0) = 0.118 97.

4.3. The digraph structure observance

In [16] it was suggested, that the non-moralizing global environment interaction QSW can be 
applied for modelling the walk on directed graphs. Moreover, an example suggesting that the 
original global interaction evolution, where Lindbladian operator is an adjacency matrix of 
the directed graph, does not preserve the digraph structure have been provided. Let us take the 
graph from figure 7(a) and let us analyse the graph without the Hamiltonian. One can find that

1
4
(|v1〉 − |v2〉)(〈v1| − 〈v2|) +

1
2
|v3〉〈v3| (21)

is in proper stationary state. There is a nonzero probability of measuring the state in vertex v1 
and v2. Thus, one can see that the superoperator constructed using a directed graphs can lead 
to the evolution on some other structure, namely the directed moral graph. This behaviour, 
expected in the case when the Hamiltonian part is present, is surprising in the pure Lindbladian 
case.

For the purpose of quantifying this behaviour we introduce the following property of the 
evolution on directed graphs.

Property (Digraph structure observance). Let us assume that for an arbitrary vertex there 
is a path to some sink vertex. We say that the evolution on a directed graph has the digraph 
structure observance property if an arbitrary initial state converges to the state spanned by 
vectors corresponding to the sink vertices from the condensation of the graph.

We require that the evolution on the directed graph, at least for the Lindbladian part, should 
have the digraph structure observance property.

One should note that digraph structure observance can be quantified for any directed graph 
using additional sink vertices attached to the orginal vertices.

In the case of the example in figure 7 the arbitrary state should converge to the state |v3〉〈v3|.
The unintuitive stationary state in equation (21) comes from the spontaneous moralization 

of the graph [16]. Since the moralization of the graph was corrected, it is necessary to check 
whether the improper stationary state still occurs in the non-moralizing evolution. This can be 
achieved by analysing the stationary states.

The numerical analysis was performed as follows. Let S be a set of all sink vertices. We 
start in some vertex with nonzero outdegree. We determine the state �∞ for large time value 

Figure 6. Graph for which there exists two different stationary states in the sense of 
the natural measurement. The states can be obtained by starting in vertices v7 and v6.
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and we verified numerically, whether it is close to the stationary state in the sense of prob-
ability distribution of measurement. Then we compute the cumulated probability of measuring 
the state in the sink vertices

pS(�∞) =
∑

v∈
⋃

S(G)

〈v|�∞|v〉
 (22)

and the second moment of the distance from the sink vertices

µS(�∞) =
∑
v∈V

d2(v, S)〈v|�∞|v〉, (23)

where d(v, S) is the length of the shortest path from v to closest sink vertex, i.e. 
d(v, S) = mins∈

⋃
S(G) d(v, s). We say, that the greater the value of pS and the lower the value 

of µS are, the more the evolution preserves the graph.
We have analysed the evolution for ω ∈ (0, 1]. For the purpose of our analysis we have 

selected four types of graphs, namely: a path graph, the Petersen graph, the Apollonian graph, 

Figure 7. Visualisation of a directed graph and (a) its spontaneous moralization (b).

Figure 8. Top plot shows the second moment of the distance from the vertex to the 
closest sink vertex. Bottom plot shows the probability of measuring the only single sink 
vertex for large time graphs. Sierpinski triangle has 15 vertices, Apollonian graph has 
12 vertices and length of path graph equals 10.
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and the Sierpinski triangle. We choose the orientation of the graphs such that each vertex is 
either a sink vertex, or there is a path from it to some sink vertex.

The obtained results are presented in figure 8. One can see that the larger the value of ω is, 
the more probability cumulates in the close neighbourhood of the sink vertices. In these exam-
ples for ω ∈ [0.7, 1], µS and pS respectively decreases and grows with ω. One can also notice 
that in the ω → 1 limit the pS converge to one and µS vanishes. The above analysis suggests 
that when ω = 1, the directed graph structure is fully preserved.

We have completed further analysis for Erdős–Rényi graphs G(n, 0.2) with n = 9, 11, 12, 
for each size 500 samples. In all of these graphs for ω = 1 we have pS = 1 and µS = 0, which 
suggests that at least for this extreme value of ω the digraph structure is observed.

Furthermore, we have searched for the ω0, for which for all ω > ω0 both measures pS and 
µS were monotonic in ω. We were selecting random graphs G(n, 0.2) with n = 9, 11, 12 and 
next we were calculating pS and µS for ω from 1 to 0 with step −0.02. When pS started increas-
ing or µS started decreasing we stopped the calculations and save ω0. The statistics of the 
threshold ω0 is presented in figure 9. We have found no graph, for which ω0 > 0.7. This may 
suggest that for ω > 0.7 structure of the directed graph is preserved at least for given sizes 
of the digraphs. However, to provide more information about this behaviour more detailed 
analysis is necessary.

5. Concluding remarks

In this article we analysed three cases of QSW: with local interaction, with global interaction 
and with non-moralizing global interaction. As for local interaction case our results generalize 
the results from [17]. We prove that the evolution is relaxing in the case of undirected graphs. 
We also show that the result can be extended to arbitrary strongly connected digraph and for 
weakly connected digraphs with one sink in the condensation graph. Furthermore, we show 

0.0 0.2 0.4 0.6 0.8 1.0
ωt

0

100

200

300

400

Figure 9. Histogram presents amount of graphs G(n, 0.2) with n = 9, 11, 12 having 
particular ω0.
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that for strongly connected digraphs the stationary state is located in the interior. At the same 
time we provide a counterexample demonstrating that the result cannot be extended to all 
directed graphs.

Global interaction case QSW is convergent, but never relaxing for arbitrary undirected 
graph with number of vertices greater than one 1 and for arbitrary ω ∈ (0, 1]. Furthermore the 
stationary states are precisely those from CQW. We show by example, that the result cannot 
be extended into arbitrary directed graphs. Surprisingly, applying the Hamiltonian may help 
relax the evolution.

In the non-moralizing global interaction case we provide examples demonstrating that the 
evolution does not need to be relaxing, or even convergent, even for undirected graphs. We 
also give an example of evolution, for which the evolution is not relaxing, even in the sense of 
canonical measurement. However, we conjecture by numerical analysis, that the evolution is 
convergent in the sense of the canonical measurement.

For the purpose of analysing digraph structure observance we have introduced a sink obser-
vance property. This property can be quantified by analysing the probability of measuring 
the state in the sink vertex and its neighbourhood. We argue that the bigger the probability of 
measuring the state in sink vertex or its closes neighbourhood, the better the structure obser-
vance. Since the Lindblad operators corresponds to the directed graph structure, we expect, 
that for ω close to 1 the probability of measuring the sink vertex is one. For the global interac-
tion case the digraph structure is not preserved, even for a very simple example. Fortunately, 
the digraph observance is recovered in the non-moralizing global interaction case.
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