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We propose a quantum implementation of a capital-dependent Parrondo’s paradox that
uses O(log2(n)) qubits, where n is the number of Parrondo games. We present its
implementation in the quantum computer language (QCL) and show simulation results.
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1. Introduction

Quantum game theory [1–3] is a new field of science having its roots in both game
theory and quantum information theory. For about a decade quantum computer
scientists have been searching for new methods of quantum algorithm design. Thor-
ough investigation of different quantum games may bring new insight into the de-
velopment of quantum algorithms.

It was shown that Grover’s algorithm [4] can be treated as an example of a
quantum Parrondo’s paradox [5, 6]. Operators used in Grover’s algorithm can be
treated as Parrondo games having separately zero expected values, however, if they
are interwired, the expected value fluctuates. This effect is well known in Grover’s
algorithm.

Implementation of a quantum Parrondo’s paradox has been described in pa-
pers [7–10]. In this paper we present a new implementation scheme of a capital-
dependent Parrondo’s paradoxical games on a relatively small number of qubits.
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2. Parrondo’s Paradox

2.1. Classical version

Parrondo’s paradox consists of a sequence of games, where each game can be inter-
preted as a toss of an asymmetrical coin. Every success means that the player gains
one dollar, every loss means that the player loses one dollar. There are two games.
Game A has probability of winning 1/2 − ε. Game B depends on the amount of
capital accumulated by player. If his capital is a multiple of three, the player tosses
coin B1, which has probability of winning 1/10− ε, otherwise the player tosses coin
B2 which has probability of winning 3/4 − ε. Originally ε = 0.005, but generally it
can be any small real number.

Both games A and B are biased and have negative expected gain. But when
a player has the option to choose which game he wants to play at each step of the
sequence, he can choose such a combination of games which allows him to obtain
positive expected gain.

It is known that sequences (ABBAB)+ or (AABB)+ give relatively high expected
gain. This fact is known as Parrondo’s paradox.

3. Proposed Quantum Implementation

3.1. Overview

In [7, 10, 11] the quantum versions of Parrondo games were proposed. The scheme
introduced in [7] realizes a history-dependent version of Parrondo’s paradox. Its
disadvantage is that it needs a large number of qubits to store the history of the
games. On the other hand, the scheme by Meyer and Blumer [10] uses Brown-
ian motion of particles in one dimension and does not consume large amounts of
quantum resources. The scheme presented by Flitney, Abott and Johnson in [11] is
based on multi-coin discrete quantum history-dependent random walk.

The implementation of the capital-dependent quantum Parrondo’s paradox in-
troduced in this paper uses only O(log2(n)) qubits, where n is the number of games
played. This allows to perform simulation even when a relatively large number of
games are played; for instance, if a strategy consists of three elementary games then
400 iterations require only 15 qubits.

3.2. Implementation

3.2.1. Gates and parameters

To implement games A and B, three arbitrary-chosen one-qubit quantum gates A,
B1 and B2 are used. Each gate is described by four real parameters and our scheme
as a whole is described by set of parameters:

• {δA, αA, βA, θA, δB1
, αB1

, βB1
, θB1

, δB2
, αB2

, βB2
, θB2

}: real numbers describ-
ing gates A,B1, B2;

• S: strategy – any sequence of games A, B;

• n: size of |$〉 – outcome register (see below);

• offset: initial capital offset.
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Each gate is composed of elementary gates as presented in Eq. (1):

G(δG, αG, θG, βG) = Rz(βG)Ry(θG)Rz(αG)Ph(δG), (1)

where G ∈ {A,B1, B2} and

Ph(ξ) =

(

eiξ 0

0 eiξ

)

, Ry(ξ) =

(

cos( ξ

2
) − sin( ξ

2
)

sin( ξ

2
) cos( ξ

2
)

)

, Rz(ξ) =

(

e−i(
ξ
2
) 0

0 ei( ξ
2
)

)

.

3.2.2. Registers

The quantum register used to perform this scheme consists of three subregisters:

• |c〉: one-qubit register representing the coin,

• |$〉: n-qubit register storing player’s capital,

• |o〉: three-qubit auxiliary register.

Register |c〉 holds the state of the quantum coin. Gates A, B1 and B2 acting on this
register represent quantum coin tosses. One should note that the register |c〉 does
not store information about history of the games.

After every execution of gates A, B1 and B2, the state of the register |$〉 is
changed according to the result of the quantum coin toss. This register is responsible
for storing the history of the games, that is, player’s capital.

Register |o〉 is an ancillary register, which one need to check if the state of the
|$〉 register is a multiple of three. At the beginning of the scheme and after the
application of the games’ gates this register is always set to |000〉.

3.2.3. Games

Games A and B are implemented using the conditional incrementation–decremen-
tation (CID) gate and gates A, B1 and B2 described above. In addition, game B

uses gate mod3.

Gate mod3 sets |o1〉 and |o2〉 registers to state |1〉 iff the |$〉 register contains
a number that is a multiple of three:

mod3|a〉|0〉 = |a〉|a (mod 3)〉. (2)

The CID gate is responsible for increasing and decreasing the player’s capital.
The circuit for this gate is presented in Fig. 1(b). This gate increments register |$〉
if |c〉 is in state |1〉 and decrements if it is in state |0〉.

Game A is directly implemented by gate A as presented in Fig. 1(a).

Game B, presented in Fig. 1(c), is more complicated. It uses gate mod3 to check
if the player’s capital is a multiple of three. If it is the case gate B2 is applied to
register |c〉, otherwise, B1 is applied.

One can easily check that all gates used in this scheme are unitary because they
are composed of elementary unitary operations.
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|c〉 A
CID

A†

|$〉 /

(a)

|c〉 • X • X

|$〉 / inc inc†

(b)

|c〉 B1 B2

CID
B†

2
B†

1

|$〉 /

mod3 mod3†|o0〉 X • • X

|o1〉 X • • X

|o2〉 ⊕ • X • • X • ⊕

(c)

Fig. 1. Gates used to implement Parrondo’s paradox. (a) Circuit for the game A. (b) Conditional
incrementation–decrementation (CID) circuit. (c) Circuit for the game B.

3.2.4. Sequence of games

The game procedure is composed of the following steps:

1. Preparation of |c〉 in state 1√
2
(|0〉 + |1〉).

2. Preparation of |$〉 in state |(2(n−1) + offset)〉, where offset is a small integer
number,

3. Preparation of |o1o2o3〉 in |000〉 state.

4. Application of gates A and B in some chosen order S.

After each application of gate A or B the number stored in register |$〉 is either
incremented or decremented. The initial state of register |$〉 must be chosen in such
way that integer overflow is avoided. The maximum number of elementary games
cannot exceed the capacity of the register |$〉.

3.2.5. Outcome of games

If our scheme is implemented on a physical quantum device it should be finalized
by measurement. This would give a single outcome representing the final capital.
Thus, to obtain expected gain, the experiment should be repeated several times.

Simulation allows to observe the state vector of the quantum system. Using
this property the expected gain is calculated as the average value of σz in state
|$〉〈$| = Tr|c〉⊗|o〉(|c, $, o〉〈c, $, o|) obtained after tracing out the register with respect
to coin and auxiliary subregisters:

〈$〉 = Tr(σ⊗n
z |$〉〈$|). (3)
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4. Simulation

Simulations of a quantum Parrondo’s paradox presented in this article were per-
formed using QCL [12]. The source code of the implementation can be found on
the webpage listed in Ref. [13].

4.1. Parameters

To carry out the simulation, gates A, B1 and B2 were prepared with coefficients
listed in Table 1. Those coefficients were chosen arbitrarily.

Table 1. Coefficients of the experiment.

δA αA βA θA

0 1 0 2(π
2 + 0.01)

δB1
αB1

βB1
θB1

0 1 0 2( π
10 + 0.01)

δB2
αB2

βB2
θB2

0 1 0 2( 3π
4 + 0.01)

4.2. Results of simulation

In Fig. 2 the selection of results is presented. As one can see there are strategies
that give positive expected values. For offset = 0, strategy ABBAB gives a gain of
∼ 5.43 after 400 steps. For offset = 3, strategy BABBB gives a gain of ∼ 13.69 after
400 steps.

Simulations have shown that finding the winning strategy for a given initial set
of parameters is not trivial because they are uncommon. We found that the initial
value kept in register |$〉 heavily influences the outcome, for example, see Fig. 2.
For different offsets different winning strategies can be found. One should note that
behavior of the strategy can change if the initial offset is altered, for example, see
Fig. 3.

5. Conclusions

We have shown that it is possible to create a capital-driven scheme for quantum
Parrondo games using less than 20 qubits. The main advantage of this scheme is
that the size of the register grows as O(log2(n)), where n is the number of steps.
We have found that the initial value of the register |$〉 is important for selection of
strategy. Simulations have shown that for an analyzed set of strategies composed
of five elementary games, winning strategies are uncommon.
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Fig. 2. Initial offset heavily influences the expected gain. For different offsets we have found
different best strategies. The behavior of strategies A and B does not depend on initial offset.
(a) Comparison of two best-found winning strategies for offset = 0. Mean values for strategies A

and B are also noted. (b) Comparison of two best-found winning strategies for offset = 3.
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Fig. 3. For different offsets the strategy can behave differently. In this case the strategy BBABA

is winning for offset = 3 and losing for offset = 0.
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