
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 44 (2011) 335301 (19pp) doi:10.1088/1751-8113/44/33/335301

Numerical shadow and geometry of quantum states

Charles F Dunkl1, Piotr Gawron2, John A Holbrook3,
Jarosław A Miszczak2, Zbigniew Puchała2 and Karol Życzkowski4,5
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Abstract
The totality of normalized density matrices of dimension N forms a convex set
QN in R

N2−1. Working with the flat geometry induced by the Hilbert–Schmidt
distance, we consider images of orthogonal projections of QN onto a two-plane
and show that they are similar to the numerical ranges of matrices of dimension
N. For a matrix A of dimension N, one defines its numerical shadow as a
probability distribution supported on its numerical range W(A), induced by the
unitarily invariant Fubini–Study measure on the complex projective manifold
CP N−1. We define generalized, mixed-state shadows of A and demonstrate
their usefulness to analyse the structure of the set of quantum states and unitary
dynamics therein.

PACS numbers: 02.10.Yn, 02.30.Tb, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigation of the geometry of the set of quantum states remains a subject of current scientific
interest in view of possible applications in the theory of quantum information processing. The
set �N of pure quantum states belonging to an N-dimensional complex Hilbert space HN

is known to be equivalent to the complex projective space, �N = CP N−1, of 2N − 2 real
dimensions. However, as this set is embedded into the (N2 −1)-dimensional set QN of density
matrices of dimension N by a nonlinear constraint, ρ = ρ2, the geometric structure of the set
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of mixed quantum states is rather involved [1, 2]. The only simple case corresponds to the
one-qubit system, N = 2.

The set �2 of N = 2 pure states forms the Bloch sphere, CP 1 = S2, with respect to the
standard Hilbert–Schmidt metric. The 3-disc inside the sphere, often called the Bloch ball,
represents the set Q2 of one-qubit mixed states. In this simple case, any projection of this set
onto a plane forms an ellipse, which can be degenerated to an interval. In the case of N = 3,

the eight-dimensional set Q3 of one-qutrit mixed states is neither a polytope nor an ellipsoid
[3–5], and the set �3 = CP 2 of its extremal states is connected and has four real dimensions.

Due to the high dimensionality of the problem, our understanding of the geometry of the
set QN of mixed states is still rather limited. This set forms a convex body which contains
an in-ball of radius rN = √

1/N(N − 1) and can be inscribed into an out-sphere of radius
RN = (N − 1)rN = √

(N − 1)/N [2]. Some information on the subject can be gained
by studying the two-dimensional cross-sections of QN as demonstrated in [6–8] for N = 3
and N = 4. Another option is to investigate projections of this set into a plane—such an
approach was advocated for N = 3 in [9]. As the set QN of quantum states is convex, also its
cross-sections and projections inherit convexity.

In this work, we study the general structure of a two-dimensional projection of the set
QN of mixed states. A bridge between the geometry of the set of quantum states and the
notion of numerical range used in operator theory is established. For any operator A, acting
on the complex Hilbert space HN , one defines its numerical range [10, 11] (also called field
of values) as a subset of the complex plane which contains expectation values of A among
arbitrary normalized pure states

W(A) = {z : z = 〈ψ |A|ψ〉, |ψ〉 ∈ HN, 〈ψ |ψ〉 = 1}. (1)

We analyse the set of orthogonal projections of the set QN onto a 2-plane and prove that
it is equivalent to the set of all possible numerical ranges of complex matrices of dimension
N. Numerical ranges of normal matrices of dimension N correspond to orthogonal projections
of the set CN of classical states—the (N − 1)-dimensional simplex �N−1 ⊂ R

N−1.
Further information on the structure of the set of quantum states of a dimension N can

be obtained by studying the numerical shadow [12–14] of various matrices of dimension N.
For any operator A acting on HN , one defines a probability distribution PA(z) on the complex
plane, supported in the numerical range W(A):

PA(z) :=
∫

�N

dμ(ψ)δ(z − 〈ψ |A|ψ〉). (2)

Here, μ(ψ) denotes the unique unitarily invariant (Fubini–Study) measure on the set �N of
N-dimensional pure quantum states. In other words, the shadow P of matrix A at a given point
z characterizes the likelihood that the expectation value of A among a random pure state is
equal to z.

The distribution PA(z) is naturally associated with a given matrix A, and some of its
properties were described in [13]. In this work, we advocate a complementary approach
and show that investigating the shadows of several different complex matrices A of a fixed
dimension N contributes to our understanding of the structure of the entire set QN of quantum
states. In a sense, the choice of a matrix A corresponds to the selection of the plane, onto
which the set of quantum states is projected.

This paper is organized as follows. In section 2, we fix the notation and introduce
necessary concepts. A link between two-dimensional projections of the set of quantum states
of a given dimension N and the set of possible numerical ranges of matrices of dimension
N is presented in section 3. In section 4, we analyse different classes of numerical shadows
of matrices of small dimension N = 2, 3, 4. Unitary dynamics of a pure quantum state in
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the background of numerical shadow is presented in section 5. Section 6 is devoted to the
mixed-state numerical shadow, which corresponds to a projection of the full set QN of density
matrices onto a plane. The case of a large dimension, N � 1, is treated in section 7 jointly
with the shadow of random matrices. Finally, in section 8, we provide some concluding
remarks and summarize the contribution of this paper.

2. Classical and quantum states

Let p = {x1, x2, . . . , xN } be a normalized probability vector, so xi � 0 and
∑N

i=1 xi = 1.
Such a vector represents a classical state, and the set CN of all classical states forms an
(N − 1)-dimensional regular simplex �N−1 ⊂ R

N−1. There exist exactly N classical pure
states, which correspond to the corners of the simplex. All other classical states can be
expressed by a convex combination of pure states and are called mixed. Typical mixed states
are characterized by the full rank and they form the entire interior of the probability simplex.

In quantum theory, one describes a physical system with N distinguishable states by
elements of a complex Hilbert space HN of dimension N. Its elements represent pure quantum
states, |ψ〉 ∈ HN . Quantum states are assumed to be normalized, ||ψ ||2 = 〈ψ |ψ〉 = 1, so
they belong to the sphere of dimension 2N − 1. Since one identifies two states, which differ
by a global phase only, |ψ〉 ∼ |φ〉 = e−α|ψ〉, the set of all pure quantum states �N , which act
on HN , is equivalent to the complex projective space �N = CP N−1 [2].

In analogy to the classical case, one also defines mixed quantum states (density matrices)
by a convex combination of projectors onto pure states, ρ = ∑

i pi |ψi〉〈ψi |, where pi > 0 and∑
i pi = 1. Let us denote the set of all density matrices of dimension N by QN . It contains

all density operators which are positive and normalized:

QN = {ρ : HN → HN, ρ∗ = ρ, ρ � 0, Tr ρ = 1}. (3)

Since density operators are Hermitian and normalized, this set is N2 − 1 dimensional. It
includes the set of classical states, QN ⊃ CN = �N−1, as well as the set of pure quantum
states, QN ⊃ �N = CP N−1. We will work with the geometry implied by the Hilbert–
Schmidt norm of a matrix, |A|HS := √

Tr(A∗A), and the Hilbert–Schmidt distance in the
space of matrices,

dHS(A,B) := |A − B|HS =
√

Tr(A − B)(A − B)∗. (4)

It will also be convenient to define a real inner-product by setting the polar identity

〈A,B〉 = 1
4 |A + B|2HS − 1

4 |A − B|2HS = 1
2 [Tr(A∗B + B∗A)]. (5)

If A∗ = A and B∗ = B, then 〈A,B〉 = tr AB.
In the set �N of quantum pure states, one defines the Fubini–Study measure μFS, which is

induced by the Haar measure on U(N) and is invariant with respect to unitary transformations.
In the case of one-qubit states, this measure corresponds to the uniform distribution of points
on the Bloch sphere S2.

In practice, to generate pure states at random according to the measure μFS, it is
sufficient to uniformly generate points at the sphere S2N−1. One may also select an
arbitrary column (or row) of a random unitary matrix U distributed according to the Haar
measure. It directly gives the set of N coefficients of the random state in a given basis,
|ψ〉 = ∑N

i=1 ci |i〉. For instance, choosing the first column of U, we set ci = Ui,1 for
i = 1, . . . , N . Alternatively, one may generate N independent complex random numbers zi

and renormalize them, ci = zi/
√∑

i |zi |2, to obtain the desired distribution [15, 3].
In this work, we will use the following.

3



J. Phys. A: Math. Theor. 44 (2011) 335301 C F Dunkl et al

Proposition 1. Let |ψ〉 ∈ �N be a random pure state of dimension N distributed according to
the Fubini–Study measure. If one represents it in an arbitrary fixed basis, |ψ〉 = ∑N

i=1 ci |i〉,
then the squared absolute values of the coefficients, pi = |ci |2, form a probability vector
distributed uniformly in the probability simplex �N−1.

This is equivalent to the known statement (see e.g. [2]) that the only constraint on the
components of a single column of a random unitary matrix U distributed according to the
Haar measure is the normalization condition P(U11, . . . UN1) ∼ δ

(
1−∑N

i=1 |Ui1|2
)
. This fact

directly implies

Corollary 2. For any quantum state ρ define a classical state p = diag(ρ), so pi = ρii .
Then, the Fubini–Study measure on the set �N of quantum pure states induces by this mapping
the uniform measure in the classical probability simplex �N−1.

In the case of N = 2, the Fubini–Study measure covers uniformly the Bloch sphere S2.
Working with the standard polar coordinates, (r, θ, ϕ), we write the element of the volume
of the unit sphere as dS = dϕ sin θdθ = dϕd(cos θ). The polar angle θ is defined with
respect to the axis z, so the projection of a point of the sphere at this axis reads z = cos θ .
Hence, the Fubini–Study measure implies the uniform distribution d(cos θ) = dz along the
one-dimensional set �1 of N = 2 classical states.

3. Numerical range as a projection of the set of quantum states

The set �N = CP N−1 of pure states of dimension N forms the set of extremal points in QN .
Any mixed state ρ ∈ QN can thus be decomposed into a convex mixture of projectors |ψ〉〈ψ |.
The expectation value of an operator A among a pure state reads 〈ψ |A|ψ〉 = TrρA. Taking
into account the convexity of W(A), the standard definition (1) of the numerical range of A

can therefore be rewritten as [16]

W(A) = {z : z = TrρA, ρ ∈ QN }. (6)

This expression suggests a possible link between the numerical range and the structure
of the set, the QN . Usually one studies the numerical range W(A) for a given A [11]. Here,
we propose to fix the dimension N and consider the set of all possible numerical ranges of
matrices A of this dimension to analyse the geometry of quantum states. More precisely, we
establish the following facts.

Proposition 3. Let CN denote the set of classical states of dimension N, which forms the
regular simplex �N−1 in R

N . Then, for each normal matrix A (such that AA∗ = A∗A) of
dimension N, there exists an affine rank 2 projection P of the set CN whose image is congruent
to the numerical range W(A) of the matrix A. Conversely for each rank 2 projection P, there
exists a normal matrix A whose numerical range W(A) is congruent to the image of CN under
projection P.

Proposition 4. Let QN denote the set of quantum states dimension N embedded in R
N2

with
respect to the Euclidean geometry induced by the Hilbert–Schmidt distance. Then, for each
(arbitrary) matrix A of dimension N, there exists an affine rank 2 projection P of the set QN

whose image is congruent to the numerical range W(A) of the matrix A. Conversely for each
rank 2 projection P, there exists a matrix A whose numerical range W(A) is congruent to the
image of QN under projection P.
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To prove the above propositions, we will need an abstract lemma concerning the real
inner-product Euclidean spaces.

Lemma 5. Suppose u1, u2, v0 ∈ V , where V is an Euclidean vector space (with the inner
product 〈·, ·〉 and norm |x| = 〈x, x〉1/2), v0 �= 0 and dim (span {u1, u2, v0}) � 2. Then, there
exist real numbers α > 0, γ1, γ2 such that the vectors

v1 := 1

α
(u1 + γ1v0), v2 := 1

α
(u2 + γ2v0) (7)

are normalized and orthogonal:

|v1|2 = 1 = |v2|2, 〈v1, v2〉 = 0. (8)

Proof. Let u′
i = ui − 〈ui ,v0〉

|v0|2 v0, i = 1, 2. By hypothesis |u′
1|2 + |u′

2|2 > 0. For i = 1, 2 set

ci := |v0|γi + 〈ui ,v0〉
|v0| so that vi = 1

α

(
u′

i + ci

|v0|v0
)
. The desired equations become

|u′
1|2 + c2

1 = α2, |u′
2|2 + c2

2 = α2, 〈u′
1, u

′
2〉 + c1c2 = 0. (9)

Eliminating coefficient α, we arrive at a quadratic equation for c2
1 or c2

2. Set

d = (|u′
1|2 − |u′

2|2)2 + 4〈u′
1, u

′
2〉2;

then,

c2
1 = 1

2 (|u′
2|2 − |u′

1|2) + 1
2

√
d, (10)

c2
2 = 1

2 (|u′
1|2 − |u′

2|2) + 1
2

√
d, (11)

sign(c1c2) = −sign〈u′
1, u

′
2〉, (12)

α = (
1
2 (|u′

1|2 + |u′
2|2) + 1

2

√
d
)1/2

. (13)

Recall |u′
1|2 + |u′

2|2 > 0 by hypothesis; thus, α > 0. There are generally two solutions
differing only in the signs of c1 and c2. If 〈u′

1, u
′
2〉 = 0, then

√
d = ||u′

1|2 − |u′
2|2|, and one of

the three following cases apply:

(1) |u′
1| > |u′

2| � 0, c1 = 0, c2 = ±√|u′
1|2 − |u′

2|2, α = |u′
1|;

(2) |u′
2| > |u′

1| � 0, c1 = ±√|u′
2|2 − |u′

1|2, c2 = 0, α = |u′
2|;

(3) |u′
1| = |u′

2| > 0, c1 = 0, c2 = 0, α = |u′
1|. �

Note that formulae (10) and (11) for c1 and c2 allow us to obtain the constants γ1

and γ2, which enter equation (7). The scaling factor α = 1 if and only if 〈u′
1, u

′
2〉2 =

(1 − |u′
1|2)(1 − |u′

2|2), |u′
1|2 � 1 and |u′

2|2 � 1.
This lemma implies the following.

Corollary 6. Suppose E ⊂ {x ∈ V : 〈x, v0〉 = 1} and u1, u2 ∈ V define a linear map
� : E → C by x �→ 〈x, u1〉 + i 〈x, u2〉. Unless u1, u2 ∈ Rv0 in which case � is constant,
the map � is isometrically isomorphic to an orthogonal projection followed by a similarity
transformation (dilation and translation).

Proof. By lemma 5, there exist orthonormal vectors vi = 1
α

(ui + γiv0) for i = 1, 2
and α > 0. Let V0 = span {v1, v2}. The orthogonal projection onto V0 is given by
πx := 〈x, v1〉 v1 + 〈x, v2〉 v2 and this is the general form of a rank 2 orthogonal projection.
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The linear map θ : a1v1 + a2v2 �→ a1 + ia2 is an isometry V0 → C. If x ∈ E, then 〈v0, x〉 = 1
and

θ(απx − (γ1v1 + γ2v2)) = θ

2∑
i=1

(〈ui + γiv0, x〉 − γi)vi = θ

2∑
i=1

〈ui, x〉vi = φx. (14)

�

Now we are ready to prove the main result of this paper, namely propositions 3 and 4.

3.1. Normal matrices

Proof of proposition 3. Let A be a normal matrix of dimension N with eigenvalues
{λ1, . . . , λN }. With respect to an orthonormal basis of eigenvectors of A, one has∑N

i,j=1 ψiAijψj = ∑N
i=1 λi |ψi |2 and the numerical range WA is the image of the simplex

�N−1 := {
t ∈ R

N : ti � 0∀i,
∑N

i=1 ti = 1
}

under the map

� : t �−→
N∑

i=1

ti Re λi + i
N∑

i=1

tiIm λi = 〈t, u1〉 + i〈t, u2〉, (15)

where t ∈ �N−1 and (u1)i = Re λi, (u2)i = Im λi for 1 � i � N . If A �= c11 (multiple
of the identity, the eigenvalues are all equal), then lemma 5 and corollary 6 apply with
v0 = (1, . . . , 1), which completes the proof of proposition 3. �

3.2. Non-normal matrices

Proof of proposition 4. The set QN of quantum states (3) contains Hermitian operators ρ

which can be diagonalized, ρ = UDU ∗. Here, U is unitary while D is a diagonal matrix with
dii � 0 and

∑N
i=1 dii = 1.

Consider any matrix A of dimension N and write Tr ρA = Tr ρA1 + i Tr ρA2 with
A1 = 1

2 (A + A∗) and A2 = 1
2i (A − A∗). Lemma 5 and corollary 6 apply now to the map

� : ρ �−→ Tr ρA1 + i Tr ρA2 (16)

of the set QN onto the numerical range W(A) with V representing the linear space of
complex matrices of dimension N (or the real subspace of Hermitian matrices), the real inner
product (5), and v0 = I , u1 = A1, u2 = A2 provided A �= c11.

Thus, we have shown that for any matrix A, its numerical range W(A) is equal to an
orthogonal projection of the set of density matrices. To show the converse, we may read
formulae (7) backwards: the projection of QN is determined by two orthonormal Hermitian
matrices V1 and V2, which then satisfy |V1|HS = |V2|HS = 1 and Tr(V1V2) = 0. Set
A = V1 + iV2, which now gives the required matrix such that W(A) is equal to the desired
projection. In this way, a link between numerical ranges of generic matrices of dimension N
and projections of the set QN onto a two-plane is established and proposition 4 is proved.

�

To obtain explicit formulae for the similarity transformation corresponding to an arbitrary
matrix A of dimension N, define three traceless matrices

B = A − Tr A

N
I, B1 = 1

2
(B + B∗), B2 = 1

2i
(B − B∗). (17)

6
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The latter two represent vectors in the Hilbert–Schmidt space and correspond to u′
1, u

′
2 in

lemma 5 Making use of the Hilbert–Schmidt norm, we compute the required coefficients for
a given traceless matrix B:

d = Tr B2 Tr B∗2 = |Tr B2|2, α = (
1
2 Tr(BB∗) + 1

2 |Tr B2|)1/2
, (18)

c2
1 = − 1

4 (Tr B2 + Tr B∗2) + 1
2 |Tr B2|, c2

2 = 1
4 (Tr B2 + tr B∗2) + 1

2 | Tr B2|, (19)

and sign(c1c2) = −sign〈u′
1, u

′
2〉 = −sign(Im Tr B2).

4. Numerical shadow and quantum states

The projectors |ψ〉〈ψ | onto pure states form extremal points of the set QN of quantum states;
hence, the shape of a projection of the set �N of pure states onto a given plane coincides with
the shape of the projection of the set of density matrices on the same plane. As shown in the
previous section, this set is equal to the numerical range W(A) of a matrix A of dimension N,
which determines the projection.

However, the differences appear if one studies not only the support of the projection but
also the corresponding probability measure. A measure PA(z) determined by the numerical
shadow (2) is induced by the Fubini–Study measure on the set �N of the pure state. Thus,
the standard numerical shadows of various matrices of dimension N can be interpreted as a
projection of the complex projective space, �N = CP N−1, onto a plane. Before discussing in
detail the cases of low dimensions, let us present here some basic properties of the numerical
shadow [13] (also called the numerical measure [14]).

(1) By construction, the distribution PA(z) is supported on the numerical range of W(A) and
it is normalized,

∫
W(A)

PA(z) d2z = 1.
(2) The (numerical) shadow is unitarily invariant, PA(z) = PUAU∗(z). This is a consequence

of the fact that the integration measure dμ(ψ) is unitarily invariant.
(3) For any normal operator A acting on HN , such that AA∗ = A∗A, its shadow covers the

numerical range W(A) with the probability corresponding to a projection of a regular
N-simplex of classical states CN (embedded in R

N−1) onto a plane.
(4) For a non-normal operator A acting on HN , its shadow covers the numerical range W(A)

with the probability corresponding to an orthogonal projection of the complex projective
manifold �N = CP N−1 onto a plane.

(5) For any two operators A and B acting on HN , the shadow of their tensor product does not
depend on the order

PA⊗B(z) = PB⊗A(z). (20)

To show this property define a unitary swap operator S which acts on a composite Hilbert
space and interchanges the order in the tensor product, S(|z〉 ⊗ |y〉) = |y〉 ⊗ |z〉. Thus,
〈x|A⊗B|x〉 = 〈x|S∗B ⊗AS|x〉, and since S is unitary it does not influence the numerical
shadow induced by the unitarily invariant Fubini–Study measure on complex projective
space.

4.1. One-qubit states, N = 2

The analysis of the numerical shadow is particularly simple in the case of matrices of dimension
N = 2. The spectrum of the operator A consists of two complex numbers, σ(A) = {λ1, λ2}.

In the case of a normal matrix A, the numerical range W(A) forms the closed interval
[λ1, λ2], and the numerical shadow PA(z) covers this interval uniformly [13].

7
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(a) Shadow of matrix A
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(b ) Cross-section for = 0

Figure 1. Projection of the set �2 of one-qubit states generated by the numerical shadows of
operators of dimension N = 2 : (a) numerical shadow of generic matrix A

(2)
0 with an elliptical

support. Eigenvalues are denoted with crosses and the dashed circle of radius R2 = √
2/2 denotes

the diameter of the Bloch ball. Numerically obtained histogram is plotted in black, and the
analytical plot is blue. The plot is made for the matrix translated in such a way that its trace (�)

is equal to zero and suitably rescaled. (b) Histogram of the cross-section of the shadow supported
in the interval [− 1√

2
, 1√

2
]; the solid line represents a probability density function of the arcsine

distribution P(x) = (π

√
1
2 − x2)−1.

If the matrix A is non-normal, the numerical range forms an elliptical disc with λ1, λ2

as focal points and minor axis, d =
√

TrAA∗ − |λ1|2 − |λ2|2. For a simple proof of this
1932 result of Murnaghan [17], see the note by Li [18]. In this generic case, the numerical
shadow is given by the probability distribution obtained by the projection of the hollow Bloch
sphere of one-qubit pure states onto a plane [13]. In particular, the cross-section of the
numerical shadow supported in an interval x ∈ [0, 1] is given by the arcsine distribution,
P(x) = 1/(π

√
x(1 − x)). The non-normal case is shown in figure 1, obtained for a matrix

A
(2)
0 = a0

[
1 1
0 −1

]
.

For simplicity, we have selected the centred matrix such that TrA = 0 so that one has B = A

in equation (17). The normalization constant a0 = √
2/5 is chosen in such a way that the

scaling constant defining the projection in (18) is set to unity, α = 1, so the shadow of the
set of quantum states is shown in its ‘natural size’: the distance between both eigenvalues,
l = 2a1 = √

2, is equal to the diameter of the Bloch ball, 2R2 = √
2.

4.2. One-qutrit states, N = 3

The structure of the numerical range for N = 3 was analysed in detail by Keeler et al [19].
The numerical range of a matrix A of dimension N = 3 with the spectrum λ1, λ2, λ3 forms

(a) a compact set of an ‘ovular’ shape with three eigenvalues in its interior;
(b) a compact set with one flat part—e.g. the convex hull of a cardioid;
(c) a compact set with two flat parts—e.g. the convex hull of an ellipse and a point outside it;
(d) triangle: for any normal matrix A its numerical range is equal to the triangle spanned by

the spectrum, W(A) = �(λ1, λ2, λ3). In the latter case, the numerical shadow can be
verbally interpreted as the shadow of the set C3 of N = 3 classical states—a uniformly
covered equilateral triangle �2.

8
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Figure 2. Projections of the set �3 of one-qutrit states generated by the numerical shadows of
operators of dimension N = 3; (a) a generic matrix A

(3)
0 with an oval-like numerical shadow,

(b) A
(3)
1 with one flat part of the boundary ∂W of the numerical range, (c) A

(3)
2 a simple sum

with two flat parts of ∂W , (d) a diagonal normal matrix A
(3)
3 with the numerical range equal to the

triangle of eigenvalues, represented by (+). The dashed circle of radius R3 represents the projection
of the sphere in which �3 is inscribed. All plots are made for matrices translated in such a way
that their trace (�) is equal to zero and suitably rescaled.

The four classes of N = 3 numerical ranges are illustrated in figure 2. It shows the
numerical shadow supported on the corresponding numerical range, obtained for

A
(3)
0 = a0

⎡
⎣1 1 1

0 ω3 1
0 0 ω2

3

⎤
⎦ , A

(3)
1 = a1

⎡
⎣5 − 3i 0 6

0 5 + 3i 6
−6 −6 −10

⎤
⎦ ,

A
(3)
2 = a2

⎡
⎣1 1 0

0 ω3 0
0 0 ω2

3

⎤
⎦ , A

(3)
3 = a3

⎡
⎣1 0 0

0 ω3 0
0 0 ω2

3

⎤
⎦ .

The symbol ωk denotes the kth root of unity, so ω3 = exp(i2π/3). As before, the matrices
are chosen to be traceless, so B = A in (17) and the shadows are centred. Furthermore, the
normalization constants are designed to ensure that the scaling constant in equation (18) in
every case is set to unity, α = 1, so the figure shows images of the set of quantum states
in its natural size. For instance, in the case of the diagonal matrix A

(3)
3 , the prefactor reads

a3 = √
2/3, so that the eigenvalues are located at the distance

√
2/3 from the origin. This is

just the radius R3 of the sphere in which the set Q3 is inscribed.

9
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The study of the geometry of the numerical range was initiated by Kippenhahn [20] and
later developed by Fiedler [21] and Gutkin [22]. In recent papers [23, 24], the differential
topology and projection aspects of the numerical range were investigated. In particular, it was
shown [23] that the numerical range of a generic matrix A of dimension 3 pertains to the class
(a) above, as the boundary of W(A) does not contain intervals. Critical lines inside the range,
analysed in [23, 24], were shown to influence the structure of the numerical shadow [13].
Thus, we may now relate the critical lines with the geometry of complex projective spaces
projected onto a plane.

In the one-qutrit case N = 3 obtained probability distributions can be interpreted as
images of the set of pure states �3 = CP 2 on the plane. Although it is not so simple to
imagine the structure of the complex projective space [25], some experience is gained by
studying numerical shadows of various non-normal matrices of dimension 3.

4.3. Four-level systems, N = 4

Various shapes of the numerical range for matrices of dimension N = 4 correspond to various
projections of the set Q4 of quantum states of dimension 4. As in the case of the qutrit, we
analyse numerical shadows of traceless matrices normalized such that the scaling constant α

is set to unity.
Even though several results on the geometry of the numerical range for N = 4 are

available [26, 27], a complete classification of numerical ranges in this case is still missing.
To provide an overview of the possible structure of the numerical shadow, we analysed the
following matrices of dimension 4:

A
(4)
0 =

⎡
⎢⎢⎣

1 1 1 1
0 i 1 1
0 0 −1 1
0 0 0 −i

⎤
⎥⎥⎦ , A

(4)
1 =

⎡
⎢⎢⎣

i 0 −1 0
0 0 −1 0
1 1 1 − i 0
0 0 1 1

⎤
⎥⎥⎦ , A

(4)
2 =

⎡
⎢⎢⎣

1 0 0 1
0 i 0 1
0 0 −1 0
0 0 0 −i

⎤
⎥⎥⎦ ,

A
(4)
3 =

⎡
⎢⎢⎣

1 0 0 1
0 i 1 0
0 0 −1 0
0 0 0 −i

⎤
⎥⎥⎦ , A

(4)
4 =

⎡
⎢⎢⎣

1 0 0 1
0 i 0 0
0 0 −1 0
0 0 0 −i

⎤
⎥⎥⎦ , A

(4)

5 =

⎡
⎢⎢⎣

i 0 −1 0
0 0 −1 0
1 1 1 − i 0
0 0 0 1

⎤
⎥⎥⎦ ,

A
(4)
6 =

⎡
⎢⎢⎣

1 0 1 0
0 i 0 1
0 0 −1 0
0 0 0 −i

⎤
⎥⎥⎦ , A

(4)
7 =

⎡
⎢⎢⎣

1 0 0 0
0 i 0 1
0 0 −1 0
0 0 0 −i

⎤
⎥⎥⎦ , A

(4)
8 =

⎡
⎢⎢⎣

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

⎤
⎥⎥⎦ .

Numerical shadows of these representatives of each class of N = 4 matrices are shown
in figure 3. The pictures can be interpreted as projections of the six-dimensional complex
projective space CP 3 onto a plane. Making use of formula (18), we find that the normalization
constant for the last example A

(4)
8 reads a8 = 1/

√
2. Thus, the diameter of the shadow,

2a4 = √
2, coincides in this case with the Hilbert–Schmidt distance between any two

orthogonal pure states in Q4. The dashed circle of radius R4 = √
3/2 represents the projection

of the sphere into which the set Q4 can be inscribed.

5. Unitary dynamics projected inside the numerical shadow

As the numerical range and the numerical shadow give us an opportunity to observe the
structure of the space of quantum states, it is possible to apply these tools to investigate quantum

10
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− 0.5 0.0 0.5

− 0.5

0.0
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(f )A(4)
5
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(g) A
(4)
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8

Figure 3. Projections of the set �4 of N = 4 quantum states emerging as numerical shadows of
appropriately normalized operators of dimension 4: (a) a generic matrix A

(4)
0 with a an oval-like

numerical range W(A), (b) A
(4)
1 with one flat part of the boundary ∂W of the numerical range,

(c) A
(4)
2 being a simple sum 3 ⊕ 1 with two flat parts of ∂W , (d) A

(4)
3 a simple sum 2 ⊕ 2 with

two flat parts of ∂W , (e) A
(4)
4 three flat parts of ∂W connected with corners and one oval-like part,

(f ) A
(4)

5 three flat parts of ∂W with only one corner and two oval-like parts, (g) A
(4)
6 a simple

sum 2 ⊕ 2, with four flat parts of ∂W , (h) A
(4)
7 pair of flat parts of ∂W connected with a corner

connected with two oval-like parts, (i) a diagonal normal matrix A
(4)
8 with the numerical range W

equal to the convex hull of eigenvalues denoted by (+). All plots are made for matrices translated
in such a way that their trace (�) is equal to zero and suitably rescaled.

dynamics. A unitary time evolution of a quantum system is governed by the Hamiltonian
operator H (i.e. a self-adjoint operator representing the total energy of the system), which
leads to U(t) = exp(−iHt).
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Figure 4. Shadow of the operators A1, A2 and A3 of dimension 3 serves as a background for the
trajectory representing the unitary dynamics defined by U = exp(−iHt) with H given by (21)
with the initial state |φ(0)〉 (marked by a circle in the picture). All plots are made for matrices
translated in such a way that their trace is equal to zero and suitably rescaled.

Note that eigenvalues of the Hamiltonian determine the cyclicity of the trajectory. The
trajectory is periodic iff eigenvalues of the Hamiltonian are commensurable. The period in
this case is given by the least common multiple of the eigenvalues.

Let us consider a three-level system (qutrit). For concreteness, we choose the Hamiltonian

H =
⎡
⎣ −1 −1 − i 1

−1 + i 0 1 + i
1 1 − i 1

⎤
⎦ (21)

and select an initial pure state of the system as |ψ(0)〉 = |0〉 ∈ H3. The state of the system at
some specific time t is described by the transformed state |ψ(t)〉 = U(t)|ψ(0)〉.

In order to use the numerical shadow to study the time evolution of the system, one needs
to choose an arbitrary 3 × 3 non-Hermitian matrix. To get some information on the dynamics
in the space of pure states of a qutrit and to observe it from different points of view, we selected
the following matrices:

A1 =
⎡
⎣0 0 1

0 i 0
0 0 −1

⎤
⎦ , A2 =

⎡
⎣0 1 1

0 i 1
0 0 −1

⎤
⎦ , A3 =

⎡
⎣ i 0 2

0 0 0
0 0 −i

⎤
⎦ . (22)

For each of these auxiliary matrices, the quantum dynamics can now be visualized as a
trajectory in the complex plane defined by a parametric equation

z(t) := 〈ψ(t)|A|ψ(t)〉 = 〈ψ(0)|A′|ψ(0)〉, (23)

where the unitarily transformed matrix reads A′ = U ∗AU = eiHtA e−iHt . The time evolution
of the initial state |ψ(0)〉 = (1, 0, 0)T ∈ H3 generated by the Hamiltonian (21) is shown in
figure 4 from three different perspectives determined by matrices (22).

5.1. Identical trajectories

For given matrix A and Hermitian matrix H, a unitary time evolution induces a path in the
numerical range �A given by

〈ξ | e−iHtA eiHt |ξ 〉, t ∈ R, (24)

for a given starting point |ξ 〉. In the mixed state scenario, the trajectory is given by

tr ρ e−iHtA eiHt , t ∈ R, (25)

for a given starting point ρ.

12
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The question one may pose is: under what conditions for two different starting points ρ0

and ρ1 trajectories on the numerical range of A are identical:

tr ρ0 e−iHtA eiHt = tr ρ1 e−iHtA eiHt , t ∈ R. (26)

To convince yourself that such a situation may occur, consider the daily rotation of the earth
around its axis. Choosing two initial points at the same meridian on opposite sides of the
equator (say close to Cairo and Durban in Africa), we see that the trajectories they generate
after projecting onto the equatorial plane do coincide. This is because the dynamics, both
initial points and the kind of the projection, are chosen in a special way and satisfy certain
constraints. To characterize these constraints in a general setting, we start with the following
definitions.

For a given matrix A, let XA = {
B ∈ MH

N (C) : tr B = 0, tr BA = 0
}
. We also define the

set HA:

HA = {
H ∈ MH

N (C) : ∀t > 0, B ∈ XA we have AdeiHt (B) ∈ XA

}
, (27)

where Ad is the adjoint mapping given by AdC(B) = CBC−1.
Now we can state the fact concerning identical trajectories.

Lemma 7. Trajectories tr ρ0 e−iHtA eiHt and tr ρ1 e−iHtA eiHt for t ∈ R are identical if and
only if ρ0 − ρ1 ∈ XA and H ∈ HA.

Proof. For H ∈ HA, we have tr AdeiHt (B) ∈ XA = 0 for all B ∈ XA and since ρ0 −ρ1 ∈ XA,
tr[eiHt (ρ0 − ρ1) e−iHtA] = 0. Conversely, it easy to see that ρ0 − ρ1 ∈ XA and, as the
trajectories are supposed to be equivalent, we have tr[(ρ0 − ρ1) e−iHtA eiHt ] = 0 for t ∈ R.
Any B ∈ XA can be written as the difference of quantum states and thus H ∈ HA. �

The definition of HA is somehow complicated; here we put the reasoning which presents
it in a simpler form. We have the property AdeC = eadC , where adC(B) = [C,B] (see e.g.
[35]). Using this property, we can state the following lemma.

Lemma 8. The Hermitian matrix H is an element of HA, if and only if for all B ∈ XA, we
have adiH (B) ∈ XA.

Proof. If adiH (B) ∈ XA for all B ∈ XA, then by iterating we have that adk
iH (B) ∈ XA for

k = 0, 1, . . .. Since XA is a linear space, we obtain

AdeitH (B) =
∞∑

k=0

t k

k!
adk

iH (B) ∈ XA. (28)

On the other hand if AdeitH (B) ∈ XA, then using the fact that

i[H,B] = lim
t→0

eiHtB e−iHt − B

t
, (29)

and the continuity of the function X �→ tr XA, we obtain the result. �

Note that the condition i[H,B] ∈ XA can be stated as tr H [A,B] = 0; this follows from
the cyclicity of trace. The linear space XA is a real (N2 − 1 − d(A))-dimensional space, where
d(A) = dim({�(A),�(A)}), where �(A) = 1

2 (A + A∗) and �(A) = 1
2i (A − A∗). Thus, in

the generic case, XA has dimension N2 − 3. The set HA forms a real subspace of Hermitian
matrices orthogonal to the sum of two real subspaces (adi �(A)(XA) and adi �(A)(XA))):

HA = (adi �(A)(XA) ∪ adi �(A)(XA))⊥, (30)

where ⊥ denotes the orthogonal component in the real space of Hermitian matrices.
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6. Mixed-state numerical shadow

The standard numerical shadow (2) of matrix A is defined by choosing randomly a pure state
ρ = |ψ〉〈ψ | with respect to the unitarily invariant, natural measure on the set of pure states, and
taking the expectation value TrAρ. However, one may also consider an expression analogous
to (6) and use it with a different measure in the set QN of mixed states. More precisely, we
introduce the mixed-state numerical shadow of A with respect to a measure μ:

P
μ

A (z) :=
∫
QN

dμ(ρ)δ(z − Tr ρA). (31)

The measure μ defined on the set QN of mixed states of dimension N is supposed to be
unitarily invariant. For instance, we will use the family of induced measures μK obtained
by taking a random pure state |ξ 〉 ∈ HN ⊗ HK and generating a mixed state by partial trace
over the K-dimensional subsystem, ρ = TrK |ξ 〉〈ξ |. Since the pure states |ξ 〉 are generated
randomly, the unitary matrices determining the eigenvectors of ρ are distributed according to
the Haar measure on U(N). The probability distribution of the eigenvalues λi of the random
mixed state ρ of dimension N obtained in this way reads

PN,K(λ) = CN,K δ

(
1 −

N∑
i=1

λi

)
N∏

i=1

λK−N
i

∏
i<j

(λi − λj )
2. (32)

It is assumed here that K � N and the normalization constants CN,K are given in [28]. In the
symmetric case, K = N , the above formula simplifies and the measure μN coincides with the
flat Hilbert–Schmidt measure, induced by the metric (4). In the opposite case K < N , the
joint probability density function is given by (32) with exchanged parameters N ↔ K .

Consider now a pure state |ξ 〉 on the bi-partite N × K system. It can be represented in its
Schmidt decomposition [2]:

|ξ 〉 =
min{N,K}∑

i=1

√
λi |ei〉 ⊗ |fi〉, (33)

where {|ei〉}Ni=1 is an orthonormal basis in HN while {|fi〉}Ki=1 is an orthonormal basis of HK .
Taking a partial trace of the projector |ξ 〉〈ξ | over the K-dimensional system, we see that the
spectrum of the resulting mixed state ρ coincides with the set of the Schmidt coefficients {λi}
of the pure state |ξ 〉. Thus, formula (32) describes the distribution of the Schmidt coefficients
of a pure state |ξ 〉 drawn randomly according to the uniform distribution on the sphere SNK−1.
By construction of the Schmidt decomposition of a random state |ξ 〉, the vectors |ei〉 and
|fi〉 can be considered as columns of the unitary matrix in U(N) and U(K), respectively,
distributed according to the Haar measure on the unitary group. A simple calculation shows
that

〈ξ |(A ⊗ 11K)|ξ 〉 =
min{N,K}∑

i,j=1

√
λiλj 〈ei |A|ej 〉〈fi |fj 〉

=
min{N,K}∑

i=1

λi〈ei |A|ei〉 =
min{N,K}∑

i=1

λi(U
†AU)i,i , (34)

where U is a unitary matrix distributed according to the Haar measure on U(N).
These considerations imply that the shadow of A ⊗ 11K is a mixture of diagonal elements

of A in a random basis, given by the sum
∑min{N,K}

i=1 λi(U
†AU)i,i . As before, U stands for a

random unitary matrix of dimension N while the joint probability distribution function of the
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(a )

(b)

(c)

Figure 5. Sketch of a projections onto a two-plane of (a) the set C4 = �3 of N = 4 classical
states onto the quadrangle formed by the numerical range W of a normal matrix A of dimension
4; (b) the set �2 = S2 of one-qubit pure quantum states onto a disc formed by the numerical
range of a non-normal Jordan matrix J2 of dimension 2; (c) a mixed-state numerical shadow of
J2, corresponding to the projection of the full three-dimensional Bloch ball onto a plane, is equal
to the standard, pure-state shadow of an extended matrix J2 ⊗ 112. The picture is plotted using
perspective.

coefficients λi is given by (32). This proves that the mixed states shadow of A with respect
to the induced measure μK coincides with the standard numerical shadow of the extended
operator A ⊗ 11K :

P
μK

A (z) = PA⊗11K
(z) = P11K⊗A(z). (35)

The last equality follows from property (20). In the most important case, K = N , the induced
measure μN is equivalent to the Euclidean (flat) measure in R

N2−1, corresponding to the
Hilbert–Schmidt distance (4). Thus, the projection of the ‘full’ set QN of mixed quantum
states on the plane determined by a given matrix A of dimension N is equivalent to the
standard shadow of an extended operator A ⊗ 11N . In the case of N = 2, this is visualized in
figure 5(c), in which the shadow of the full Bloch ball Q2 can be compared with the shadow
of the hollow Bloch sphere �2 = S2, displayed in figure 5(b).

Note that for K = 1, the induced measure μ1 is supported on the set �N of pure states
only and coincides with the Fubini–Study measure, so formula (31) with μ = μ1 reduces to
the standard definition (2) of the pure-state numerical shadow.

7. Large N limit and random matrices

It is instructive to analyse the numerical shadow of a random matrix in the limit of large matrix
dimension N. Let us consider two cases of the problem: the shadow of a random density
matrix σ generated according to the induced measures [28] and the shadow of random unitary
matrix U distributed with respect to the Haar measure on U(N).

The numerical shadow of the random matrix which is distributed with unitarily invariant
measure is related to the distribution of its arbitrary diagonal element in a fixed basis. In this
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section, we consider the measures induced by partial trace and the Haar measure on the unitary
group, which are unitarily invariant. Let us begin with the following.

Lemma 9. Let A be a random square matrix of dimension N distributed according to
a unitarily invariant measure. Let |x〉 be a random pure state of dimension N generated
according to the Fubini–Study measure on �N = CP N−1. Then, the expectation value has
the same distribution as the matrix element A1,1:

P(〈x|A|x〉) = P(A1,1). (36)

Proof. Since |x〉 is a random pure state, |x〉 ∼ U |0〉, where |0〉 is an arbitrary fixed state
while U is a random unitary matrix of dimension N. Now we write

P(〈x|A|x〉) = P(〈0|U †AU |0〉) = P(A1,1). (37)

The last equality follows from invariance of the distribution P(A) with respect to unitary
transformations. �

7.1. Shadow of random quantum state

Consider a random density matrix σ of dimension N generated with respect to the Hilbert–
Schmidt measure μHS, so that its eigenvalues λi are distributed according to equation (32)
with K = N [28]. The diagonal elements of σ are of the form

σii =
∑N

j=i

(
ξ 2
ij + η2

ij

)
∑N

j,k=1

(
ξ 2
jk + η2

jk

) , (38)

where ξij and ηij are independent, identically distributed random variables with normal
distribution N (0, 1). The basic properties of the Gamma distribution �(a, b) [29] imply
that

σii = G1

G1 + G2
, (39)

where G1 and G2 are stochastically independent variables distributed according to the Gamma
distribution �(N, 2) and �(N(N − 1), 2), respectively. Therefore, the diagonal elements
of a random matrix σ generated according to the measure μHS are described by the Beta
distribution with parameters {N,N(N − 1)}.

The same reasoning can also be used for a general class of induced measures (32)
parametrized by the dimension K of the auxiliary subsystem. In this case, the diagonal
elements of a density matrix σ ∈ QN generated with respect to the measure μN,K are
distributed according to the Beta distribution with parameters {K,K(N − 1)}.

Using the above reasoning and lemma 9, we get the following.

Proposition 10. The numerical shadow of a random matrix σ generated with respect to
the induced measure μN,K is given by the Beta distribution with parameters {K,K(N − 1)},
which can be expressed in terms of the Beta function

Pσ (r) = 1

B(K,K(N − 1))
(1 − r)K−1rK(N−1)−1, 0 � r � 1. (40)
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7.2. Random unitary matrices

Let us now consider a random unitary matrix U distributed according to the Haar measure.

Proposition 11. The numerical shadow of a Haar random unitary matrix is supported in the
unit disc. This distribution is invariant with respect to rotations, and |〈x|U |x〉|2 is distributed
according to the Beta distribution with parameters {1, N − 1}.
Proof. Random unitary matrix distributed with the Haar measure can be generated using the
QR decomposition of matrices pertaining to the Ginibre ensemble [30]. The QR factorization
can be realized by a Gram–Schmidt orthogonalization procedure. Then, the element U1,1 of
the generated unitary matrix reads

U1,1 = A1,1√∑N
i=1 |Ai,1|2

, (41)

where A is a non-Hermitian random matrix from the Ginibre ensemble. Therefore,

|U1,1|2 = ξ 2
1,1 + η2

1,1∑N
i=1

(
ξ 2
i,1 + η2

i,1

) , (42)

where ξij and ηij are independent, identically distributed random variables with normal
distribution N (0, 1). Thus, |U1,1|2 has the Beta distribution with parameters {1, N − 1}
and using lemma 9, we arrive at the desired result. �

8. Concluding remarks

Our study may be briefly summarized by the following observation. The numerical shadow
of a normal operator acting on HN reflects the structure of the set of (mixed) classical
states, which belong to the probability simplex �N−1, while investigation of numerical
shadows of non-normal operators provides information about the set QN of quantum states of
dimension N.

In particular, we have shown that the set of orthogonal projections of the set QN of density
matrices onto a two-plane is equivalent, up to shift and rescaling, to the set of all possible
numerical ranges W(A) of matrices of dimension N. The numerical shadow of A forms a
probability distribution on the plane, supported in W(A), which corresponds to the ‘shadow’
of the complex projective space CP N−1 covered uniformly according to the Fubini–Study
measure, and projected onto the plane. Another probability distribution in W(A) is obtained if
one projects onto this plane the entire convex set QN of density matrices. If this set is covered
uniformly with respect to the Hilbert–Schmidt (Euclidean) measure, an explicit expression
for this distribution is derived. In this way, the analysis of numerical ranges and numerical
shadows of matrices of a fixed dimension N contributes to our understanding of the intricate
geometry of the set QN of quantum states [2].

The numerical range [31] and its generalizations [32, 16] found several applications in
various problems of quantum information theory. In analogy to the product numerical range,
defined for spaces with a tensor product structure [33], one can introduce the numerical shadow
restricted to the subset of separable (product) states or the set of maximally entangled states
[12]. Analysing such restricted numerical shadows for operators of a composite dimension
NM , one may thus investigate the geometry of the selected set of separable (maximally
entangled) quantum pure states. Such an approach is advocated in a forthcoming publication
[34].
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