
Local certification of unitary 
operations
Ryszard Kukulski1, Mateusz Stępniak2, Kamil Hendzel2, Łukasz Pawela3, 
Bartłomiej Gardas3 & Zbigniew Puchała3

In this work, we analyze the local certification of unitary quantum channels, which is a natural 
extension of quantum hypothesis testing. A particular case of a quantum channel operating on two 
systems corresponding to product states at the input, is considered. The goal is to minimize the 
probability of the type II error, given a specified maximum probability of the type I error, considering 
assistance through entanglement with auxiliary systems. Our result indicates connection of the local 
certification problem with a product numerical range of unitary matrices. We show that the optimal 
local strategy does not need usage of auxiliary systems and requires only single round of one-way 
classical communication. Moreover, we compare local and global certification strategies and show that 
typically local strategies are optimal, yet in some extremal cases, where global strategies make no 
errors, local ones may fail miserably. Finally, some application for local certification of von Neumann 
measurements are discussed as well.

In quantum information theory, a well-known problem is the discrimination of states and quantum channels, 
as solved by Helstrom1. This problem involves distinguishing which state or channel from a given pair we are 
dealing with, based on a prepared measurement. It plays a pivotal role in the comprehension and manipulation 
of quantum systems. The ensuing step is certification, a process aimed at confirming whether a given hypothesis 
regarding the state, channel, or measurement holds true; this is achieved by contrasting it with an alternative 
hypothesis. Certification safeguards the integrity and reliability of quantum operations, rendering it indispensable 
for quantum computing and communications. The mathematical explanation of the modus operandi of quantum 
computers involves the use of quantum operations and channels. This paper focuses on the local certification of 
unitary operations, a technique which is crucial for enhancing quantum computing applications, and developing 
quantum algorithms and error correction strategies. This certification is useful for benchmarking quantum 
devices, thus steering the progression of quantum algorithm design.

Great deal of work has been done in the domain of local certification and distinguishability of quantum 
states. The research were focused on presenting conditions for a finite set of orthogonal quantum states to be 
distinguishable by local operations2–6. It has been noticed, that local certification strategies not always are as 
powerful as global strategies involving usage of a quantum entanglement. Many examples of sets of orthogonal 
quantum states that cannot be perfectly certified were discovered in the literature7,8; also in the domain of mixed 
quantum states9.

The following up research about local discrimination of unitary channels has been built upon the results 
concerning quantum states. It was observed that there exist discrimination problems for which local procedures 
may be optimal as well as there exist problems for which they perform poorly10. Some conditions concerning 
optimal local discrimination strategies were already proposed too11. Eventually, couple of works focused on many 
copies scenario, were it was shown that any two different unitary operations acting on an arbitrary multipartite 
quantum system can be perfectly distinguishable by local operations and classical communication when a finite 
number of runs12–14. However, in the literature, the problem of certification of unitary channels has not been yet 
considered. Taking up this challenge, in this work we explore a scenario where two parties, having access to a 
shared quantum unitary channel, engage in its certification. We compare local certification strategies with global 
ones and find the optimal and resource efficient local certification strategies.

Certification is closely related to statistical hypothesis testing, which is a fundamental concept in statistical 
decision theory15. We consider a system with two hypotheses: the null hypothesis (H0) and the alternative 
hypothesis (H1). The null hypothesis intuitively corresponds to a promise about the system given by its creator. 
By performing a test, we decide which hypothesis to accept as true. A type I error occurs if we reject the null 
hypothesis when it is true. The probability of this error occurring is called the level of significance. On the other 
hand, a type II error occurs when we accept the null hypothesis, even though it is false. We want to minimize 
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the type II error given an assumed level of significance. This approach is commonly referred to as certification. 
It turns out that the concept of the numerical range of a matrix is an useful tool in such issues. The numerical 
range provides insights into the spectral and structural properties of matrices, making it important in quantum 
mechanics16.

Preliminaries
In this section, we elucidate the foundational principles underlying the certification processes under 
consideration.

Notation
In this work, we will encounter the notation of quantum states, quantum measurements and quantum channels. 
In order to set notation, we mention them here briefly (see17 for more detailed explanation).

We say that operator ρ represents a quantum state defined on a system of dimension d if this operator is 
positive semidefinite (ρ ≥ 0) with unit trace (trρ = 1). An linear map Ψ will be called quantum channel if it is 
completely positive and trace preserving map (CPTP). We will consider a special family of quantum channels 
known as unitary channels. For an unitary matrix U we define unitary quantum channel ΨU  by

	 ΨU(ρ) = UρU †,� (1)

where ρ is an input quantum state ρ.

In a finite-dimensional case, quantum measurement, also called as positive operator-valued measure (POVM), is 
be represented by a set of positive semidefinite operators Ω = {Ωi}i (also known as effects), such that 

∑
iΩi = 1l

. According to the Born rule, for a given state ρ the probability of obtaining the measurement outcome i is 
given by pi = TrρΩi. The special subclass of quantum measurements consists of Von Neumann measurements. 
They fulfill the additional requirement that all effects Ωi are rank-one projectors. Hence, for a von Neumann 
measurement acting on a state of dimension d there are exactly d effects Ωi which are pairwise orthogonal. 
This simple observation allows us to parameterize a d-dimensional von Neumann measurement using a unitary 
matrix U, PU = {U |i⟩⟨i|U †}di=1. As a shorthand notation, we will write |ui⟩:=U |i⟩. We can associate a measure-
and-prepare channel with a von Neumann measurement

	
PU(ρ) =

d∑
i=1

⟨ui|ρ|ui⟩|i⟩⟨i|.� (2)

Finally, in this work we will consider the family of bipartite quantum channels and measurements that can be 
realized by using only local operations and classical communication (LOCC) between two involved parties, 
say Alice and Bob. Let us assume that Alice has access to a system A and Bob to a system B. Then, we say that 
bipartite quantum channel Ψ (or measurement Ω) is LOCC with respect to the partition A : B, if it can be 
realized by using local quantum operations on A and B separately, and by sharing classical information between 
A and B. Such operations will be used notoriously in this work to prepare input quantum states and POVMs 
without creating quantum entanglement between involved parties.

Numerical ranges of a matrix
In the context of certifying unitary channels, the numerical range and the product numerical range play a pivotal 
role. The numerical range of a square matrix X of size d, is defined as a subset of the complex plane:

	 W (X) = {⟨ψ|X|ψ⟩ : ⟨ψ|ψ⟩ = 1, |ψ⟩ ∈ Cd}.� (3)

The set W(X) is compact and convex; an in depth discussion of its properties and application can be found in18,19.

The product numerical range of a square matrix X of size d1 · d2 with the partition d1 : d2 is defined as:

	

W⊗
d1:d2

(X) = {(⟨ψ1| ⊗ ⟨ψ2|)X(|ψ1⟩ ⊗ |ψ2⟩) :
⟨ψ1|ψ1⟩ = 1, ⟨ψ2|ψ2⟩ = 1,

|ψ1⟩ ∈ Cd1, |ψ2⟩ ∈ Cd2}.
� (4)

The core properties of this object are described in20.

Operational scenario
In the certification of a unitary channel, two parties, Alice and Bob, have an access to a quantum unitary channel. 
They have knowledge that the given channel is one of two possible unitary channels: ΨU , which will be identified 
with H0 hypothesis or ΨV , which will be identified with H1 hypothesis. Alice and Bob do not know which one 
is provided to them. Their goal is to find the best strategy to certificate that the given unknown channel is ΨU  
and detect whenever the unknown operation is ΨV . More precisely, given the level of significance δ ≥ 0 as a 
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parameter, they want to minimize the probability of making type II error provided the probability of making 
type I error is not greater than δ.

The unknown operation has two inputs on the spaces AI  and BI , and two outputs on the spaces AO and 
BO (see Fig.  1). Alice has an access to spaces AI  and AO and auxiliary space AE , while Bob to BI  and BO 
and auxiliary system BE , respectively. To produce an input state ρ Alice and Bob are limited to use LOCC 
operations with respect to the partition AI ⊗AE : BI ⊗ BE . We will write in short that ρ ∈ LOCC. Similarly, 
to produce a POVM Ω = {Ω0,Ω1} Alice and Bob are limited to use LOCC operations with respect to the 
partition AO ⊗AE : BO ⊗ BE . We will use the notation Ω ∈ LOCC. Based on the results (classical labels) of their 
measurements, they decide, which unitary channel they are dealing with: label 0 associated with the effect Ω0 
indicates H0, while label 1 associated with the effect Ω1 indicates H1.

Main results
Unitary channel certification
In this section we will state the solution to the problem introduced in the Section  2.3. Let AI = AO = Cd1, 
BI = BO = Cd2. We are given two unitary matrices U and V of size d1 · d2 and consider two hypotheses:

•	 H0: The operation is ΨU .
•	 H1: The operation is ΨV .As mentioned previously (see also Fig.  1), Alice and Bob can prepare the in-

put state ρ and the measurement Ω = {Ω0,Ω1} by using LOCC operations with respect to the partitions 
AI ⊗AE : BI ⊗ BE  and AO ⊗AE : BO ⊗ BE , respectively. The dimension of spaces AE  and BE  are arbi-
trary. Alice and Bob accept accept the null hypothesis if the measurement result is Ω0, otherwise, they reject 
it. Thus, we arrive at the following formulas for the probabilities of type I and type II errors:

	

pI(Ω, ρ) = tr
(
Ω1(ΨU ⊗ 1lAE⊗BE

)(ρ)
)
,

pII(Ω, ρ) = tr
(
Ω0(ΨV ⊗ 1lAE⊗BE

)(ρ)
)
.
� (5)

Certification requires minimizing pII under the condition pI ≤ δ, where δ is the desired significance level. It 
leads to the following optimization problem:

	 pII(U, V ):=min{pII(Ω, ρ) : pI(Ω, ρ) ≤ δ, ρ,Ω ∈ LOCC}.� (6)

The remainder of this section is devoted to proving the following theorem. This result shows the relation between 
two-party certification and the product numerical range.

Theorem 1  Consider the problem of two-point certification of unitary channels with hypotheses

•	 H0: The operation is ΨU .
•	 H1: The operation is ΨV .defined as in Section 3.1 for unitary matrices U and V of size d1 · d2, and statistical 

significance δ ∈ [0, 1]. Let z be the euclidean distance between 0 and W⊗
d1:d2

(V †U), that is

	 z:=min{|x| : x ∈ W⊗
d1:d2

(V †U)}.� (7)

Then, for the most powerful test utilizing LOCC operations, the probability of the type II error yields

	
pII(U, V ) =




0, z ≤
√
δ,

z
√
1− δ −

√
1− z2

√
δ
2

, z >
√
δ.

� (8)

Proof  By utilizing local quantum operations and classical communication, Alice and Bob can prepare any sepa-
rable quantum state ρ =

∑
j pj|aj⟩⟨aj| ⊗ |bj⟩⟨bj|, where |aj⟩⟨aj| are defined on AI ⊗AE  and |bj⟩⟨bj| on BI ⊗ BE

.

Fig. 1.  Schematic representation of the operational scenario for unitary channel certification. Alice (A) and 
Bob (B) can prepare the initial state ρ and the final measurement Ω by using LOCC operations to certificate if 
? = ΨU  or ? = ΨV .
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Let us assume that Alice and Bob take a product state, that is ρ = |a, b⟩⟨a, b| = |a⟩⟨a| ⊗ |b⟩⟨b|. Then, depending 
which hypothesis is true, we obtain the one of the following pure states

	

H0 : |h0⟩⟨h0|:=(ΨU ⊗ 1lAE⊗BE
)(ρ),

H1 : |h1⟩⟨h1|:=(ΨV ⊗ 1lAE⊗BE
)(ρ).

� (9)

We consider two cases. If |⟨h0|h1⟩| ≤
√
δ, then according to21, Theorem 1 & Corollary 1 the best pure states 

certification strategy Ω̃ with significance level δ is of the form: Ω̃ = {Ω̃0, Ω̃1}, where Ω̃0 = |ω⟩⟨ω| for |ω⟩ = |ω̃⟩
∥ω̃∥  

and |ω̃⟩ = |h0⟩ − ⟨h1|h0⟩|h1⟩. The operator |ω⟩⟨ω| satisfies |⟨h1|ω⟩|2 = 0 and |⟨h0|ω⟩|2 ≥ 1− δ. Therefore, 
the states |h1⟩⟨h1| and |ω⟩⟨ω| are orthogonal and we can find a LOCC measurement Ω = {Ω0,Ω1}22, such 
that tr(Ω0|ω⟩⟨ω|) = 1 and tr(Ω1|h1⟩⟨h1|) = 1. Alice and Bob choose Ω as their measurement and achieve 
pI(Ω, ρ) = tr(Ω1|h0⟩⟨h0|) ≤ 1− tr(|ω⟩⟨ω||h0⟩⟨h0|) ≤ δ and pII(Ω, ρ) = 1− tr(Ω1|h1⟩⟨h1|) = 0, which is the 
optimal solution in that case.

If |⟨h0|h1⟩| >
√
δ, then according to21, Theorem 1 & Corollary 1 the best pure states certification strategy Ω̃ 

with significance level δ is of the form: Ω̃ = {Ω̃0, Ω̃1}, where Ω̃0 = |ω⟩⟨ω| for |ω⟩ =
√
1− δ ⟨h0|h1⟩

|⟨h0|h1⟩|
|h0⟩ −

√
δ|h⊥

0 ⟩ 
and |h⊥

0 ⟩ = |h̃⊥
0 ⟩/∥h̃⊥

0 ∥, where |h̃⊥
0 ⟩ = |h1⟩ − ⟨h0|h1⟩|h0⟩. The operator |ω⟩⟨ω| satisfies 

|⟨h1|ω⟩|2 = (
√
1− δ|⟨h0|h1⟩| −

√
δ
√

1− |⟨h0|h1⟩|2)2 and |⟨h0|ω⟩|2 = 1− δ. Here, for the orthogonal states 
|ω⟩⟨ω| and |ω⊥⟩⟨ω⊥|, where |ω⊥⟩ =

√
δ|h0⟩ +

√
1− δ ⟨h1|h0⟩

|⟨h0|h1⟩|
|h⊥

0 ⟩ we can find a LOCC measurement Ω = {Ω0,Ω1}

22, such that tr(Ω0|ω⟩⟨ω|) = 1 and tr(Ω1|ω⊥⟩⟨ω⊥|) = 1. Alice and Bob choose Ω as their measurement and achieve 
pI(Ω, ρ) = tr(Ω1|h0⟩⟨h0|) ≤ 1− tr(|ω⟩⟨ω||h0⟩⟨h0|) = δ. To calculate pII(Ω, ρ) notice that |h1⟩ is spanned in the basis 
|ω⟩, |ω⊥⟩, that is |h1⟩ = c1|ω⟩ + c2|ω⊥⟩. Therefore, we get pII(Ω, ρ) = tr(Ω0|h1⟩⟨h1|) = |c1|2tr(Ω0|ω⟩⟨ω|) = |c1|2
, where we used Ω0|ω⊥⟩ = |ω⊥⟩ − Ω1|ω⊥⟩ = |ω⊥⟩ − |ω⊥⟩ = 0. Eventually, pII(Ω, ρ) = |c1|2 = |⟨h1|ω⟩|2, which 
is the optimal solution in that case.

We have showed that the optimal measurement Ω for product state ρ gives

	
pII(Ω, ρ) =

{
0, |x| ≤

√
δ,

(
√
1− δ|x| −

√
δ
√
1− |x|2)2, |x| >

√
δ,

� (10)

where x:=⟨h1|h0⟩ = ⟨a, b|
(
V †U ⊗ 1lAE⊗BE

)
|a, b⟩. As the function |x| → pII(Ω, ρ) is non-decreasing, Alice and 

Bob choose |a, b⟩ that minimizes |x|.

Observe, the choice of the optimal product input state ρ = |a, b⟩⟨a, b| is independent of the significance level δ. 
Therefore, no separable state ρ will provide better result than product state.

Finally, let us assume that ρ = |a0, b0⟩⟨a0, b0| is the optimal product input state - it minimizes 
|a, b⟩⟨a, b| → |⟨a, b|

(
V †U ⊗ 1lAE⊗BE

)
|a, b⟩|. Let AE = Ce1 and BE = Ce2. Using the result from13, Lemma 2 

we get

	

⟨a0, b0|
(
V †U ⊗ 1lAE⊗BE

)
|a0, b0⟩

∈W⊗
d1e1:d2e2

(V †U ⊗ 1lAE⊗BE
)

=W⊗
d1:d2

(V †U).

� (11)

Hence, there is a quantum state |A0⟩⟨A0| defined on the space AI  and a quantum state |B0⟩⟨B0| on 
the space BI , such that ⟨a0, b0|

(
V †U ⊗ 1lAE⊗BE

)
|a0, b0⟩ = ⟨A0, B0|V †U |A0, B0⟩. Eventually, we 

observe that to minimize |x| Alice and Bob do not need to use auxiliary systems AE  and BE  and 
the optimal state can be chosen as ρ = |A0, B0⟩⟨A0, B0|, which is defined on AI ⊗ BI . Hence, for 
z = min{

∣∣⟨a, b|V †U |a, b⟩
∣∣ : ⟨a|a⟩ = ⟨b|b⟩ = 1, |a⟩ ∈ Cd1, |b⟩ ∈ Cd2} = min{|x| : x ∈ W⊗

d1:d2
(V †U)} we achieve 

the desired result

	
pII(U, V ) =

{
0, z ≤

√
δ,

(
√
1− δz −

√
δ
√
1− z2)2, z >

√
δ.

� (12)

□

Optimal certification strategy
The proof of Theorem 1 provides insight of the best certification strategy that Alice and Bob can utilize. Starting 
from the input state ρ ∈ LOCC, we see that Alice does not have to create any entanglement between AI  and AE , 
what is more - she does not need to use auxiliary system AE  at all. The same holds for Bob’s systems. That optimal 
input state ρ = |a, b⟩⟨a, b| defined on AI ⊗ BI  is pure and product as well it minimizes |⟨a, b|V †U |a, b⟩|. It is 
independent from the significance level δ.

The explicit form of the optimal measurement Ω ∈ LOCC is more complicated and relies heavily on the 
construction provided in22 and the proof of Theorem 1. Also, its description changes with δ. Nevertheless, from 
the operational point of view, Ω can be simply realized by Alice and Bob. One party, let’s say Alice, prepares an 
appropriate Von Neumann measurement PRA

 on system AO, where RA is an unitary rotation and sends the 
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measurement result i as a classical information to Bob. Then, he prepares a Von Neumann measurement PRB |i 
on BO, conditioned on the information gained from Alice, where RB|i is an unitary rotation. Bob’s measurement 
result j after classical post-processing j → f (j) ∈ {0, 1} indicates if the hypothesis H0 should be accepted or 
rejected. We provide a schematic representation of the optimal strategy in Fig. 2.

Local vs global certification of unitary channels
In the case where a single party controls both inputs and outputs, the party can create entanglement between 
compound systems AI ⊗AE  and BI ⊗ BE  (similarly between AO ⊗AE  and BO ⊗ BE). In other words, the 
input state ρ can be chosen arbitrarily, also the measurement Ω = {Ω0,Ω1}. The certification result p∗II(U, V ) is 
expressed as21:

	
p∗II(U, V ) =




0, v ≤
√
δ,

v
√
1− δ −

√
1− v2

√
δ
2

, v >
√
δ,

� (13)

where

	 v:=min{|x| : x ∈ W (V †U)}.� (14)

As we can see, the certification results differ in local and global scenarios. Observe, that both results depend on 
the product V †U , hence, the results are unitarily invariant and we may assume that V = 1l for the remainder of 
this section. In the global case we are interested in computing the distance v(U):=min{|x| : x ∈ W (U)}, while 
for the local case we compute the distance zd1:d2(U):=min{|x| : x ∈ W⊗

d1:d2
(U)}. The forthcoming comparison of 

zd1:d2(U) and v(U) will enable a comparative analysis between single-party and two-party certification scenarios.

From the definition, for all unitary matrices U of size d1 · d2 it holds v(U) ≤ zd1:d2(U). The questions arise, can 
v(U) be strictly lower than zd1:d2(U) and how much lower it can be?

Let d = d1 = d2. Define

	
U = 1ld2 −

2

d
|1ld⟩⟨1ld|,� (15)

where |1ld⟩ =
∑d

i=1 |i, i⟩. Observe that the eigenvalues of U are ±1, so v(U) = 0 and therefore, p∗II(U, 1ld2) = 0. 
On the other hand, for any normed vectors |ψ1⟩, |ψ2⟩ ∈ Cd we have

	
|⟨ψ1, ψ2|U |ψ1, ψ2⟩| =

∣∣∣∣1−
2

d
|⟨ψ1|ψ2⟩|2

∣∣∣∣ ≥
d− 2

d
,� (16)

where to saturate the last inequality we take |ψ1⟩ = |ψ2⟩ = |1⟩. That means, zd1:d2(U) = (d− 2)/d and when the 
local dimension goes to infinity, d → ∞, then we have pII(U, 1ld2) → 1− δ.

We showed that in the extremal case, local and global strategies differ significantly. But what about a typical case? 
For the incoming analysis we assume that U is Haar-random unitary matrix23. We have the following theorem.

Theorem 2  Let U be a Haar-random unitary matrix of size d1 · d2. For large enough product d1d2 we have

	
P (zd1:d2(U) = 0) ≥ 1− exp

(
−log 2

2
max(d21, d

2
2)

)
.� (17)

Proof  Without loss of the generality let us assume that d2 ≥ d1. For a fixed state |1⟩ ∈ Cd1 denote 
M = (⟨1| ⊗ 1l)U(|1⟩ ⊗ 1l). We have then W (M) ⊂ W⊗

d1:d2
(U). As U is Haar distributed the matrix M has the 

same distribution as VM, where V is a Haar-random unitary matrix of size d2 independent of U. The matrix 
M is a truncation of U, hence, almost surely it has full rank24. Continuing the reasoning, if M = UMQM  is the 
polar decomposition of M, then VM has the same distribution as V QM . Let λi be eigenvalues of V with cor-
responding eigenvectors |xi⟩. Then ⟨xi|V QM |xi⟩ = λi⟨xi|QM |xi⟩ ∈ W (V QM) for each i, where almost surely 
⟨xi|QM |xi⟩ > 0. Therefore, if 0 ∈ W (V ), then there is a probability vector (pi)i such that 

∑
i λipi = 0. Let us 

Fig. 2.  Schematic representation of the optimal operational scenario for unitary channel certification. Alice 
(A) prepares the initial pure state |a⟩⟨a| and Bob (B) prepares |b⟩⟨b|. The final measurement consists of Alice 
preparing PRA

 and sending the result label i to Bob, who prepares the measurement PRB |i. The post-processed 
label j → f (j) ∈ {0, 1} of Bob’s measurement certificate if ? = ΨU  or ? = ΨV .
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define a probability vector (qi)i given by qi = pi
⟨xi|QM |xi⟩

(∑
j

pj
⟨xj |QM |xj⟩

)−1

. We obtain 
∑

i qiλi⟨xi|QM |xi⟩ = 0 

which implies 0 ∈ W (V QM). Combining all together we get

	

P (zd1:d2(U) = 0) ≥ P (0 ∈ W (M)) = P (0 ∈ W (V QM))

≥ P (0 ∈ W (V )) ≥ 1− exp

(
−log 2

2
d22

)
,
� (18)

where the last inequality was proven in25, Proposition 19 for large enough d2. □

According to Theorem 2, when we are dealing with high-dimensional unitary channels ΨU  and ΨV , most of 
them can be perfectly certified. What is more, the optimal strategy is local, uses only once one-way classical 
communication channel and does not need auxiliary systems (see Fig. 2). Such strategies are the most desirable 
in terms of used resources such as quantum entanglement26.

In this section, we learned that the gap between v(U) and zd1:d2(U) may be huge in extremal cases. Also, 
we observed that typically in high dimensions both quantities are equal to zero. We provide more examples 
comparing local and global strategies in the Supplementary Material.

Application to Von Neumann measurement certification
In the domain of von Neumann measurements certification, we are given two unitary matrices U and V of size 
d1 · d2 and consider two hypotheses:

•	 H0: The operation is PU .
•	 H1: The operation is PV .The operational paradigm is similar, yet it harbors a critical distinction: the output 

transitions to a classical domain. Upon executing a joint measurement on their respective quantum states, a 
classical label i is generated. This label, mutually acknowledged by Alice and Bob, serves as the foundational 
element for subsequent certification processes. Thereafter, both parties then measure their auxiliary systems, 
guided by the known label i, to ascertain whether the joint measurement was null of the alternative hypothe-
sis. As in the unitary channel certification Alice and Bob strategy is similar (see Fig. 1). They can prepare the 
input state ρ ∈ LOCC and the measurement Ω = {Ω0,Ω1} ∈ LOCC while having access to auxiliary systems AE  
and BE  of arbitrary dimension. Let p̃II(U, V ) indicates minimized probability of type II error under the condi-
tion that δ is given significance level for the introduced certification scheme of Von Neumann measurements. 
Then, we summarize our findings with the following proposition:

Proposition 3  Consider the problem of two-point certification of Von Neumann measurements defined for unitary 
matrices U and V of size d1 · d2, and statistical significance δ ∈ [0, 1] with hypotheses

•	 H0: The operation is PU .
•	 H1: The operation is PV .The most powerful test utilizing LOCC operations provides 

	

p̃II(U, V ) ≥ max{pII(UE, V F ) : E,F is unitary
and diagonal }.

� (19)

Proof  Observe that action of each von Neumann measurement PU , can be expressed as PU = ∆Ψ
(UE)†. Here, ∆ 

is the completely dephasing channel ∆(X) =
∑

i ⟨i|X|i⟩|i⟩⟨i| and E is a diagonal unitary matrix. The channel ∆ 
acting on AO ⊗ BO is equivalent to ∆ = ∆A ⊗∆B, where ∆A,∆B are completely dephasing channels acting on 
AO and BO, respectively. Let us fix ρ∗,Ω∗ ∈ LOCC as the optimal certification strategy achieving p̃II(U, V ). For 
the unitary channel certification between Ψ

(UE)† and Ψ
(V F )†, where E, F are diagonal, unitary matrices, we have

	 pII(Ω∗(∆A ⊗∆B ⊗ 1lAE⊗BE
), ρ∗) = p̃II(PU, PV ).� (20)

Eventually, we get pII(UE, V F ) ≤ p̃II(PU, PV ), which ends the proof. □

Summary
In this study, we explored a scenario where two parties, having access to a shared quantum unitary channel, 
engage in its certification. Each party conducts individual measurements on their respective systems following 
channel utilization. We demonstrated in Theorem 1 that the certification challenge can be effectively transformed 
into an optimization problem involving the product numerical range. Following the proof of Theorem 1, we 
concluded that the optimal local strategy does not need usage of auxiliary systems and parties involved need to 
utilize one-way classical communication channel. We provided the original considered scheme in Fig. 1 and the 
optimal and resource efficient scheme in Fig. 2.

In Section 3.3 we compared local certification strategies with global ones. We observed that in the extremal 
case a global (single party) strategy can make no type II errors, while for the best local strategy the probability 
of making type II error approaches 1− δ, where δ is the significance level. However, in Theorem 2 we proved 
that typically, for high-dimensional unitary channels, local certification strategies are optimal and what is more, 
they make no type II errors. Assuming Haar distribution of unitary channels of size d, the probability of perfect 
local certification is no smaller than 1− exp(− log 2

2 d), which is approaching exponentially fast to 1 as d → ∞.

Scientific Reports |        (2024) 14:26588 6| https://doi.org/10.1038/s41598-024-75148-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Regarding von Neumann measurements, our findings in Proposition 3 provide insights into the lower bound 
of the type II error, thus contributing partial but significant knowledge to the field of quantum measurement 
certification.

Our work opens new paths for future research. They could include more advanced comparison of v(U) and 
zd1:d2(U) as well as finding effective ways of computing zd1:d2(U) for arbitrary U. From the operational point of 
view, the scenario where many players are involved in the local certification process seems to be interesting to 
explore. As the results of our work are based strongly on LOCC measurements’ construction provided in22 which 
is also valid in many players scenario, quick analysis suggests that the Eq. (8) will be valid in that case, but with 
replaced

	 z ← min{|x| : x ∈ W⊗
d1:...:dN

(V †U)},� (21)

where W⊗
d1:...:dN

 is the product numerical range defined for N parties13.

Availability of data and materials
The authors declare that the data supporting the findings of this study are available within the paper and its 
supplementary information files. The code used to create the plots in the Supplementary Material is available at 
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