
A New Approach for Detecting Process Injection
Attacks Using Memory Analysis
Mohammed Nasereddin (mnasereddin@iitis.pl)

Institute of Theoretical and Applied Informatics
Raad Al-Qassas

Princess Sumaya University for Technology

Research Article

Keywords: Fileless Malware, Intrusion Detection, Malware Analysis and Detection, Memory Forensics,
Process Injection Attacks

Posted Date: August 23rd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3252716/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3252716/v1
mailto:mnasereddin@iitis.pl
https://doi.org/10.21203/rs.3.rs-3252716/v1
https://creativecommons.org/licenses/by/4.0/

A New Approach for Detecting Process Injection Attacks Using Memory

Analysis

Mohammed Nasereddina,1, Raad Al-Qassasb,2

1Institute of Theoretical and Applied Informatics, Polish Academy of Sciences (IITiS PAN), 44100 Gliwice, Poland
2Department of Computer Science, Princess Sumaya University for Technology, Amman, Jordan

Received: date / Accepted: date

Abstract This paper introduces a new approach for exam-
ining and analyzing fileless malware artifacts in computer
memory. The proposed approach offers the distinct advan-
tage of conducting a comprehensive live analysis of mem-
ory without the need for periodic memory dumping. Once
a new process arrives, log files are collected by monitor-
ing the Event Tracing for Windows facility as well as listing
the executables of the active process for violation detection.
The proposed approach significantly reduces detection time
and minimizes resource consumption by adopting parallel
computing (programming), where the main software (Mas-
ter) divides the work, organizes the process of searching for
artifacts, and distributes tasks to several agents (Slaves). A
dataset of 17411 malware samples is used in the assessment
of the new approach. It provided satisfactory and reliable
results in dealing with at least six different process injec-
tion techniques including classic DLL injection, reflective
DLL injection, process hollowing, hook injection, registry
modifications, and .NET DLL injection. The detection ac-
curacy rate has reached 99.93% with a false-positive rate of
0.068%. Moreover, the accuracy was monitored in the case
of launching several malwares using different process injec-
tion techniques simultaneously, and the detector was able
to detect them efficiently. Also, it achieved a detection time
with an average of 0.052 msec per detected malware.

Keywords Fileless Malware · Intrusion Detection ·

Malware Analysis and Detection · Memory Forensics ·

Process Injection Attacks

1 Introduction

Indications of a malware infection can be deduced from the
device’s impaired performance and decreased efficiency in

amnasereddin@iitis.pl, ORCID: 0000-0002-3740-9518
braad@psut.edu.jo, ORCID: 0000-0002-5836-1111

executing regular tasks, such as using applications or brows-
ing the internet, as the malware excessively consumes sys-
tem resources. The frequent appearance of intrusive adver-
tisements also serves as an indicator of a malware infection.
Moreover, there may be an unexplained disk space expan-
sion, resulting in a significant loss of storage capacity [45].
Additionally, certain types of malware grant unauthorized
access to the attacker, enabling them to download secondary
infections onto the victim’s computer, often accompanied
by a noticeable surge in internet activity. A malware infec-
tion can be identified when the antivirus software suddenly
ceases to function and becomes impossible to restart, indi-
cating that the malware has directly targeted it. The inability
to access files and applications on the computer is a common
symptom of a ransomware infection.

Statistics [4] [5] indicate that the total number of mal-
ware of all kinds amounted to approximately 1,018 mil-
lion samples by the 1st quarter of 2023, which displays the
colossal rise in the total number of malware infections in
recent years. Moreover, statistics show that 77% of malware
in 2017 were fileless, and their rates are expected to increase
dramatically by the end of 2023 [21]. Cyberattacks caused
massive losses to many sectors, including business, services,
and healthcare, as more than 90% of financial institutions re-
ported being targeted by malware in 2020.

Traditional malware takes the form of deceptive (.exe)
files stored on the hard disk, requiring execution to down-
load payloads, and spread malicious code. Nowadays, at-
tackers employ complicated disguises and obfuscation tech-
niques to confound forensic analysis, including process in-
jection attacks. To this end, these attacks inject malicious
code into legitimate processes like svchost.exe, compromis-
ing their functionality and coercing the system to execute
attacker commands. Process injection techniques enable the
creation of fileless malware, residing solely in RAM without
leaving traces on the hard disk[1]. Scripts, Windows Power-

2

Shell, and remote attacks facilitate injecting code into legit-
imate processes, making such attacks resilient even if the
original script is detected and removed. On the other hand,
when security engineers receive suspicious activity alerts,
they hope for traditional file-based malware, allowing eas-
ier tracing and identification of attack origins. Analyzing
malware code aids in indicating targeted data and affected
regions. In process injection attacks, attackers deceive vic-
tims by masquerading targeted processes as legitimate sys-
tem processes in the task manager. While some antivirus
programs detect malicious files, attackers persistently de-
velop new methods to bypass protection protocols and fire-
walls [2].

Signature-based detection approach is widely used by
commercial antivirus programs and firewalls to detect known
malware. However, it falls short in detecting unknown mal-
ware as it requires constant updates to the signatures database
[50]. Meanwhile, researchers are developing heuristic-based
approaches to analyze known and unknown malware be-
havior. These methods often suffer from high false-positive
rates and are time-consuming. In addition, reducing extracted
features or API calls will significantly affect detection suc-
cess rates [17], [39]. The heuristic-based approach proves
effective in detecting attacks that involve direct malware files
dropping into the system. Extracting API calls for process
injection attack detection generates large amounts of data,
making it challenging to differentiate between benign and
malicious behaviors, especially when attackers create mali-
cious libraries similar to legitimate ones.

The memory-based analysis is the present and future
trend in the detection and analysis of malware due to the
fact that memory is a rich source of valuable information
[51]. Furthermore, Process injection attacks take place com-
pletely inside the memory as an active process without drop-
ping the malware file on the hard drives [52]. According to
Ponemon [24], process injection attacks increased by 47% in
2017, and successful attacks increased by 77%. As a result,
it invokes forensic investigators to rely on memory analysis
to detect this type of threat due to the difficulty of investi-
gating elsewhere at a later time, as fileless malware takes
advantage of applications (including Windows PowerShell,
CMD, WScript, Etc.) that are used to launch scripts or Pow-
erShell which contain command prompts to execute mali-
cious commands in the memory, which antivirus programs
will not detect it [14].

The substantial contributions of this paper:

1. Analyzing the distinct characteristics of fileless malware
and the associated challenges in its detection.

2. Assessing the efficacy of various techniques and tools
in identifying fileless malware, while highlighting their
respective advantages and limitations.

3. Introducing a novel and robust investigative approach
that enhances the detection of process injection attacks

by examining the memory artifacts of malware. This pi-
oneering approach is based on a comprehensive analysis
of the artifacts left behind, rather than solely focusing on
the malware code.

4. Improving analysis and detection time by eliminating
the need for memory dumps and instead utilizing live
memory analysis and parallel computing.

5. Providing valuable insights into potential research direc-
tions for the future advancement of fileless malware de-
tection.

The rest of the paper is structured as follows. Section
2 clarifies the characteristics of fileless malware, memory
analysis, and prevalent process injection attacks while sum-
marizing related work. Section 3 expounds on the method-
ology employed in the proposed approach. Section 4 dis-
cusses the outcomes resulting from the performance analy-
sis of the proposed approach, presenting comparisons with
other works. Finally, Section 5 concludes the work and pro-
vides future directions.

2 Background and Related Work

In modern operating systems, the CPU operates in two pri-
mary modes: user mode and kernel mode (also known as
system mode). Kernel mode has unrestricted access to mem-
ory addresses and is commonly utilized for executing oper-
ating system functions. However, if a process crashes in this
mode, it can lead to a system shutdown. On the other hand,
in user mode, the CPU is unable to directly access hardware
or memory. Instead, it requires special APIs to access these
resources. On the other hand, user mode is where the major-
ity of code execution takes place, and it offers recoverability
and repairability in the event of interruptions, as it operates
at the level of normal processes [58]. Figure 1(Top) illus-
trates the relationship between kernel mode and user mode,
providing a visual representation of their distinct roles and
privileges.

Each process is mapped into memory according to Fig-
ure 1(Bottom), and the operating system reserves the kernel
region at the highest memory address for devices, paged/non-
paged pool, system cache, etc., so that the user cannot access
it. Any program stored in memory as a process is responsible
for providing all the resources needed to run the program.
Each process contains an executive process (_EPROCESS)
that also resides in the kernel portion and contains process
attributes and pointers to related data structures.

Moreover, each process in memory includes a Process
Environment Block (PEB) that holds user-mode parameters
specific to the active process, such as loaded modules (DLLs),
the base address of the image (executable), the location of
the heap, and environment variables. The PEB serves as one
of the critical regions examined by the proposed approach

3

Fig. 1 (Top) Kernel Mode and User Mode, (Bottom) Process Memory
Layout

to detect process injection attacks. Additionally, each pro-
cess consists of one or more threads that share the virtual
address space and system resources assigned to the parent
process but differ in priorities, exception handlers, and local
storage. Similar to the PEB, each thread has a Thread En-
vironment Block (TEB) containing context information for
various Windows DLLs and the location for the exception
handler list and image loader.

Dynamic Link Library (DLL) libraries/modules, also known
as executable modules, occupy memory space utilized by
programs for efficient code reuse and memory allocation.
The Program Image section contains the .text section con-
taining executable code/CPU instructions, the .rsrc section
storing non-executable resources like icons, images, and strings,
and the .data section holding the program’s global data. Fur-
thermore, the process employs the heap as a shared pool
to store global variables, which is dynamically allocated in
memory using functions like malloc(). The program or pro-
cess manages heap memory allocation, ensuring its persis-
tence until program termination or release 1.

1

1To go deeper and read more about the memory management process,
Virtual Address Descriptors (VAD)s, Handles, and PE files format, you
can refer to the following references: [9], [11], [38], [53], [62].

2.1 Fileless Malware Flow

The transfer methods of traditional malware and fileless mal-
ware to a user’s computer are almost similar, but they di-
verge in terms of storage, execution, and system file access.
While traditional malware typically follows a certain flow,
fileless malware injects itself directly into a process, altering
the execution path. Figure 2 demonstrates the disparity in the
flow between traditional malware and fileless malware.

The primary distinction lies in the fact that traditional
malware exists as an executable file (.exe) stored on the disk,
which is activated only when the user initiates it, and hence
executing its malicious actions. In contrast, process injec-
tion attacks or fileless malware exhibit the following key
features:

– It does not contain any file that is dropped into the hard
disk like in other types, but the malicious code is inte-
grated into one of the system processes to appear as a
legitimate process.

– It may require particular files to run in the memory (e.g.,
scripts, registers, shellcodes, etc.), although there is no
direct file. This type of file is attractive to attackers be-
cause it can be encrypted or obfuscated to appear as a
legitimate file for antivirus programs. Malware exploits
whitelisted built-in applications such as Windows Pow-
erShell, C-Script, and CMD to run these files, which
contain commands to load malicious code directly into
the memory.

Fileless malware is usually delivered by deceiving the
victim using various social engineering methods, as shown
in Figure 2. It should be noted that the attacker can exploit
a vulnerability in the victim’s computer to gain access and
inject malicious code directly and remotely into the memory
without using any file. This differs from traditional malware
in that the traditional type will not do any harm unless the
file on the disk is run. The malicious code can still load its
payload as long as it runs inside the memory unless the com-
puter is rebooted. For this reason, some expert attackers use
the popular registry files, scheduled tasks, or Windows Man-
agement Instrumentation (WMI) to ensure that files contain-
ing the malicious code remain even after shutting down the
computer.

2.2 Memory Analysis

Memory Analysis, a.k.a. memory forensics, is a crucial tech-
nique employed by forensic experts to investigate and iden-
tify malicious activities that may not be evident through hard
drive analysis alone [3]. One of the main challenges in mem-
ory analysis is the volatile nature of memory, where data
are stored temporarily and lost upon computer shutdown. To
capture valuable information preceding an incident such as a

4

Fig. 2 Flow of Traditional Malware vs. Fileless Malware

system crash or security breach, investigators typically cre-
ate a snapshot of the computer’s memory data called a mem-
ory dump. This becomes particularly significant in cases in-
volving fileless malware, where threat data resides solely in
the computer’s memory, emphasizing the need for memory
forensics to gain unique insights into the malware’s behavior
[52].

Live memory analysis involves examining the current
state of memory and investigating active processes, user cre-
dentials, network information, executable files, etc. By intel-
ligently utilizing live memory analysis to monitor suspicious
activities, it becomes possible to eliminate fileless malware
without the need for memory dumping, leading to improved
analysis and detection time. The proposed approach primar-
ily relies on two key factors: the arrival time of malware in
memory and the specific memory regions that warrant inves-
tigation for identifying malware artifacts.

When investigating memory artifacts, one of the impor-
tant things that should be considered is the memory-protection
values assigned to the process executables and which give
indications of suspected malicious code injection in the pro-
cess. Table 1 explains the values we need to know in the
investigation process.

Table 1 Memory Protection Constants [37]

Constant/Value

PAGE_EXECUTE ’0x10’
Enables execute access to the committed region of pages. An attempt
to write to the committed region results in an access violation.

PAGE_READWRITE ’0x04’
Enables read-only or read/write access to the committed region of
pages. If Da Execution Prevention is enabled, attempting to execute
code in the committed region results in an access violation.

PAGE_EXECUTE_READWRITE ’0x40’
Enables execute, read-only, or read/write access to the committed re-
gion of pages.

PAGE_EXECUTE_WRITECOPY ’0x80’
Enables execute, read-only, or copy-on-write access to a mapped view
of a file mapping object. An attempt to write to a committed copy-on-
write page results in a private copy of the page being made for the pro-
cess. The private page is marked as PAGE_EXECUTE_READWRITE,
and the change is written to the new page.

As noticed from Table 1, every page created is assigned a
memory protection value. The presence of some modules in
the memory carrying the value PAGE_EXECUTE_READWRITE

along with other pieces of evidence will help detect injection

5

processes. This will be explained in detail in the Methodol-
ogy section.

2.3 Related Work

Process injection attacks involve injecting malicious code
into active processes or creating a suspended process and
injecting code into it [33]. Each process possesses its own
private virtual memory space, consisting of kernel mode and
user mode sections. Modifying the kernel, which impacts all
system processes, is challenging and risky, as a single er-
ror can lead to a system-wide crash. Moreover, the kernel is
protected and not easily modifiable. Consequently, attackers
typically opt to inject malicious code into user mode, focus-
ing on affecting the specifically targeted process. Figure 3
illustrates the prevalent techniques employed for injecting
malicious code into processes.

Fig. 3 Process Injection Techniques [27]

Analyzing and detecting malware is a highly compli-
cated and delicate process. The interest in this field is con-
tinuously growing in both academia and industry. The ap-
proaches followed in detecting malware, particularly file-
less malware, were divided into three main approaches: The
Signature-Based approach, the Heuristic-Based approach, and
the Memory Analysis approach. After reviewing the liter-
ature and extracting opinions and conclusions in detecting
process injection attacks, the following points were summa-
rized:

– The Signature-Based detection approach is the worst.
Although highly accurate, it can be easily bypassed with
this advanced type of attack because it relies only on sig-
natures [39].

– The Heuristic-Based detection approach is better than its
predecessor in dealing with known and unknown mal-
ware. However, it still suffers from a high rate of false-
positive detections since it is not easy to distinguish be-
tween harmful and benign behaviors [12], [13], [55].

– Machine learning algorithms can be fooled by creating
an amount of noise [25].

– Machine learning algorithms are only influential in de-
tecting DLL injections and registry modifications [16],
[18] [28], [43], [44].

– A Hybrid approach provides better results, but it is time-
consuming as well as very complicated. Moreover, the
false-positive detection rate was not improved sufficiently.
It is a convenient approach to dealing with file-based
malware [51].

– The Memory-Analysis approach is the optimal solution
for investigating this type of attack because the memory
is the container of all processes. Therefore, analyzing it
greatly helps detect any malicious behavior 50.

In Table 2, the literature is summarized in terms of the
approach used, and the attacks dealt with, the extracted re-
sults, and some remarks.

Works that followed the Memory-Analysis approach were
at the forefront in terms of detection accuracy. Table 3 high-
lights some related works whose results were discussed and
presented transparently and clearly according to the approach,
accuracy, error rate, and false-positive rate.

3 Methodology

Generally, in the process injection, the legitimate process
is compromised using one of the code injection techniques,
through memory allocation, memory writing, forcing the pro-
cess to execute something, or through a mechanism that forces
the DLL to be loaded while the process starts. Using a mem-
ory forensic framework such as Volatility [57] gives valu-
able results in detecting injection techniques, but it will con-
sume computer resources because it always needs to dump
the memory, and besides, it may face a time hurdle, as men-
tioned in [54]. The new approach aimed to work on three
main points: improving detection time, reducing resource
consumption, and not neglecting high accuracy.

The new approach enhanced the detection of process in-
jection attacks and reported the suspicious anomalies and
heuristics by tracing the Windows events and relying on live
memory analysis in a systematic way to extract and analyze
artifacts that prove a violation occurred. The concept of par-
allel computing is used at the software level, where the main
software (Master) plays the role of the organizer, breaking
the large task into smaller tasks and distributing them to the
other programs (Slaves).

6

Table 2 Literature Summary

Reference Detection Approach Handled Attacks/Techniques General Remarks

N/A Signature-Based N/A It was not used to detect process injection
attacks (fileless malware).

[12], [13] Heuristic-Based DLL Injection • Extract sensitive API calls. • Conve-
nience in detecting file-based malware.

[16], [18] [28], [43], [44] Machine-Learning DLL Injection, Registry Modifi-
cations

Relying on examining features (e.g., API
function calls, imported DLLs, and reg-
istry activity).

[8] Memory-Analysis Reflective DLL Injection, Process
Hollowing

• Examine PTE for executable pages. •
Use a forensic framework (Rekall) to ana-
lyze the extracted data.

[59] Memory-Analysis DLL Injection Comparing Executables and DLLs be-
tween memory and disk.

[6] Memory-Analysis DLL Injection, Process Hollow-
ing

• Identify anomalies. • Event timeline
monitoring when using the CreateRe-
moteThread and LoadLibrary functions. •
Need a forensic framework to analyze the
extracted data.

[15] Memory-Analysis DLL Injection Bind each process to all DLLs it needs by
examining IDT and EDT.

[54] Memory-Analysis DLL Injection, Hook Injection A new technique for solving the timing
problem based on monitoring suspicious
API calls. (Trigger-Based).

[47] Memory-Analysis DLL Injection, Hook Injection Incorporating static analysis and memory
forensic analysis to reduce encryption and
obfuscation.

[45] Memory-Analysis DLL Injection Detect distributed code injection using the
stack-tracking-based technique combined
with a technique for finding threads that
are waiting for synchronization objects.

[29] Memory-Analysis DLL Injection • Sending alerts about the presence of mal-
ware by monitoring and analyzing end-
points. and, • Involve the human interac-
tion in the memory analysis to identify ab-
normal behaviors.

[40], [41], [42] Memory-Analysis Process Hollowing • Parent-Child relationship. • Comparing
PEB and VAD.

[34] Memory-Analysis Process Hollowing Use the fuzzy hash to calculate the process
similarities in virtual memory.

[52] Memory-Analysis DLL Injection Applied two use cases to prove changes in
VAD and memory protections.

Proposed Approach Memory-Analysis DLL Injection, Reflective DLL

Injection, Process Hollowing,

Hook Injection, Registry Mod-

ifications (AppINIT_DLLs),

.NET DLL Injection

• No memory dumps required. Waiting

for a trigger (notification). • Need not

a forensic framework. • Comprehen-

sive analysis of memory artifacts (Sus-

picious Modules, Exports, BaseAdress,

Threads, CallStack, Memory Regions,

Registries, Hollowed Modules).

Table 3 Related Works Results

Reference Detection Approach Accuracy (%) Error Rate (%) FP Rate (%)

[12] Heuristic 87.70 12.30 N/A
[44] ML 96.00 4.00 0.922
[28] ML 93.85 6.15 1.320
[47] Memory 90.00 10.00 N/A
[6] Memory 99.84 0.16 0.151
[29] Memory 96.30 3.70 1.045

7

Data capturing is a critical investigation step, and any
mistake or delay in the capture process may cause evidence
to be lost. Considering that memory is one of the volatile
components, we preferred to use the live memory analysis
approach and combine it with the idea of using the trigger,
which will be detailed later. As a result, the memory is ex-
amined as soon as the signal arrived. At the same time, there
is no need to dump the memory in each analysis process,
which improves the accuracy and time of detection jointly.

In addition to what is mentioned in the previous sec-
tions, most related research concentrated on analyzing the
malware itself. Our new approach focused on investigating
the artifacts of malicious behavior. Figure 4 is a structural di-
agram that lays out the main parts of the following method-
ology.

The dataset was extracted from several sources (explained
in Section 4), reused, and compiled into a single project
called Injection Tool. Furthermore, the entire project was
tested before entering the memory analysis phase, as shown
in Figure 4(Top). Figure 4(Bottom) shows the general idea
of the proposed detection approach. In the beginning, all
memory processes will be enumerated to retrieve the pro-
cess ID for all processes and arranged to deal with each
one separately. The importance of this critical step lies in
systematically collecting details to be examined thoroughly,
determining the corresponding parent process for each pro-
cess, and identifying the suspicious one. The presence of a
process that did not start from the parent process gives a
sturdy indication of a violation.

Secondly, when the system gives a trigger to the master
detector that there is a new event, including (creating process
code, creating a thread, creating a file, image loading, reg-
istry operations, etc.) in the memory, the process enters the
detector, and the log files are collected through monitoring
Event Tracing for Windows (ETW) facility which runs at the
kernel level that allows the user to trace the events of each
process defined in the memory [10]. Moreover, the master
detector lists all executable files for the process and operates
the secondary detectors (slaves). The secondary detectors
start scanning the memory for artifacts related to suspicious
activities that indicate malicious code has been injected into
the process. The idea behind using parallel computing is to
distribute the load and reduce the consumption of computer
resources since only the slave responsible for detecting the
potential attack is running. Figure 5 shows the communica-
tion operation between the master detector and the slaves.

The master detector sorts the processes in the memory
and lists all executable files for each process. Meanwhile, it
also collects log files from tracking Windows events. Slaves
start working sequentially based on a signal sent from the
master detector when there is suspicious activity happens.
Each one has the task of searching for artifacts related to the
presence of suspicious anomalies in the place allocated for

the memory of the process that automatically holds an ID
number given to it by the system, such as (Process Identifier
(PID):10385). The master detector is also responsible for
stopping the damage, organizing the results, and presenting
the final report after receiving the response from the slaves.

procedure DETECTION

Scan the memory (live)
Enumerate all active processes
while New event in the memory do

Monitor the Event Tracing for Windows (ETW)
facility

List all executable files for the process and collect
log files

Run proper slave // The working principle of each
slave is detailed in the methodology section

end while

Classify and organize the results
Produce the forensic report

end procedure

3.1 Workflow of the Slaves

The five slaves work as follows:

1. Slave1: it is responsible for searching for suspicious mod-
ules in memory regions with the PAGE_EXECUTE_READWRITE

memory protection flags, Read, Write, and Execute (RWX).
The main module (.exe) cannot be specified with types
private, not shared, or cannot be inherited by other pro-
cesses, and memory protection flags, but it must always
be memory-mapped, as shown in Figure 6. In other words,
a memory-mapped file is a file that is physically located
on the disk and has been Bit-by-Bit copied to memory at
the specified location, so it is also important to monitor
the base address and the full path of the module if it is
from an unexpected location.
This slave usually helps detect DLL injections but may
identify as a good indicator that the process was hol-
lowed. Furthermore, it looks for known bad suspicious
exports/imports, such as ReflectiveLoader(). See Figure
7.
A deeper look is taken at modules/exports, as shown in
Figure 7. Unlike the remaining three, as shown in the
upper right side of the figure, it is an unverified file from
Windows, and the timestamp is different from the range
of the rest and seems to have been created soon, as well
as the difference in the form of the checksum.

2. Slave 2: examines memory protections for threads with
RWX flags starting at the pointer of the thread base ad-
dress. The process hosts a TLS callback (thread-local
storage). When a new thread is created, it receives a
notification like CreateRemoteThread() or UserThread-

Start(). Here, the start address of the thread is checked

8

Fig. 4 (Top) Top View Diagram, (Bottom) Workflow of the Proposed Approach

Fig. 5 The relationship between master detector and slaves

9

Fig. 6 Mapped vs. Unmapped file

Fig. 7 Investigating suspicious exports/imports/modules

if LoadLibrary(), so it is a good indication that the pro-
cess has been injected. Note Figure 8(Top), which shows
that a new thread has been created and a start address is
pointing to LoadLibrary(). TLS calls are the pre-entry
executed subroutines, and there is a section in the PE
header indicating where the TLS callback is [49]. Mon-
itoring these calls helps in the early detection of process
injections.
When a new thread is created, and it is not mapped to
a location in the disk, but from type: private, this file
is suspicious because it is an executable file with RWX
privileges and is referred to as an unbacked executable
file or floating code, so in the proposed approach we are
also searching for unbacked symbols that indicate a sus-
picious thread has been found due to presence of mali-
cious behavior in the process. The call stack of the sus-
picious thread is always unmapped, as shown in Figure
8(Bottom).
Slaves 1 and 2 play the leading role in detecting most
DLL injections and hook installation attacks.

3. Slave 3: this slave looks for any suspicious regions in
memory that contain the PAGE_EXECUTE_READWRITE

memory protection RWX flags. Besides, it checks the PE
files of these regions using Fuzzy PE matching, which is
based on the principle of contrast with Boolean logic,
which holds that the correct value of the variables is ei-
ther 0 or 1, but what if the value is at the middle or near
it? [63]. For example, the temperature can range between

Fig. 8 (Top) Investigating suspicious threads, (Bottom) Call stack of a
suspicious thread

extremely hot with a value of 1 and extremely cold with a
value of 0, where it can be called warm. This is called a
decision based on partial truth. Figure 9 shows the struc-
ture of the PE File.

Fig. 9 Portable executable (PE) file format [53]

As shown in Figure 9, a copy of the PE header is stored
in a section in the memory region. In the proposed ap-
proach, slave 3 compares PE headers for suspicious mem-
ory regions that contain RWX flags with those stored on
the disk. The comparison is based on the Levenshtein
distance algorithm to calculate the difference between
two sequences, where the distance is calculated by mod-
ifying at least a single character in terms of insertions,
deletions, or substitutions that are capable of changing
one word to another [64]. The slave identifies suspicious
regions based on the differences between the two copies.

10

The presence of wiped headers with previous pieces of
evidence dramatically increases the likelihood of an in-
jection in the process, as shown in Figure 10. Mostly the
unbacked PE memory sections have the full MZ head-
ers, but the attacker might simply wipe these headers.
What distinguishes the proposed approach is that it looks
for suspicious regions, examines the wiped or unwiped
headers, and adds them to the findings.
This slave helps powerfully detect stealth attacks, such
as Reflective DLL injection and Classic DLL injection
(Stealth). It is good to check out more information about
the headers of the files and how they help tremendously
in detecting file-based malware [19]. We will not dive
further because it departs a little from the scope of this
work, as it is only helpful for us to consider whether
the PE headers have been wiped for suspicious memory
regions.

Fig. 10 Wiped PE headers

It can also detect suspicious assemblies that are used
for DLL injections by matching function prefaces, as it
searches for any CLR module loaded without file back-
ing in the associated area of memory.

4. Slave4: as mentioned earlier, the attacker may use sys-
tem registries or WMI to save configurations for relaunch-
ing the malicious code in case the computer is rebooted,
or a specific file is opened. This slave investigates the
most common registry persistence keys in ✧❍❑❊❨❴▲❖❈❆▲❴
▼❆❈❍■◆❊❭❙❖❋❚❲❆❘❊❭▼✐❝r♦s♦❢t❭❲✐♥❞♦✇s❭❈✉rr❡♥t❱❡rs✐♦♥❭

❘✉♥❭✧ used to obtain the persistence of the injected code
(e.g., AppCertDLLs, Appinit_DLL, IFEO, Etc.). Here is
an explanation of some of them:

– AppCertDLLs: Each process that uses certain func-
tions of the CreateProcess() API has its DLLs value
specified by the AppCertDLLs registry key ✧❍❑❊❨❴

▲❖❈❆▲❴▼❆❈❍■◆❊❭❙②st❡♠❭❈✉rr❡♥t❈♦♥tr♦❧❙❡t❭❈♦♥tr♦❧❭

❙❡ss✐♦♥▼❛♥❛❣❡r✧. This key can be abused as an at-
tacker modifies it to ensure persistence and escalates
privileges by helping load malicious DLLs and run
in the context of any detached process in the memory
[58], [60].

– Appinit_DLL: user32.dll is a frequently used library
loaded in almost every process. DLLs for this library
are specified using the Appinit_DLL registry key ✧❍❑❊❨❴

▲❖❈❆▲❴▼❆❈❍■◆❊❭❙❖❋❚❲❆❘❊❭▼✐❝r♦s♦❢t❭❲✐♥❞♦✇s◆❚❭

❈✉rr❡♥t❱❡rs✐♦♥❭❲✐♥❞♦✇s✧. This library can also
be modified to load malicious DLLs and run them
in the context of any process that uses this library.
Figure 11 shows the Appinit_DLL registry key after
it has been modified to contain the path of the mali-
cious DLL file "appinit_dll_injection.dll."

Fig. 11 Modified Appinit_DLL registry key

It should be noted that Microsoft defaults for Load-

Appinit_DLLs is set to 0 to disable the loading of
DLLs via AppInit to protect users from malicious
files, so the attacker needs to set it to "1" to activate
the service. After setting the key value and specify-
ing the path of the malicious DLL file, it is randomly
loaded into the "Program Files" directory in most
Windows applications by the user32.dll library.

– IFEO: This value is specified by the registry key ✧❍❑❊❨❴
▲❖❈❆▲❴▼❆❈❍■◆❊❭❙❖❋❚❲❆❘❊❭▼✐❝r♦s♦❢t❭❲✐♥❞♦✇s◆❚❭

❈✉rr❡♥t❱❡rs✐♦♥❭■♠❛❣❡❋✐❧❡❊①❡❝✉t✐♦♥❖♣t✐♦♥s✴

❁♣r♦❣r❛♠❃✧ to allow developers to attach software
debuggers to programs. When this value is set to a
program, the specified executable in memory will be
run instead of the program as a debugger. Some at-
tackers exploit this feature to force the system to run
its malicious code every time this process is run.
Slave 4 searches for suspicious phrases in the reg-
istries like user32.dll so that if it finds this library
has been modified, it will add it to the list of ev-
idence that will be shown in the report about the
presence of injections in the process. Furthermore,
it looks for WMI malicious entries that are also used
for malware persistence, privilege escalation, and re-
connaissance. where it monitors (__EventFilter, __Event-
Consumer, __FilterToConsumerBinding). __Event-

Consumer indicates persistence payload as well as
commands to carry out the malicious code contained
in the ActiveScriptEventConsumer and CommandLi-

neEventConsumer classes. For __EventFilter, it in-
dicates the condition required to trigger the event,
and __FilterToConsumerBinding is responsible for
binding the classes.

"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"
" HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager"
" HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager"
" HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Windows"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Windows"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Windows"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions/<program>"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions/<program>"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions/<program>"
" HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions/<program>"

11

5. Slave 5: several found artifacts can be inferred that a pro-
cess hollowing technique was used. This slave is doing
the following:

– The legitimate process has a real system parent pro-
cess, but the parent of the suspicious process is com-
promised. Figure 12 shows the difference between
the two, as it appears in the Parent field for the suspi-
cious process non-existent process. This slave searches
for processes that do not have a parent process, more
precisely, processes that do not start from the corre-
sponding parent process that is terminated.

Fig. 12 Normal vs. Hollowed process

– Compares the differences between PEB (which is lo-
cated in a process memory and contains the base ad-
dress "Entry point" and full path of the executable
file) and VAD (which is a data structure located in
the kernel and holds information about allocating vir-
tual address space for the process as well as the start
& end address, initial protections, and the executable
file path if was loaded). The difference in their values
confirms that the process has been hollowed. Also, it
compares code size and linker version.

– Checks the CREATE_SUSPENDED flag since the
process hollowing technique relies on creating a new
process in a suspended mode. It acts as a container
for the malicious code and is then stored in the des-
ignated memory location after unmapped the legiti-
mate process. If it is found that the CreationProcess

Flag holds the value (0x00000004), then this is an
indication of the intent to use the process hollowing
technique [26]. This indicator is not strong enough
because the suspended mode after hollowing the pro-
cess is stopped by calling ResumeThread(), which
removes the flag’s value. However, it is not bad to
monitor it constantly.
Note that Slave 1 can help detect process hollowing
by searching suspicious memory protections. More
clearly, if the process’s VAD has memory protection
PAGE_EXECUTE_READWRITE with RWX flags, this

is an indication that the process has been injected
because it is expected that the loaded executable has
memory protection PAGE_EXECUTE_WRITECOPY.

3.2 Classification Results

Each slave responds to the master detector after they have
finished examining the artifacts of the suspicious activities
that they are looking for with one of the two following re-
sponses:

– First case, not suspicious: Nothing was found. For ex-
ample, suppose the process has not been injected with
any malicious code, has not been hollowed out, or has al-
ready been injected, but the slave responsible for search-
ing in the specified region could not detect the suspicious
behavior. At the same time, the presence of suspicious
threads or modules is being investigated; indeed, the re-
sponsible slave will reply that it did not find anything.

– Second case, suspicious: Assuming that the process was
injected using create remote thread technique. Slave 2,
which is responsible for searching for suspicious threads,
will return the result to the master detector with investi-
gation data proving it. Note that more than one slave can
work in parallel to detect more than one type of injec-
tion.
Finally, the master detector collects and organizes the
data and displays the final forensic report containing all
the findings. The retrieved information includes suspi-
cious process identifier PID, full path, number of threads,
suspicious thread identifier (TID), discovered modules,
base address, abnormal user permissions, integrity lev-
els, Thread base priority, code size, unique thread token,
Privileges, Logon Session/Type, and other investigation
information related to the detected activity.

4 Results and Evaluation

This section discusses the results of experiments to evalu-
ate the performance of the proposed approach in detecting
process injection attacks. For this purpose, it provides an
overview of the testing platform, dataset sources, and cri-
teria used in the evaluation process.

4.1 Testing Environment Set-up

The virtualized environment provides various options for
the computer user. It helps information systems adminis-
trators install updates and upgrades in a specific computer
region without interfering with working on other programs
that may be on a different operating system. It is also essen-
tial for software developers to easily write their programs

12

and navigate between the environments [32]. In the event
of a failure, the operating system on which it is installed is
treated as a program that can be repaired or reloaded by an-
other alternative system quickly without the need to create
an image of the hard disk [61]. This technology assisted in
accomplishing many things efficiently and smoothly.

A safe and isolated virtual environment was prepared us-
ing VMware Workstation 15.5.1 Pro [56] to perform real-
world process injection experiments, execute the proposed
detection approach, and evaluate the findings. Table 4 presents
the prepared virtual machine configurations.

The reason behind testing Windows 10 was that it is the
most used among computer users. Moreover, several types
of process injection attacks only target Windows operating
systems [6]. Two separate projects were created using Mi-
crosoft Visual Studio 2019 to perform the injections and
simulate the proposed approach. Furthermore, the dataset
of the process injection attacks was extracted from several
sources, reused, and organized under the "Injection Tool"
project. Besides, the proposed approach was implemented
in the "Detection Tool" project. For this purpose, the C/C++
was mainly used, and the C# in .NET DLL injection. More
details in Appendix 7.

The ProcessHacker 2 program, which helps capture live
images of the memory, was used to monitor the memory,
list the running processes, compare the status of the legiti-
mate and injected process executables (before, during, and
after injection) with the results of the proposed approach,
and record all required information.

The fantastic tool GitHub Copilot was used to build some
code blocks to implement the proposed detection approach.
This tool has been trained using artificial intelligence to help
developers write their code quickly. It offers a wealth of ex-
amples, solutions, and suggestions in the form of individ-
ual lines and whole functions. It also converts comments
into code. Besides, it does Autofill for repetitive code, and it
helps a lot in testing the code. The tool was used as a good
helper in constructing and implementing the proposed ap-
proach.

4.1.1 Dataset Sources

In order to evaluate the proposed approach performance,
the dataset was carefully selected from several trustworthy
sources due to the difficulty of extracting them from a single
source, given that each injection tactic is a separate complete
project.

– For Classic DLL Injection, Reflective DLL Injection,
Hook Injection, and Process Hollowing techniques. The
experiments were conducted on the datasets that were
extracted respectively from projects [7], [30], [23].

– Also, for Reflective DLL Injection, was extracted from
the source [20], as he is the father and first developer of
this technique.

– For attacks using (AppINIT_DLLs, and .NET DLL In-
jection) injection tech-niques. The source was the Spe-
cialized Group (Red Teaming [48]) & [46].

4.2 Experiments and Discussion

This section exhibits the results of experiments conducted
on the proposed approach compared to related works.

4.2.1 Evaluation Metrics

To assess the efficiency of the proposed approach in compar-
ison with related work, the set of evaluation metrics listed in
Table 5 was used:

Accuracy =
Numbero f detectedattacks

Totalnumbero f attacks
∗100% (1)

Error = 1−Accuracy (2)

FPR =
Numbero f f alsedetectedattacks

Numbero f detectedattacks
∗100% (3)

4.2.2 Scenarios and Assumptions

For the purposes of conducting injection experiments, the
Notepad process located in the path ❈✿❭❲✐♥❞♦✇s❭♥♦t❡♣❛❞✳
❡①❡ was used. It was assumed that the attacker already had a
meterpreter shell on the victim’s system and tried injecting
the notepad system process using different injection tech-
niques. The number of attacks was gradually increased to
measure the performance of the proposed approach. Also,
the virtual environment used was safe, well-checked, and
not targeted by any attacks, and the VAD region was entirely
emptied, which reduced the percentage of false positives.

It should be noted that the attacker’s primary goal in us-
ing process injection techniques is to facilitate the launch
of the malware payload in order to escalate the privileges
and perform malicious activities such as evasion and data
theft through one of the system processes. Processes other
than Notepad can be injected (e.g., lsass.exe, calc.exe, wer-
fault.exe, svchost.exe, regsvr32.exe, etc.).

For each type of attack, the memory was analyzed through
several scenarios before injection, during DLL execution,
after DLL termination, and after the injection process was
terminated as follows:

– No injections.
– Injection on a single process using one technique.
– Injection on a single process using more than one tech-

nique simultaneously.
– Injection on multiple processes using one technique.
– Injection on multiple processes using more than one tech-

nique.

C:\Windows\notepad.exe
C:\Windows\notepad.exe

13

Table 4 Virtual Environment Configurations

Operating System Windows 10 Enterprise, version 20H2(10.0.19042.0) [36]
OS Type 64-bit Operating System
OS Architecture x64-based processor
Processor Intel(R) Core (TM) i5−3230M CPU @2.60GHz

Disk Space 40.00GB

Physical Memory (RAM) 4.00GB

Number of Cores 4
Number of Threads 8
Tools Visual Studio 2019, ProcessHacker 2 [35], GitHub Copilot [22]

Table 5 Evaluation Metrics

Metrics Description

Number of handled techniques Denotes the number of techniques that can be identified in their early stages.
Accuracy It is calculated using equations (1), (2), and (3).
Time Indicates the actual time spent to detect the injection in the process from notifying the trigger

until printing the results.
Resources consumption Denotes the amount of computer resource consumption during the analysis process.
Automated extracted records(artifacts) The obtained forensic information as a result of the memory analysis and its importance in

detecting the attack.

4.2.3 Results and Discussion

1. Number of Handled Techniques:
The proposed approach achieved satisfactory results in
detecting process injection attacks compared to other works.
Regarding the number of techniques that can be detected
in their early stages, the approach has successfully dealt
with six different techniques: Classic DLL Injection, Re-
flective DLL Injection, Process Hollowing, Hook Injec-
tion, Registry Modification (AppINIT_DLLs), and .NET
DLL Injection. It is expected to help detect more tech-
niques with more work.
On the other hand, the Signature-Based approach did not
report any research working on detecting this type of at-
tack but rather file-based malware. Research results us-
ing the Heuristic-Based approach indicated its ability to
detect some types of DLL injection attacks by extract-
ing sensitive API calls. Moreover, machine learning re-
search helped detect registry modifications.
Works that relied on memory analysis took turns detect-
ing a higher number of process injection techniques. For
example, [8] and [6] focused on DLL injection and pro-
cess hollowing, while [47] on DLL Injection and Hook
Installation, and others focused on one type, such as [29]
on DLL Injection and [34] on process hollowing. What
distinguished the proposed approach was that it focused
on a greater number of techniques. Figure 13 illustrates
the comparison.

2. Accuracy and Time:
The detection accuracy of the proposed approach was
fixed at 99.93% after testing 17411 malware samples us-
ing the different techniques discussed, and the average
detection time was approximately 0.052 msec/attack. The

Fig. 13 Comparison of the number of detected techniques

experiment was repeated 30 times in order to verify the
results, and the average was calculated. Table 6 displays
the final results of the experiments.
The plugins that were developed and tested in many re-
lated works using the popular open-source memory foren-
sics framework Volatility were also tested on the same
dataset, the number of attacks, scenarios, and conditions
(FindDLLInj [6], Malfind [57] [52], Threadmap [?], and
Hollowfind [41]). The proposed approach achieved the
highest detection accuracy rate among them, in addition
to the process injection techniques it can deal with. Ta-
bles 7 and 8 and Figure 14 shows the results of the com-
parison.
The experiment was also performed 30 times, and the
average was calculated in order to have a fair compari-
son with the mentioned plugins in terms of accuracy and
detection time.

14

Table 6 Results of Experiments

Number of Malware Samples Number of Detected Malware Accuracy

(%)

Average Detection Time (msec) Average Detection

Time/Malware (msec)

1 1 100.0 0.73 0.730
10 10 100.0 1.14 0.114
50 50 100.0 2.91 0.058
100 100 100.0 5.30 0.053
500 500 100.0 26.18 0.052
750 750 100.0 38.49 0.051
1000 999 99.90 52.10 0.052
5000 4996 99.92 260.27 0.052
10000 9993 99.93 520.09 0.052
∑17411 17399 99.93 910.74 0.052

Table 7 Process injection techniques that can be handled compared with Volatility Plugins

Reference Process Injection Techniques

FindDLLInj Classic DLL Injection
Malfind Classic DLL Injection, Reflective DLL Injection, Process Hollowing, Hook Injection
Threadmap Process Hollowing
Hollowfind Process Hollowing
Proposed Approach Classic DLL Injection, Reflective DLL Injection, Process Hollowing, Hook Injec-

tion, Registry Modifications, .NET DLL Injection

Table 8 Comparison of detection accuracy with Volatility Plugins

Reference Accuracy (%) Error Rate (%) FP Rate (%)

FindDLLInj 99.84 0.16 0.151
Malfind 99.74 0.26 0.243
Threadmap 99.29 0.71 0.710
Hollowfind 99.73 0.27 0.274
Proposed Approach 99.93 0.07 0.068

Fig. 14 A Comparison chart of detection accuracy with Volatility Plu-
gins

As mentioned earlier, the works that followed the mem-
ory analysis approach fulfilled a high detection accu-
racy in general compared to their counterparts. The pro-
posed approach greatly reduced the false-positive detec-
tion rate, as shown in Table 8.
Fortunately, the comprehensive proposed approach en-
dured a modest false-positive rate of 0.068%. Sometimes
it identified the Injection Tool used in the experiments as

a threat, and this can be considered a reasonable thing
because the project contains instructions to build and
compile the malicious code. False-positive results may
be encountered due to protected applications or some
behaviorally erratic security programs that behave simi-
larly to attacks to improve their detection, but this may
make the detection of real threats more difficult.
We will endeavor to reduce it to as close to zero as pos-
sible in the future. Besides, the performance was moni-
tored when attacks were executed using more than one
technique simultaneously, and a successful detection rate
of 99.91% was achieved.
The approach enhanced the detection and reduced the
remediation time because it did not require a memory
dump while not affecting the accuracy. Meanwhile, it
was easy to implement and did not need a complex in-
frastructure. Table 9 and Figure 15 show the relationship
between the injection time and detection time under the
optimal conditions for the number of executed attacks.
It can be noticed that the injection timeline had a gap in
the form of an increase after the number of attacks ex-
ceeded 1000, but the detection line was not affected, as it
kept increasing almost steadily. This means that the ap-

15

Table 9 Relation between injection time and detection time (Optimal conditions)

Number of Malware Samples Injection Time (msec) Detection Time (msec)

1 1.01 0.68
10 2.94 1.13
50 11.07 2.82
100 20.91 5.18
500 157.14 25.98
750 244.62 38.09
1000 312.05 51.44
5000 1711.42 255.02
10000 3522.23 509.37

Fig. 15 Comparison between detection time and injection time

proach’s performance was not affected by the increased
number of attacks.
By monitoring the detection time on the same dataset
used to test the performance of the proposed approach
compared to Volatility plugins, it achieved a very short
detection time compared to its counterparts. The differ-
ence can be seen in Table 10 and Figure 16.
Figure 16 shows a clear superiority of the proposed ap-
proach in terms of detection time. It fulfilled the best
average detection time when the number of carried out
attacks passed 10,000 with a stable increase in propor-
tion to the increase in the number of attacks. Also, a sud-
den and unexplained increase in detection time for the
Malfind plugin can be seen after increasing the number
of attacks to more than 2000.
In the memory analysis, dumping memory is cumber-
some and requires a lot of time, but many researchers
such as [45] and [54] developed solutions that were slightly
similar to the proposed approach, where they monitored
some activities in the system. When suspicious behav-
ior was noticed, the memory was dumped, and the re-
sulting image was analyzed. Also, one of the suggested

Fig. 16 Comparison of detection time with Volatility Plugins

solutions is to dump the memory every 30 seconds. As
mentioned earlier, malware may execute and be cleaned
up in a very short time.
The proposed approach addressed this dilemma in two
ways. First, by monitoring the ETW to identify any sus-
picious behavior and adopting the parallel computing
principle, which eliminates the need to dump the mem-
ory every period, thus, helping to enhance detection time
and reduce resource consumption. As mentioned in sec-
tion 3, each slave is responsible for searching for specific
artifacts inside the memory. Table 11 binds each slave
and the attacks it helped detect.
As seen from Table 11, most types of attacks were de-
tected by more than one slave, and each slave contributed
to the detection of more than one attack, which helped
improve the accuracy and time of detection significantly.

3. The Forensic Report:
The produced forensic report contains valuable detailed
forensic information about suspicious behavior detected
inside the memory to locate the threat and prevent its
impact. The report includes the suspicious process name,
PID, process path, suspicious module, thread, etc. Tables

16

Table 10 Comparison of detection time (msec) with Volatility Plugins

Number of Malware Samples FindDLLInj Malfind Threadmap Hollowfind Proposed Approach

1 2.12 4.28 3.21 4.76 0.73
10 4.01 8.17 6.02 8.52 1.14
50 8.87 17.14 13.26 17.35 2.91
100 14.93 28.97 22.11 30.80 5.30
500 79.02 157.66 117.99 161.71 26.18
750 114.51 228.51 170.41 244.09 38.49
1000 155.60 309.92 231.41 331.82 52.10
5000 778.92 1754.51 1166.75 1613.04 260.27
10000 1556.11 3607.44 2329.07 3423.05 520.09

Table 11 Slaves’ responsibilities in the detected techniques

Slave Number Process Injection Techniques

1 Classic DLL Injection, Reflective DLL Injection, Hook Injection
2 Classic DLL Injection, Reflective DLL Injection, .NET DLL Injection
3 Classic DLL Injection, Reflective (Shellcode) DLL Injection, .NET DLL Injection
4 Classic DLL Injection, Registry Modifications (Persistence)
5 Process Hollowing

12 and 13 present an example of two forensic reports
resulting from the investigation process.
As shown in Tables 12 and 13. The proposed approach
sought to produce a forensic report containing detailed
information about the location of the threat in the mem-
ory, its effect, its type, and the escalated privileges. Fig-
ures 17, 18, 19, and 20 are examples of the forensic re-
ports generated by (FindDLLInj, Malfind, Threadmap,
Hollowfind) Volatility tool plugins.

Fig. 17 Example of FindDLLInj forensic report [6]

5 Conclusion and Future Work

This work covered process injection attacks based on file-
less malware. The differences between them and traditional
malware are flow methods and consequences. Reviewing
the literature concluded that memory analysis is the opti-
mal approach for analyzing and detecting these types of at-
tacks considering that the malicious code is executed en-

Fig. 18 Example of Malfind forensic report

Fig. 19 Example of Threadmap forensic report

17

Table 12 Example of Classic DLL Injection detection report

Data Name Value

Process ID 6332
Process Name Notepad.exe
Process Path ❈✿❭✇✐♥❞♦✇s❭s②st❡♠✸✷❭♥♦t❡♣❛❞✳❡①❡

Process Command Line ✧❈✿❭✇✐♥❞♦✇s❭s②st❡♠✸✷❭♥♦t❡♣❛❞✳❡①❡✧

Process Number of Threads 3
Suspicious Module Name createremotethread.dll
Suspicious Module Path ❈✿❭❯s❡rs❭▼♦❤❛♠♠❡❞❙●◆❭❉❡s❦t♦♣❭✳✳✳❭❝r❡❛t❡r❡♠♦t❡t❤r❡❛❞✳❞❧❧

Suspicious Thread ID 11772
Suspicious Thread Priority 0
Suspicious Thread Base Address 0x000002AA59860037
Suspicious Memory Protection PAGE_EXECUTE_READWRITE
Suspicious Memory Alloc. Protection PAGE_EXECUTE_READWRITE
Suspicious Memory State MEM_COMMIT
Suspicious Memory Type MEM_PRIVATE
TOKEN_USER.User-Sid ❉❊❙❑❚❖P✲❇✾✵❆✸✽❚❭▼♦❤❛♠♠❡❞❙●◆

Attributes 0x00000000
TOKEN_OWNER.Owner-Sid ❉❊❙❑❚❖P✲❇✾✵❆✸✽❚❭▼♦❤❛♠♠❡❞❙●◆

TOKEN_PRIMARY_GROUP. . . ❉❊❙❑❚❖P✲❇✾✵❆✸✽❚❭▼♦❤❛♠♠❡❞❙●◆

TOKEN_TYPE Token Primary
.
Number of Detected Attacks 1
Detection Time 0.738 seconds

Table 13 Example of Process Hollowing detection report

Data Name Value

Process ID 11964
Process Name Notepad.exe
Process Path ❈✿❭✇✐♥❞♦✇s❭s②st❡♠✸✷❭♥♦t❡♣❛❞✳❡①❡

Process Command Line ✧❈✿❭✇✐♥❞♦✇s❭s②st❡♠✸✷❭♥♦t❡♣❛❞✳❡①❡✧

Process Number of Threads 1
Suspicious Module Name processhollowing.exe
Suspicious Module Path ❈✿❭❯s❡rs❭▼♦❤❛♠♠❡❞❙●◆❭❉❡s❦t♦♣❭✳✳✳❭♣r♦❝❡ss❤♦❧❧♦✇✐♥❣✳❡①❡

Image Size on Disk 0x0000000000038100
Image Size on Memory 0x000000000001D000
Headers Size on Disk 0x0000000000000600
Headers Size on Memory 0x0000000000000600
DLL Characteristics on Disk 0x000000000000D280
DLL Characteristics on Memory 0x0000000000008280
Imports Size on Disk 0x000000000000001E

Imports Size on Memory 0x0000000000000012
Sections Size on Disk 0x0000000000000010
Sections Size on Memory 0x0000000000000010
Number of Detected Attacks 1
Detection Time 0.987 seconds

Fig. 20 Example of Hollowfind forensic report

tirely through an active process in the memory. Works that
adopted the memory analysis approach fulfilled better re-
sults in terms of detection accuracy and false-positive detec-
tion rate compared to those that depended on the Signature-
Based approach or Heuristic-Based approach.

The proposed approach introduced new methods to per-
form a comprehensive live analysis of memory artifacts and
generate evidence of the presence of malicious code without
dumping the memory. Moreover, the new approach helped
reduce resource consumption and significantly decreased de-
tection and remediation time by adopting the parallel com-

C:\windows\system32\notepad.exe
"C:\windows\system32\notepad.exe"
C:\Users\MohammedSGN\Desktop\...\createremotethread.dll
DESKTOP-B90A38T\MohammedSGN
DESKTOP-B90A38T\MohammedSGN
DESKTOP-B90A38T\MohammedSGN
C:\windows\system32\notepad.exe
"C:\windows\system32\notepad.exe"
C:\Users\MohammedSGN\Desktop\...\processhollowing.exe

18

puting principle. The performance of the proposed approach
was tested and assessed on a reliable dataset, and the results
were compared with related works according to the appro-
priate evaluation metrics. The new approach achieved the
highest successful detection rate of 99.93% and the lowest
false-positive detection rate of 0.068%.

Definitely, the threats cannot be stopped forever, but their
effects can be greatly reduced with continuous solutions de-
velopment. This research is a starting point to develop new
methods to detect a greater number of process injection at-
tacks by searching for the artifacts left by malware instead of
analyzing malware itself while ensuring detection accuracy
and reducing the false-positive detection rate as much as
possible. Also, it is important to implement and test the pro-
posed approach on other operating systems such as Linux,
Mac, and mobile operating systems, taking into considera-
tion the different technologies, memory layout, privileges,
etc. It would also be interesting to consider semi-fileless
malware that generates unreadable registry keys using non-
ASCII characters that contain obfuscated malicious code,
where the malicious code is stored on the disk as registry
keys, but at the same time does not take the traditional form
of malware.

6 Declarations

– No funds, grants, or other support was received for the
submitted work.

– The authors have no relevant financial or non-financial
interests to disclose.

– The authors assert that there is no potential conflicts of
interest.

– The datasets analyzed during the current study are avail-
able in the Github, Red Teaming, and MITRE reposito-
ries, and are explicitly cited in 4.1.1.

– The code developed to implement the new approach can
be requested from the corresponding author upon rea-
sonable request.

References

1. Afreen, A., Aslam, M., & Ahmed, S. (2020). Analy-
sis of Fileless Malware and its Evasive Behavior. 2020

International Conference on Cyber Warfare and Secu-

rity (ICCWS), Islamabad, Pakistan, 2020, pp. 1-8, doi:
10.1109/ICCWS48432.2020.9292376.

2. Angelystor (2020, June 24). Process Injection Tech-

niques used by Malware. Accessed July 10, 2022, from
Medium: https://medium.com/csg-govtech/process-
injection-techniques-used-by-malware-1a34c078612c

3. Aslan, Ö. A., & Samet, R. (2020). A com-
prehensive review on malware detection

approaches. IEEE Access, 8, 6249-6271.
doi:https://doi.org/10.1109/ACCESS.2019.2963724

4. AV-TEST (2023). Malware Statistics & Trends Report

| AV-TEST. Accessed May 13, 2023, from AV-TEST:
https://www.av-test.org/en/statistics/malware/

5. AVTEST (2017, July 05). The IT Secu-

rity Status at a Glance: The AV-TEST Secu-

rity Report 2016/2017. Accessed November
02, 2022, from Tech. Rep.: https://www.av-
test.org/fileadmin/pdf/security_report/AV-
TEST_Security_Report_2015-2016.pdf

6. Balaoura, S. (2018). Process injection techniques and de-

tection using the Volatility Framework. Master’s thesis,
University of Piraeus, Piraeus, Greece.

7. Blaam, M. (2021, August 21). Great explanation of

Process Hollowing (a Technique often used in Mal-

ware). Accessed November 2, 2022, from GitHub:
https://github.com/m0n0ph1/Process-Hollowing

8. Block, F., & Dewald, A. (2019). Windows
memory forensics: detecting (un) intentionally
hidden injected code by examining page ta-
ble entries. Digital Investigation, 29, S3-S12.
doi:https://doi.org/10.1016/j.diin.2019.04.008

9. Bridge, K., Abram, N., Kennedy, J., Batchelor, D., Coul-
ter, D., Krell, J., . . . LeBLanc, M. (2021a, November 8).
PE Format. MS Docs. Accessed November 25, 2022.

10. Bridge, K., Sharkey, K., Coulter, D., Jacobs, M., &
Satran, M. (2021b, January 7). About Event Tracing. MS
Docs. Accessed December 20, 2022

11. Bridge, K., Sharkey, K., Coulter, D., Batchelor, D., &
Satran, M. (2021c, January 7). Thread Handles and Iden-

tifiers. MS Docs. Accessed November 8, 2022.
12. Chang, T. (2016). Detecting Malware with DLL Injec-

tion And PE Infection. Master’s thesis, National Sun Yat-
sen University, Taiwan.

13. Chen, C., Lai, G., Cai, Z., Chang, T., & Lee, B.
(2021). Detecting PE-Infection Based Malware. Interna-

tional Journal of Security and Networks, 16(3), 191-199.
doi:10.1504/IJSN.2021.117871

14. Cooper, S. (2021, May 14). Fileless mal-

ware attacks explained (with examples). Ac-
cessed May 18, 2022, from Comparitech:
https://www.comparitech.com/blog/information-
security/fileless-malware-attacks/

15. Cruz, M., de la Pena Perona, M., Rivera, B., & Ang,
K. (2013). Washington, DC: U.S. Patent and Trademark

Office Patent No. 8,572,739.
16. Dai, Y., Li, H., Qian, Y., & Lu, X. (2018). A mal-

ware classification method based on memory dump
grayscale image. Digital Investigation, 27, 30-37.
doi:https://doi.org/10.1016/j.diin.2018.09.006

17. Das, S., Mathew, M., & Vijayaraghavan, P. (2011). An
Approach for optimal feature subset selection using a

19

new term weighting Scheme and mutual information. In

Proceeding of the International Conference on Advanced

Science, Engineering and Information Technology (pp.
273-278). Putrajaya, Malaysia: Academia.

18. Duan, Y., Fu, X., Luo, B., Wang, Z., Shi, J., & Du,
X. (2015). Detective: Automatically identify and ana-
lyze malware processes in forensic scenarios via DLLs.
In 2015 IEEE International Conference on Communica-

tions (ICC) (pp. 5691-5696). London, UK: IEEE.
19. Dubyk, M. (2019). Leveraging the PE Rich Header for

Static Malware Detection and Linking. Bethesda, Mary-
land, United States: SANS Institute.

20. Fewer, S. (2013, September 5). ReflectiveDLLInjec-

tion. Accessed October 26, 2022, from GitHub:
https://github.com/stephenfewer/ReflectiveDLLInjection

21. Firch, J. (2021). 2021 Cyber Security Statis-

tics: The Ultimate List Of Stats, Data & Trends.
Accessed September 10, 2021, from Purplesec:
https://purplesec.us/resources/cyber-security-statistics/

22. GitHub, & OpenAI. (2021). Your AI pair program-

mer. Accessed October 22, 2022, from GitHub Copilot:
https://copilot.github.com/

23. Github-milkdevil. (2017, July 21). injectAll-

TheThings. Accessed October 29, 2022, from GitHub:
https://github.com/milkdevil/injectAllTheThings

24. Gorelik, M., & Moshailov, R. (2017). Fileless Malware:

Attack Trend Exposed. Morphisec Ltd.
25. Gorelik, M. (2020, May 13). Machine Learning

Can’t Protect You From Fileless Attacks. Ac-
cessed August 27, 2022, from SecurityBoulevard:
https://securityboulevard.com/2020/05/machine-
learning-cant-protect-you-from-fileless-attacks/

26. Hasherezade. (2018, September 25). Process Dop-

pelganging meets Process Hollowing in Osiris drop-

per. Accessed September 20, 2022, from Malware-
bytes Labs: https://blog.malwarebytes.com/threat-
analysis/2018/08/process-doppelganging-meets-
process-hollowing_osiris/

27. Hosseini, A. (2017). Ten process injection techniques:

A technical survey of common and trending process

injection techniques. Accessed September 3, 2022,
from Elastic: https://www.elastic.co/blog/ten-process-
injection-techniques-technical-survey-common-and-
trending-process

28. Javaheri, D., & Hosseinzadeh, M. (2020). A Solution
for Early Detection and Negation of Code and DLL In-
jection Attacks of Malwares. Journal of Advanced De-

fense Science and Technology, 10(4), 393-406. Retrieved
from https://adst.ihu.ac.ir/article_204327.html?lang=en

29. Javeed, D., Khan, M., Ahmad, I., Iqbal, T., Badamasi,
U., Ndubuisi, C., & Umar, A. (2020). An Effi-
cient Approach of Threat Hunting Using Memory
Forensics. International Journal of Computer Net-

works and Communications Security, 8(5), 37-45.
Retrieved from https://www.proquest.com/scholarly-
journals/efficient-approach-threat-hunting-using-
memory/docview/2437454849/se-2

30. Khasaia, L. (2019, February 10). InjectProc - Process

Injection Techniques. Accessed October 25, 2022, from
GitHub: https://github.com/secrary/InjectProc

31. KSL-Group (2021, August 23). Threadmap Volatility

Plugin. Accessed November 02, 2022, from GitHub:
https://github.com/kslgroup/threadmap

32. Li, Y., Li, W., & Jiang, C. (2010). A survey of virtual
machine system: Current technology and future trends. In

2010 Third International Symposium on Electronic Com-

merce and Security (pp. 332-336). Nanchang, China:
IEEE.

33. Liang, H., Rugerio, D., Chen, L., & Xu, S. (2022, Jan-
uary 23). What is a DLL. MS Docs. Accessed February
11, 2023.

34. Lim, S., & Im, E. (2019). Proposal of Process Hol-
lowing Attack Detection Using Process Virtual Mem-
ory Data Similarity. Journal of the Korea Institute of

Information Security & Cryptology, 29(2), 431-438.
doi:https://doi.org/10.13089/JKIISC.2019.29.2.431

35. Liu, W., & Steven, G. (2021). A free, power-

ful, multi-purpose tool that helps you monitor sys-

tem resources, debug software and detect malware.
Accessed October 2, 2022, from Process Hacker:
https://processhacker.sourceforge.io/

36. Microsoft Developer. (2021). Download a Windows 10

virtual machine. Accessed September 22, 2022, from Mi-
crosoft Developer: https://developer.microsoft.com/en-
us/windows/downloads/virtual-machines/

37. Mikben, Batchelor, D., Sharkey, K., Coulter, D.,
Kennedy, J., & Satran, M. (2021, March 22). Memory
Protection Constants. MS Docs. Accessed October 11,
2022.

38. Mikben, Sharkey, K., & Satran, M. (2021, January
7). About Memory Management. MS Docs. Accessed
November 8, 2022.

39. Mohd Yusof, M., & Mokhtar, M. (2016). A Review
of Predictive Analytic Applications of Bayesian Net-
work. International Journal on Advanced Science, En-

gineering and Information Technology, 6(6), 857-867.
doi:10.18517/ijaseit.6.6.1382

40. Monnappa, K. (2016a, September 22). Detecting De-

ceptive Process Hollowing Techniques Using Hollowfind

Volatility Plugin. Accessed August 25, 2022, from Cys-
info: https://cysinfo.com/detecting-deceptive-hollowing-
techniques/

41. Monnappa, K. (2016b, September 24). Hollowfind

Volatility Plugin. Accessed August 25, 2022, from
GitHub: https://github.com/monnappa22/HollowFind

20

42. Monnappa, K. (2016c, September 24). Psinfo Volatil-

ity Plugin. Accessed August 25, 2022, from GitHub:
https://github.com/monnappa22/Psinfo

43. Mosli, R., Li, R., Yuan, B., & Pan, Y. (2017). A
behavior-based approach for malware detection. In IFIP

International Conference on Digital Forensics (pp. 187-
201). Orlando, FL, USA: Springer, Cham.

44. Mosli, R., Li, R., Yuan, B., & Pan, Y. (2016). Auto-
mated malware detection using artifacts in forensic mem-
ory images. In 2016 IEEE Symposium on Technologies

for Homeland Security (HST) (pp. 1-6). Waltham, MA,
USA: IEEE.

45. Otsuki, Y., Kawakoya, Y., Iwamura, M., Miyoshi, J.,
Faires, J., & Lillard, T. (2019). Toward the Analysis of
Distributed Code Injection in Post-mortem Forensics. In

14th International Workshop on Security, IWSEC 2019.

11689, pp. 391-409. Tokyo, Japan: Springer, Cham.
46. Pingios, A., Beek, C., & Becwar, R. (2017, May 31).

Process Injection, Technique T1055 - Enterprise. Ac-
cessed November 8, 2022, from MITRE ATT&CK:
https://attack.mitre.org/techniques/T1055/

47. Rathnayaka, C., & Jamdagni, A. (2017). An ef-
ficient approach for advanced malware analysis us-
ing memory forensic technique. In 2017 IEEE Trust-

com/BigDataSE/ICESS (pp. 1145-1150). Sydney, NSW,
Australia: IEEE.

48. Red Teaming Experiments (2021). Code & Process

Injection. Accessed November 5, 2022, from ired.team:
https://www.ired.team/offensive-security/code-injection-
process-injection

49. Salman, M., Husna, D., & Viani, N. (2019). Static Anal-
ysis Method on Portable Executable Files for REMNUX
based Malware Identification. In 2019 IEEE 10th Inter-

national Conference on Awareness Science and Technol-

ogy (iCAST) (pp. 1-6). Morioka, Japan: IEEE.
50. Sihwail, R., Omar, K., & Ariffin, K. (2021).

An Effective Memory Analysis for Malware De-
tection and Classification. CMC-COMPUTERS

MATERIALS & CONTINUA, 67(2), 2301-2320.
doi:10.32604/cmc.2021.014510

51. Sihwail, R., Omar, K., & Ariffin, K. (2018). A sur-
vey on malware analysis techniques: Static, dynamic, hy-
brid and memory analysis. International Journal on Ad-

vanced Science, Engineering and Information Technol-

ogy, 8(4-2), 1662-1671. doi:10.18517/ijaseit.8.4-2.6827
52. Srivastava, A., & Jones, J. (2017). Detecting code in-

jection by cross-validating stack and VAD information in
windows physical memory. In 2017 IEEE Conference on

Open Systems (ICOS) (pp. 83-89). Miri, Malaysia: IEEE.
53. Subedi, K., Budhathoki, D., & Dasgupta, D. (2018).

Forensic analysis of ransomware families using static
and dynamic analysis. In 2018 IEEE Security and Pri-

vacy Workshops (SPW) (pp. 180-185). San Francisco,

CA, USA: IEEE.
54. Teller, T., & Hayon, A. (2014). Enhancing automated

malware analysis machines with memory analysis.
London, England and Wales: BlackHat, InformaTech.
Retrieved from https://www.blackhat.com/docs/us-
14/materials/arsenal/us-14-Teller-Automated-Memory-
Analysis-WP.pdf

55. Thompson, E. (2018). Cybersecurity Incident Re-

sponse: How to Contain, Eradicate, and Recover from

Incidents. 1st Ed., New York, USA: Apress.
56. VMware Docs. (2019, November 12). VMware

Workstation 15.5.1 Pro Release Notes. Ac-
cessed September 22, 2022, from VMware Docs:
https://docs.vmware.com/en/VMware-Workstation-
Pro/15.5/rn/VMware-Workstation-1551-Pro-Release-
Notes.html

57. Volatility Foundation. (2020). The Volatility Foun-

dation - Open-Source Memory Forensics. Ac-
cessed March 29, 2023, from VolatilityFoundation:
https://www.volatilityfoundation.org/

58. Webb, M. (2018). Evaluating tool based automated

malware analysis through persistence mechanism de-

tection. Doctoral dissertation, Kansas State University,
Manhattan, USA.

59. White, A., Schatz, B., & Foo, E. (2013). Integrity verifi-
cation of user space code. Digital Investigation, 10, S59-
S68. doi:https://doi.org/10.1016/j.diin.2013.06.007

60. Xiao, C., & Zheng, C. (2017, April 6). New

IoT/Linux Malware Targets DVRs, Forms Botnet.
Accessed September 19, 2022, from Paloaltonet-
works: https://unit42.paloaltonetworks.com/unit42-new-
iotlinux-malware-targets-dvrs-forms-botnet/

61. Yadav, A., & Garg, M. (2019). Docker containers versus
virtual machine-based virtualization. In Emerging Tech-

nologies in Data Mining and Information Security (pp.
141-150). Singapore: Springer.

62. Yosifovich, P., Solomon, D., & Ionescu, A. (2017). Win-

dows Internals, Part 1: System architecture, processes,

threads, memory management, and more (7th Edition
ed.). Microsoft Press.

63. Zadeh, L. (1988). Fuzzy logic. Computer, 21(4), 83-93.
doi:https://doi.org/10.1109/2.53

64. Zhang, S., Hu, Y., & Bian, G. (2017). Research on string
similarity algorithm based on Levenshtein Distance. In

2017 IEEE 2nd Advanced Information Technology, Elec-

tronic and Automation Control Conference (IAEAC) (pp.
2247-2251). Chongqing, China: IEEE.

7 Main Tools

Three main tools were programmed as follows: The first is
an integrated project called "Injection Tool" for process in-

21

jection attacks, where each injection technique is a complete
project with sequential steps and lines of code extracted from
its sources.

Secondly, the "Automated Injection Tool" was developed
to implement a larger number of attacks at the same time, in
addition to implementing more than one type of attack at the

same time. It works the same as the Manual Injection Tool
but with more options.

Third, C/C++ was used to develop the "Automated De-
tection Tool," which enumerates the processes and organizes
the work of the slaves used in detection.

22

Fig. 21 Manual Injection Tool

Fig. 22 Automated Injection Tool

Fig. 23 Automated Detection Tool

	Introduction
	Background and Related Work
	Methodology
	Results and Evaluation
	Conclusion and Future Work
	Declarations
	Main Tools

