
1

Vol.:(0123456789)

Scientific Reports |          (2023) 13:964  | https://doi.org/10.1038/s41598-023-28180-4

www.nature.com/scientificreports

Long distance entanglement 
and high‑dimensional quantum 
teleportation in the Fermi–Hubbard 
model
Sanaa Abaach 1,3, Zakaria Mzaouali 2,3* & Morad El Baz 1,3

The long distance entanglement in finite size open Fermi–Hubbard chains, together with the end‑
to‑end quantum teleportation are investigated. We show the peculiarity of the ground state of the 
Fermi–Hubbard model to support maximum long distance entanglement, which allows it to operate as 
a quantum resource for high fidelity long distance quantum teleportation. We determine the physical 
properties and conditions for creating scalable long distance entanglement and analyze its stability 
under the effect of the Coulomb interaction and the hopping amplitude. Furthermore, we show that 
the choice of the measurement basis in the protocol can drastically affect the fidelity of quantum 
teleportation and we argue that perfect information transfer can be attained by choosing an adequate 
basis reflecting the salient properties of the quantum channel, i.e. Hubbard projective measurements.

The second quantum revolution is driven by the revolutionary ideas of exploiting the inherent quantum proper-
ties of atomic systems in order to achieve a quantum advantage over classical methods in the manipulation of 
 information1,2. One of the facets of quantum information processing is quantum teleportation, which is a pro-
tocol offering the possibility of transferring an unknown quantum state using pre-existing entanglement and a 
classical information  channel3. The introduction of the protocol in 1993 by Bennett et al., and its experimental 
realization in 1997 by the group led by  Zeilinger4 shifted the concept of teleportation from being fictional to a 
physical  reality5.

Quantum teleportation rely primarily on the entanglement shared between the sending and receiving party 
through the quantum  channel6. Therefore, the creation and distribution of entanglement in physical platforms 
is crucial in the success and implementation of quantum teleportation  protocols7. In this context, a variety of 
one-dimensional quantum spin chains are known for their entangled ground states and have been intensively 
investigated as faithful architectures for quantum information  processing8–15 and notably as reliable quantum 
channels for teleportation  protocols16–26. Nevertheless, in most one-dimensional quantum spin chain systems 
with short-range interactions, the entanglement vanishes for distances larger than two neighboring  sites27–29, 
which makes them inconceivable platforms for long distance teleportation.

Accordingly, efforts have been devoted to produce some mechanisms able to create sizable entanglement 
between distant but not necessarily directly interacting constituents. An early initiative was the introduction of 
the concept of localizable entanglement, which defines the concentrated entanglement on an arbitrary distant 
pair by implementing optimal local measurements onto the rest of the  system7. Such kind of entanglement is 
defined as long distance entanglement (LDE).

A promising candidate for creating LDE is the gapped one-dimensional antiferromagnetic spin chain. In 
this regard, Venuti et al.7 have proposed a scheme for creating LDE in spin-1

2
 and spin-1 chains, showing that 

this property appears only for given values of a specific microscopic parameter, which doesn’t coincide with 
known quantum critical points. Later, schemes have been suggested for generating LDE in XX spin  chains30,31, in 
many-body atomic and optical  systems32, in Motzkin and Fredkin spin  chains33, and in antiferromagnetic XXZ 
spin chain with alternating  interactions34 as well. Additionally, it has been shown that robust temporally shaped 
control pulses for producing LDE can be derived in disordered spin  chains35 and that LDE can be enhanced for 
spin chains with dissipative processes through global  measurements36. Recently, an experimental implementa-
tion of LDE has been realised between unpaired spins in antiferromagnetic spin-1

2
 chains in a bulk  material37. 
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As a consequence of the appealing LDE generation property, it has been recently demonstrated that LDE allows 
for robust qubit teleportation and state transfer with high fidelity, across sufficiently long distances in finite size 
spin  chains30,38.

So far, investigating the generation of LDE has been limited to qubit spin chains. However, increasing the 
dimensionality and the complexity of the system has been shown to enhance the capacity of the quantum com-
munication  channel39,40, and improves the robustness against eavesdropping  attacks41,42. Additionally, high-
dimensional entangled states can be used for quantum state transfer of ever-increasing  complexity43–45. Similarly, 
the majority of quantum teleportation experiments, were limited to two-dimensional subspaces (qubits), includ-
ing quantum dot spin  qubits46. Recently, quantum teleportation has been achieved in high-dimensional quantum 
photonic  systems47,48. An alternative for photonic platforms, which causes the propagation losses of light, are 
quantum dots as they are the most scalable and time coherent architectures dedicated for quantum simulation 
and implementing quantum information tasks in the form of communication and  computing49. Recently, it has 
been shown that quantum dot systems described by the ground state of the Hubbard model are a promising 
entanglement resource for performing quantum teleportation of four-dimensional  states50.

The main goal of this paper is to analyze long distance quantum teleportation in quantum dots described 
by the ground state of the one-dimensional Fermi–Hubbard model. We start in “The model and the teleporta-
tion protocol” section by introducing the general form of the Fermi–Hubbard Hamiltonian, and presenting the 
generalized standard teleportation protocol with an arbitrary mixed state resource in higher dimensions, as well 
as the fidelity of quantum teleportation. Moreover, we define the lower bound of concurrence for measuring 
the end-to-end entanglement in bipartite high dimensional states. The aforementioned framework allows us in 
“Long distance entanglement and fidelity enhancement” section to discuss two schemes for creating end-to-end 
entanglement in an open Fermi–Hubbard chain, one by implementing bonds of alternating strengths defined 
 in7 and the other by alternating hopping amplitudes. Additionally, we show the important interplay between the 
choice of the measurement basis in the protocol and achieving perfect quantum teleportation with unit fidelity. 
Finally, in “Conclusion” section we summarize our core results and conclusions.

The model and the teleportation protocol
The Fermi–Hubbard model. The Fermi–Hubbard (FH) model describes moving fermions with spin in a 
 lattice51. In one-dimensional settings, it is given by

where c†i,σ and ci,σ are, respectively, the creation and annihilation operators that describe the tunneling of elec-
trons between the neighboring sites. t is the hopping amplitude and σ ={↑,↓} indicates spin-up or spin down 
electron, whereas u is the on-site electron-electron Coulomb interaction. We assume that only the s-orbital is 
allowed to the electrons in each site, so that, each site is able to hold up to two electrons with opposite spins as 
stated by the Pauli exclusion principle. Thereby, electrons have four possibilities in occupying a single site: |0� , 
|↑� , |↓� and |↑↓� . When the Coulomb interaction u is strong enough, the tunneling of electrons between the sites 
t is blocked leading to the quantum confinement effect in the FH system. This physical picture is analogous to 
the formation of potential barriers between the sites that prohibits electrons to tunnel outside. Experimentally, 
the creation of such barriers is made by modulating potentials, using gate electrodes, in order to control the 
tunneling of electrons between the sites that are simulated using semiconductor quantum  dots52.

The Fermi–Hubbard Hamiltonian, Eq. (1), is a prototype model to describe and investigate the properties of 
quantum systems, such as: the metal-insulator transition, ferromagnetism, ferrimagnetism, and antiferromag-
netism. As well as, superconductivity and Tomonaga-Luttinger  liquid53. Furthermore, the intersection between 
quantum information theory and condensed matter physics has been a subject of interest in fermionic models. 
In particular, it has been shown that entanglement plays a role in the identification of the phases of matter 
present in the Hubbard  model54–60. At the experimental level, quantum simulation of the Hubbard model using 
ultra cold atoms in optical lattices have been successful in observing and validating the theoretical results of 
strongly correlated Fermi  gases61. In the following, we will consider the dimensionless quantity U=u/t as the 
main parameter in the model, Eq. (1).

Quantum teleportation with d‑dimensional channels. The standard quantum teleportation protocol 
with Bell states resources resource is an example of a noiseless channel. It allows the transfer of information from 
a sender A to a receiver B using Bell measurements and Pauli rotations. In general, quantum teleportation uses 
entangled mixed states as a resource, which renders the protocol equivalent to information transfer via a noisy 
 channel62. To teleport information encoded in a d−dimensional unknown state |��=

∑d−1
j=0 αj|j� , where αi ∈ C , 

the teleportation protocol have to operate using an entangled two qudit ( d×d ) state as a state resource. Hence, 
the teleportation protocol is constructed and formulated basing on the maximally entangled Bell state

and the set of unitary generators

(1)H = −t
∑

i,σ

(

c†i,σ ci+1,σ + c†i+1,σ ci,σ

)

+ u
∑

i

ni,↑ni,↓,

(2)|ψ+� =
1√
d

∑

j

|j�|j�,

(3)Unm =
∑

k

e2π ikn/d |k��k ⊕m|,
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that act on the first subsystem, where ⊕ denotes the addition modulo d. Interestingly, it has been shown that the 
output state is equivalent to the state produced by a depolarizing  channel62, given by

where χ denotes the quantum state resource or the shared entangled mixed state between the sender and the 
receiver in a teleportation protocol, and Enm are the set of maximally entangled Bell state projectors given by

with n,m=0, 1, . . . , d − 1 and ̺ = |����|.
In the Fermi–Hubbard chain, a site i and a site j, for i  = j , are respectively assumed to be the sender and 

the receiver systems in the quantum teleportation scheme. The state ρij describing the couple of sites (sender 
and receiver) represents the entangled mixed state resource in the teleportation protocol. A four-dimensional 
unknown state

is considered as the state to be teleported using the following depolarizing channel

where the projectors Enm are constructed by means of the four-dimensional maximally entangled Bell state

The standard quantum teleportation channel being noisy hinders the perfect information transfer using a gen-
eral (d × d) bipartite state as a resource, instead of |ψ+� . Accordingly, measuring how well the output state ǫ(̺) 
and the input state  ̺are similar in a quantum teleportation scheme is quantified through the concept of the 
 fidelity63. It is defined as

For orthogonal states the fidelity is zero, while it reaches a unit value for identical states. Correspondingly, the 
efficiency and the quality of a quantum channel in teleporting an unknown state is presented in terms of the 
average fidelity F  over all possible input states, which can be written as

where

and χ is the quantum state resource. F (ǫ) is proven to be the maximal achievable teleportation fidelity in the 
standard teleportation protocol, where f is the fully entangled  fraction64–66. Indeed, one requires the average 
fidelity to be larger than 2

d+1
 to outperform the purely classical communication protocols. Hence, for a two-qudit 

state χ , as a resource to be useful for quantum teleportation, the fully entangled fraction f needs to satisfy f > 1
d.

The key ingredient for the success of the teleportation protocol is the entanglement shared between the sender 
and receiver, that is actually the quantum state resource χ . Therefore, quantifying the entanglement in quantum 
systems is crucial in order to evaluate and improve the fidelity of the quantum teleportation protocol. Accessing 
the amount of entanglement in many-body quantum systems is a challenging task and exact formulas are known 
only for some configurations, e.g. qubit-qubit, and qubit-qutrit  systems67.  In68 the authors introduced an analyti-
cal lower bound of concurrence as an effective evaluation of entanglement for arbitrary bipartite quantum states 
by decomposing the joint Hilbert space into many 2⊗2 dimensional subspaces and without any optimization 
procedure. This lower bound was recently extended to arbitrary N-partite  states69,70 that provides better estimates 
of the entanglement in some states comparted to the usual separability criteria.

For an arbitrary mixed state in d×d dimension, the concurrence C(ρij)68 satisfies,

where,

In our case, ρij is the pairwise density matrix of the ground state of the Fermi–Hubbard model, Eq. (1), with 
(i< j) . �(a)αβ  are the square roots of the non-zero eigenvalues of the non-Hermitian matrix ρijρ̃(ij)αβ such that 
�
(a)
αβ >�

(a+1)
αβ  for 1 ≤ a ≤ 3 and

(4)ǫ(̺) =
∑

nm

Tr[Enmχ ]Un(−m)̺(Un(−m))†,

(5)Enm=Unm|ψ+��ψ+|(Unm)†,

(6)|�� = α0|0� + α1|1� + α2|2� + α3|3�,

(7)ǫij(|����|) =
3

∑

n,m=0

Tr[Enmρij]Un(−m)|����|(Un(−m))†,

(8)|ψ†� =
1

2
(|00� + |11� + |22� + |33�).

(9)F = Tr(̺ǫ(̺)).

(10)F =
d

d + 1
f +

1

d + 1
,

(11)f = �ψ+|χ |ψ+�,

(12)τ2(ρij) =
d

2(d − 1)

d(d−1)
2

∑

α

d(d−1)
2

∑

β

C2
αβ ≤ C2(ρij),

(13)Cαβ = max{0, �(1)αβ − �
(2)
αβ − �

(3)
αβ − �

(4)
αβ }.
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Here, Gα is the αth element of the group SO(d).
In the following, using  QuSpin71,72 and  QuTiP73,74, we calculate by numerical diagonalization the ground state 

of the Fermi–Hubbard model, Eq. (1), in order to exploit it as a resource for teleporting an unknown four-
dimensional state |��= 1

N (α0|0� + α1|1� + α2|2� + α3|3� ), where αi ∈ C and N is the normalization constant. 
Figure S1 in the supplementary materials shows the fidelity F , Eq. (9), as a function of the coefficient α0 , where 
the state to be teleported is |�� = 1√

α20+3
(α0|0� + |1� + |2� + |3�) , ∀α0 ∈ R . We report that (c.f Figure S1 in 

supplementary material) F starts with a small value at α0 = 0 . Then as α0 tends to 1, F attains a maximum value 
and decays asymptotically as α0 continue to increase ( α0 > 1 ). Such behavior indicates that the four dimensional 
teleportation protocol performance depends essentially on the type of the state to be teleported. Indeed, when 
α0 = 0 or α0 > 1 , the state |�� could be considered respectively as a qutrit state |�� = 1√

3
(|1� + |2� + |3�) or a 

qubit state |�� ≃ |0� . For both types the quantum teleportation fidelity (c.f Figure S1 in supplementary material) 
reveals small values in contrast to the quadrit state type, with α0 = 1 , where a maximum value is achieved. This 
implies that the efficient performance of the four dimensional teleportation channel, Eq. (4) necessitates a quadrit 
input state with αi  = 0 . For this reason, in order to study the behavior of the channel’s fidelity, Eq. (9), under the 
effect of the Coulomb interaction u and the hopping amplitude t, we consider in the following αi = 1

2
 , with 

i = 0, 1, 2, 3.
Figure 1a depicts the end-to-end entanglement quantified using the lower bound concurrence, Eq. (13), in 

the ground state of the Fermi–Hubbard chain, Eq. (1), for several system sizes. We report that long distance 
entanglement manifests weakly only for the chain size of L = 4 , which reflects in the behaviour of the end-to-end 
fidelity of the quantum teleportation represented in Fig. 1b for the same model parameters. The fidelity shows no 
quantum advantage as it is below the value of 2

5
=0.4 , which is the upper limit for the classical threshold. In the 

following, we discuss how to generate long distance entanglement in the Fermi–Hubbard model by manipulat-
ing the nature of interactions between the sites, in order to demonstrate a quantum advantage in the quantum 
teleportation fidelity.

Long distance entanglement and fidelity enhancement
Consider a chain consisting of L sites. In order to create localizable entanglement between the ends of the chain, 
the interaction between the block of spins, separating the ends of the chains, must be weak with the first and last 
sites. The localizable entanglement offer a solid framework to exploit quantum many-body systems as quantum 
channels for transferring information between two distant  parties7.

The Hubbard model with alternating bonds. One way to achieve localizable entanglement in fermi-
onic systems is to model the interaction between the spins with bonds of alternating strengths (1− δ) (weak 
bond) and (1+ δ) (strong bond) with 0 ≤ δ ≤ 1 . Accordingly, the Fermi–Hubbard model, Eq. (1), transforms 
onto

which is equivalent to the celebrated Su-Schrieffer-Heeger-Hubbard (SSHH) chain. The SSHH model without 
interaction ( U=0 ) can be used to describe a one-dimensional topological  insulator75 and certain polymers, such 
as:  polyacetylene76,77. When the interaction U is present, the SSHH model presents richer topological  phases78, 
and it has been shown that inspecting the entanglement spectrum of the model reveals the topological phases of 

(14)ρ̃(ij)αβ = (Gα ⊗ Gβ)ρ
∗
ij(Gα ⊗ Gβ).

(15)H = −
∑

i,σ

(1+ (−1)iδ)
(

c†i,σ ci+1,σ + c†i+1,σ ci,σ

)

+ U
∑

i

ni,↑ni,↓,

Figure 1.  (a) The end-to-end concurrence, Eq. (13), and (b) the fidelity, Eq. (9), versus U in the Fermi–
Hubbard model, Eq. (1), for several chain sizes L.
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the SSSH  model79. Choosing L to be even and 0 ≤ δ ≤ 1 in the Hamiltonian, Eq. (15), ensures that the spins at 
the end of the chain interact with a weak bond of strength (1− δ) with their respective neighbors.

The Hubbard model supports a sizable end-to-end entanglement for specific values of the microscopic param-
eter δ . The end-to-end concurrence, Eq. (13), in the ground state of the Fermi–Hubbard model, Eq. (15), is plot-
ted in Fig. 2a as a function of the parameter δ for various system sizes L and U = 0 . The numerical data shows 
the creation of long distance entanglement as the parameter δ is increased, and reaches, asymptotically, the unit 
value as δ tends to 1. In conjunction with that, the threshold δT indicating the birth of long distance entanglement 
grows with the system size L. This is related essentially to the size effect. Indeed, as the system size increases, 
the amount of the end-to-end entanglement decreases, and with the increase of δ , this allows to generate new 
quantum correlations that will be added to the preexisting ones, when δ = 0 , which allows thus for the early 
appearance of the threshold as the system size deceases.

For instance, for L = 4 the long distance entanglement appears from δ = 0 , because already the end-to-end 
concurrence associated with the pair ρ1,4 in the ground state of the Fermi–Hubbard model Eq. (1) exhibits a 
non-vanishing value, as sketched in Fig. 1a. In this case, the increase of δ allows for an immediate increase of the 
long distance entanglement. However, increasing the system size to L = 6 for example, it is clear from Fig. 1a 
that the end-to-end concurrence vanishes for the pair ρ1,6 , and in this case a threshold δT manifests around 0.2 
for L≥6 , to create long distance entanglement. (c.f. Fig. 2a)

Nevertheless, a rapid assent to the asymptotic value of long distance entanglement is clear in Fig. 2a as the 
size of the chain L increases. As a matter of fact, as L grows, the pairwise entanglement at the borders ρ1,2 and 
ρL−1,L  declines50, and since the role of δ is to locate great amount of entanglement between the end sites ( ρ1 and 
ρL ) by excluding entanglement inside the pairs ( ρ1,2 and ρL−1,L ) at the borders, the rate of degradation of the 
entanglement inside ρ1,2 and ρL−1,L becomes faster as L grows with increasing δ , which accelerate the creation 
of long distance entanglement between the ends of the chain.

Figure 2b shows the effect of the Coulomb interaction U on the end-to-end concurrence, Eq. (13), of the 
ground state of the Fermi–Hubbard model, Eq. (15), with respect to the parameter δ , for L=10 . When U=0 , the 
long distance entanglement grows slowly but reaches asymptotically the unit value as δ tends to one. However, for 
non zero values of U, the entanglement grows rapidly up to the asymptotic value of 0.8. Moreover, the threshold 
δT marking the birth of long distance entanglement, diminishes for U>0 . This behaviour can be explained by 
the fact that the state of the pairs at the ends ρ1,L is described by the mixture 

∑

i Pi|ψ��ψ | which is generally 
dominated by the local half filled state (LHFS)50 associated with the probability PLHFS . For U=0 the LHFS is 
given by the state |ψ�U=0= 1

2
(|↑,↓� + |↓,↑� + |↑↓, 0� + |0,↑↓�) , which indicates the free motion of electrons 

between the sites. Nevertheless, the increase of δ reduces the effect of the hopping inside the pairs at the bor-
ders, which in turn reduces the quantum correlations in the form of entanglement, due to the probability PLHFS 
becoming insignificant. In contrast, according to the monogamy principle (Ref), the end-to-end entanglement 
grows since, in this case, PLHFS associated to the maximally entangled pure state ψLHFS increases and reaches the 
maximum value 1 at δ=1 , as shown in Fig. 2c. This explains the maximum attainable value 1 of the end-to-end 
entanglement at δ=1 when U=0.

Switching on the interaction U ( u/t>0 ), increases the in-site repulsion interaction which makes the electrons 
avoid the state of double occupancy. In this case, the local half filled state evolves with δ into the antiferromagnetic 
state |ψ�U>0= 1√

2
(|↑,↓� + |↓,↑�) at δ=1 . Simultaneously, PLHFS associated to this state evolves into the maxi-

mum unit value at δ = 1 . In such circumstances, ρ1,L is well described by a maximally entangled pure state. 
However, the quantum correlations contained in this state are less than those contained in |ψ�U=0 , and for this 
reason the concurrence, Eq. (13), saturates at 0.8 instead of 1 when U=0.

We turn our attention to the behaviour of the fidelity of quantum teleportation when the channel is described 
by the ground state of the Fermi–Hubbard model, Eq. (15). Figure 3a shows the behavior of the fidelity as a 
function of δ for different values of the system size L, at U=0 . We see that for weak values of δ , the smaller the 
system size, the faster the fidelity rises up above the classical threshold F = 2

5
 (dotted line). Nevertheless, as soon 

as the fidelity rise above the classical threshold, it grows rapidly with δ as the system size increases, reaching the 
saturation value 0.5 in the limiting case δ→1 . In the following, we will show how to bypass this saturation value 
by using the notion of Hubbard projective measurement in the quantum teleportation protocol.

Figure 2.  (a)+(b) The end-to-end concurrence, Eq. (13), with respect to δ for different chain sizes L, and for 
various values of U with fixed L, respectively. (c) Evolution of the occupation probabilities Pi of the local half 
filled state with respect to δ.
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Teleportation protocol with Hubbard projective measurement. We have demonstrated that the 
ground state of the Fermi–Hubbard, Eq. (15), with alternating weak and strong bonds allows for efficient quan-
tum teleportation with a fidelity showing quantum advantage. The results found overlap with the data generated 
for creating long distance entanglement in the ground state of the Heisenberg spin chain, by alternating the 
interaction J between the  sites7. However, for the Fermi–Hubbard model a maximally entangled state with con-
currence C(ρ1L)=1 seems to be insufficient for teleportation with unit fidelity and only 50% of the information is 
transferred. Indeed, such a behavior is related to the inappropriate basis choice in the measurement protocol. In 
the standard quantum teleportation protocol, the four-dimensional maximally entangled Bell state |ψ†� , Eq. (8), 
is employed as the entanglement resource to teleport a four-dimensional quantum state |�� , Eq. (6), where the 
Bell measurement is associated with the set of measurement operators {|ψnm��ψnm|} such that

with n,m = 0, 1, 2, 3 . In this case, the maximally entangled Bell state projectors

are not suitable for the Fermi–Hubbard states (the mixed entangled state resource ρij ) in the measurement 
receiver process. This can be clearly seen from the the fully entangled fraction f, Eq. (11), where f =1 only if the 
state |ψ+� and the entangled quantum state resource are identical, where the quantum state resource χ in (11) 
represents the density matrix ρij associated with two different sites of the Fermi–Hubbard model. Therefore, we 
propose an adequate projective measurements based on the maximally entangled Hubbard state, i.e. the local 
half filled  state50

This allows for the generation of a new framework based on the inherent properties of the Hubbard model, the 
set of Hubbard projective measurements that are defined by

in such away that the condition 
∑

nm Tr[EnmH ρij = 1 is satisfied and the sixteen generated states |ψnm� , Eq. (16), 
with n,m = 0, 1, 2, 3 , are orthonormal and maximally entangled states. This representation is more convenient 
for quantum teleportation in the Fermi–Hubbard model with unit fidelity. This is confirmed in Fig. 3b, where the 
end-to-end fidelity rise above the classical threshold (dotted line) quickly and saturates at the unit value as δ→1.

Hubbard model with alternating hopping amplitudes. In this part, we discuss another way to create 
long distance entanglement by modeling the hopping interaction of the Fermi–Hubbard model via alternating 
hopping amplitudes τa and τb , as sketched in Fig. 4. In this case the Hamiltonian can be written as:

Figure 5a shows that when τb<τa no end-to-end entanglement is produced and this is related to the fact that the 
state of the pairs at borders ρ1,2 and ρL−1,L in this case are strongly correlated and there is no entanglement to 
share between the end sites. Increasing τb , the end-to-end entanglement grows rapidly starting from a threshold 
value that satisfies τbT ≥ τa , and is dependent on the size of the chain L. This behaviour translates in the fidelity 

(16)|ψnm� = (Unm ⊗ I)|ψ+�

(17)Enm = Unm|ψ+��ψ+|(Unm)†,

(18)|ψ�LHFS =
1

2
(|↑,↓� + |↓,↑� + |↑↓, 0� + |0,↑↓�).

(19)EnmH = Unm|ψLHFS��ψLHFS|(Unm)†,

(20)H = −
∑

i,σ

τa

(

c†2i−1,σ c2i,σ + c†2i,σ c2i−1,σ

)

+ τb

(

c†2i,σ c2i+1,σ + c†2i+1,σ c2i,σ

)

+ u
∑

i

ni,↑ni,↓.

Figure 3.  The fidelity, Eq. (9), with respect to δ for several chain sizes. In (a) Bell state projection are performed, 
while (b) consists of Hubbard projective measurements.
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of teleportation which grows more rapidly to 1 while increasing τb for smaller chain sizes L, as shown in Fig. 5b. 
The effect of the Coulomb interaction on the end-to-end entanglement for a chain of L = 10 is depicted in 
Fig. 5c, where we see the threshold value is independent of U when U>0 . Additionally, the end-to-end concur-
rence rise rapidly to 1 for zero Coulomb interaction, while it reaches the asymptotic value of 0.8 for U>0 . Here 
again, the fidelity of teleportation follow the behavior of entanglement shown in Fig. 5d for L = 10 , where we see 
that the slight reduction in the amount of the entanglement between the ends of the chain due to the Coulomb 
interaction, translates into large losses in the fidelity of the quantum teleportation. We note here that the Hub-
bard projective measurements have been used in the protocol in order to achieve unit fidelity of the quantum 
teleportation, which in combination with the alternating hopping amplitudes renders the protocol independent 
of the input state to be teleported (c.f. Figure S2 in the supplementary materials).

Figure 4.  Sketch of the hopping bonds in the Hubbard chain, Eq. (20), with non uniform alternating τa and τb.

Figure 5.  (a)+(b) The end-to-end concurrence, Eq. (13), and fidelity, Eq. (9), respectively, with respect to τb for 
several chain sizes L. (c)+(d) The same functions for different values of U and fixed chain length L.
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Conclusion
In summary, we have examined the ability of the one-dimensional Fermi–Hubbard model to support long dis-
tance entanglement in order to exploit its ground state as a channel for quantum teleportation between distant 
parties. To achieve the goal, we considered the Fermi–Hubbard model with bonds of alternating strengths, and 
alternating hopping amplitudes. We have established, for both cases, that long distance entanglement can hold 
with a maximum unit value independently of the system size, only for zero Couloumb interaction. Exploiting 
the property of long distance entanglement generation in the ground state of the Fermi–Hubbard model, and 
considering the fact that the quantum states of such model are four dimensional states, we have successfully 
demonstrated the capability of the one dimensional Fermi–Hubbard chains to operate as quantum channels for 
four dimensional state teleportation. Finally, we showed the crucial role of the measurement basis in the standard 
teleportation protocol, where a unit fidelity cannot be attained only by choosing an adequate basis choice based 
on the inherent properties of the chosen quantum channel, i.e maximally entangled Hubbard states. Our results 
motivate the investigation of long distance entanglement in the ground state of the Bose-Hubbard model and 
the Fermi–Bose–Hubbard model in order to inspect the role of symmetry of the ground state on the generation 
of entanglement, and on the fidelity of information transfer.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 30 October 2022; Accepted: 13 January 2023

References
 1. Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information, 10th Anniversary Edition. https:// doi. org/ 10. 1017/ 

CBO97 80511 976667 (Cambridge University Press, Cambridge, 2010).
 2. Lars, J (2018). The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies. https:// 

doi. org/ 10. 1007/ 978-3- 319- 98824-5 (Springer, 2018).
 3. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. 

Lett. 70, 1895–1899. https:// doi. org/ 10. 1103/ PhysR evLett. 70. 1895 (1993).
 4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
 5. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum 

state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125. https:// doi. org/ 10. 1103/ PhysR 
evLett. 80. 1121 (1998).

 6. Miranowicz, A. & Tamaki, K. An introduction to quantum teleportation. arXiv: quant- ph/ 03021 14 (2003).
 7. Campos Venuti, L., Degli Esposti Boschi, C. & Roncaglia, M. Long-distance entanglement in spin systems. Phys. Rev. Lett. 96, 

247206. https:// doi. org/ 10. 1103/ PhysR evLett. 96. 247206 (2006).
 8. Bose, S. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901. https:// doi. org/ 10. 1103/ PhysR 

evLett. 91. 207901 (2003).
 9. Subrahmanyam, V. Entanglement dynamics and quantum-state transport in spin chains. Phys. Rev. A 69, 034304. https:// doi. org/ 

10. 1103/ PhysR evA. 69. 034304 (2004).
 10. Osborne, T. J. & Linden, N. Propagation of quantum information through a spin system. Phys. Rev. A 69, 052315. https:// doi. org/ 

10. 1103/ PhysR evA. 69. 052315 (2004).
 11. Li, Y., Shi, T., Chen, B., Song, Z. & Sun, C.-P. Quantum-state transmission via a spin ladder as a robust data bus. Phys. Rev. A 71, 

022301. https:// doi. org/ 10. 1103/ PhysR evA. 71. 022301 (2005).
 12. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008).
 13. Abaach, S., El Baz, M. & Faqir, M. Pairwise quantum correlations in four-level quantum dot systems. Phys. Lett. A 391, 127140 

(2021).
 14. Mzaouali, Z. & El Baz, M. Long range quantum coherence, quantum & classical correlations in Heisenberg xx chain. Phys. A Stat. 

Mech. Appl. 518, 119–130 (2019).
 15. Mzaouali, Z., Campbell, S. & El Baz, M. Discrete and generalized phase space techniques in critical quantum spin chains. Phys. 

Lett. A 383, 125932 (2019).
 16. Nikolopoulos, G. & Jex, I. Quantum State Transfer and Network Engineering. Quantum Science and Technology (Springer, Berlin, 

2013).
 17. Apollaro, T. J., Lorenzo, S. & Plastina, F. Transport of quantum correlations across a spin chain. Int. J. Mod. Phys. B 27, 1345035 

(2013).
 18. Lorenzo, S., Apollaro, T. J. G., Sindona, A. & Plastina, F. Quantum-state transfer via resonant tunneling through local-field-induced 

barriers. Phys. Rev. A 87, 042313. https:// doi. org/ 10. 1103/ PhysR evA. 87. 042313 (2013).
 19. Apollaro, T. J. G., Lorenzo, S., Plastina, F., Consiglio, M. & Życzkowski, K. Quantum transfer of interacting qubits. New J. Phys. 24, 

083025. https:// doi. org/ 10. 1088/ 1367- 2630/ ac86e7 (2022).
 20. Yousefjani, R. & Bayat, A. Parallel entangling gate operations and two-way quantum communication in spin chains. Quantum 5, 

460 (2021).
 21. Hermes, S., Apollaro, T. J., Paganelli, S. & Macri, T. Dimensionality-enhanced quantum state transfer in long-range-interacting 

spin systems. Phys. Rev. A 101, 053607 (2020).
 22. Pouyandeh, S. & Shahbazi, F. Quantum state transfer in xxz spin chains: A measurement induced transport method. Int. J. Quantum 

Inf. 13, 1550030 (2015).
 23. Lorenzo, S., Apollaro, T., Paganelli, S., Palma, G. & Plastina, F. Transfer of arbitrary two-qubit states via a spin chain. Phys. Rev. A 

91, 042321 (2015).
 24. Yang, Z., Gao, M. & Qin, W. Transfer of high-dimensional quantum state through an xxz-Heisenberg quantum spin chain. Int. J. 

Mod. Phys. B 29, 1550207 (2015).
 25. Bayat, A. Arbitrary perfect state transfer in d-level spin chains. Phys. Rev. A 89, 062302 (2014).
 26. Apollaro, T. et al. Many-qubit quantum state transfer via spin chains. Phys. Scr. 2015, 014036 (2015).
 27. Osborne, T. J. & Nielsen, M. A. Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110. https:// doi. org/ 10. 

1103/ PhysR evA. 66. 032110 (2002).
 28. Osterloh, A., Amico, L., Falci, G. & Fazio, R. Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610. 

https:// doi. org/ 10. 1038/ 41660 8a (2002).

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-3-319-98824-5
https://doi.org/10.1007/978-3-319-98824-5
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.80.1121
https://doi.org/10.1103/PhysRevLett.80.1121
http://arxiv.org/abs/quant-ph/0302114
https://doi.org/10.1103/PhysRevLett.96.247206
https://doi.org/10.1103/PhysRevLett.91.207901
https://doi.org/10.1103/PhysRevLett.91.207901
https://doi.org/10.1103/PhysRevA.69.034304
https://doi.org/10.1103/PhysRevA.69.034304
https://doi.org/10.1103/PhysRevA.69.052315
https://doi.org/10.1103/PhysRevA.69.052315
https://doi.org/10.1103/PhysRevA.71.022301
https://doi.org/10.1103/PhysRevA.87.042313
https://doi.org/10.1088/1367-2630/ac86e7
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1038/416608a


9

Vol.:(0123456789)

Scientific Reports |          (2023) 13:964  | https://doi.org/10.1038/s41598-023-28180-4

www.nature.com/scientificreports/

 29. Jin, B.-Q. & Korepin, V. E. Localizable entanglement in antiferromagnetic spin chains. Phys. Rev. A 69, 062314. https:// doi. org/ 10. 
1103/ PhysR evA. 69. 062314 (2004).

 30. Campos Venuti, L., Giampaolo, S. M., Illuminati, F. & Zanardi, P. Long-distance entanglement and quantum teleportation in xx 
spin chains. Phys. Rev. A 76, 052328. https:// doi. org/ 10. 1103/ PhysR evA. 76. 052328 (2007).

 31. Xiao-Qiang, X. & Wu-Ming, L. Generation of long-distance entanglement in spin system. Chin. Phys. Lett. 25, 2346–2349. https:// 
doi. org/ 10. 1088/ 0256- 307x/ 25/7/ 005 (2008).

 32. Giampaolo, S. M. & Illuminati, F. Long-distance entanglement in many-body atomic and optical systems. New J. Phys. 12, 025019. 
https:// doi. org/ 10. 1088/ 1367- 2630/ 12/2/ 025019 (2010).

 33. Dell’Anna, L. Long-distance entanglement in Motzkin and Fredkin spin chains. SciPost Phys. 7, 053. https:// doi. org/ 10. 21468/ 
SciPo stPhys. 7.4. 053 (2019).

 34. Hu, L.-Z., Xu, Y.-L., Zhang, P.-P., Yan, S.-W. & Kong, X.-M. Long-distance entanglement in antiferromagnetic xxz spin chain with 
alternating interactions. Phys. A Stat. Mech. Appl.https:// doi. org/ 10. 1016/j. physa. 2022. 128170 (2022).

 35. Cui, J. & Mintert, F. Robust control of long-distance entanglement in disordered spin chains. New J. Phys. 17, 093014. https:// doi. 
org/ 10. 1088/ 1367- 2630/ 17/9/ 093014 (2015).

 36. Rafiee, M. Measurement enhances long-distance entanglement generation in spin chains with dissipative processes. Eur. Phys. J. 
Dhttps:// doi. org/ 10. 1140/ epjd/ e2018- 90297-1 (2018).

 37. Sahling, S. et al. Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains. 
Nat. Phys. 11, 255–260 (2015).

 38. Campos Venuti, L., Degli Esposti Boschi, C. & Roncaglia, M. Qubit teleportation and transfer across antiferromagnetic spin chains. 
Phys. Rev. Lett. 99, 060401. https:// doi. org/ 10. 1103/ PhysR evLett. 99. 060401 (2007).

 39. Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G. & Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys. 
8, 75–75. https:// doi. org/ 10. 1088/ 1367- 2630/8/ 5/ 075 (2006).

 40. Mafu, M. et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. 
Phys. Rev. A 88, 032305. https:// doi. org/ 10. 1103/ PhysR evA. 88. 032305 (2013).

 41. Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 
88, 127902. https:// doi. org/ 10. 1103/ PhysR evLett. 88. 127902 (2002).

 42. Huber, M. & Pawłowski, M. Weak randomness in device-independent quantum key distribution and the advantage of using high-
dimensional entanglement. Phys. Rev. A 88, 032309. https:// doi. org/ 10. 1103/ PhysR evA. 88. 032309 (2013).

 43. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).
 44. Zhou, L. & Sheng, Y.-B. Complete logic bell-state analysis assisted with photonic faraday rotation. Phys. Rev. A 92, 042314. https:// 

doi. org/ 10. 1103/ PhysR evA. 92. 042314 (2015).
 45. Sheng, Y.-B., Deng, F.-G. & Long, G. L. Complete hyperentangled-bell-state analysis for quantum communication. Phys. Rev. A 

82, 032318. https:// doi. org/ 10. 1103/ PhysR evA. 82. 032318 (2010).
 46. Qiao, H. et al. Conditional teleportation of quantum-dot spin states. Nat. Commun. 11, 1–9 (2020).
 47. Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505. https:// doi. org/ 10. 1103/ PhysR evLett. 

123. 070505 (2019).
 48. El Kirdi, M., Slaoui, A., Ikken, N., Daoud, M. & Ahl Laamara, R. Controlled quantum teleportation between discrete and continu-

ous physical systems. Phys. Scr. 98, 025101 (2022).
 49. Nichol, J. M. Quantum-dot spin chains. In Entanglement in Spin Chains (eds Bayat, A. et al.) 505–538 (Springer, Berlin, 2022).
 50. Abaach, S., Faqir, M. & El Baz, M. Long-range entanglement in quantum dots with Fermi–Hubbard physics. Phys. Rev. A 106, 

022421. https:// doi. org/ 10. 1103/ PhysR evA. 106. 022421 (2022).
 51. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. 276, 238. https:// doi. org/ 10. 1098/ rspa. 1963. 0204 (1963).
 52. Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73. 

https:// doi. org/ 10. 1038/ natur e23022 (2017).
 53. Essler, F. H., Frahm, H., Göhmann, F., Klümper, A. & Korepin, V. E. The One-dimensional Hubbard Model (Cambridge University 

Press, Cambridge, 2005).
 54. Anfossi, A., Giorda, P. & Montorsi, A. Entanglement in extended Hubbard models and quantum phase transitions. Phys. Rev. B 

75, 165106 (2007).
 55. Gu, S.-J., Deng, S.-S., Li, Y.-Q. & Lin, H.-Q. Entanglement and quantum phase transition in the extended Hubbard model. Phys. 

Rev. Lett. 93, 086402 (2004).
 56. Kleftogiannis, I., Amanatidis, I. & Popkov, V. Exact results for the entanglement in 1d Hubbard models with spatial constraints. J. 

Stat. Mech. Theory Exp. 2019, 063102 (2019).
 57. Canella, G. A. & França, V. V. Superfluid-insulator transition unambiguously detected by entanglement in one-dimensional dis-

ordered superfluids. Sci. Rep. 9, 1–6 (2019).
 58. Harir, S., Zouhair, A., Boulahia, Z., Kazaz, M. & Boughaleb, Y. Quantum entanglement in ground state of extended Hubbard model. 

Int. J. Theor. Phys. 58, 3149–3157 (2019).
 59. Spalding, J., Tsai, S.-W. & Campbell, D. K. Critical entanglement for the half-filled extended Hubbard model. Phys. Rev. B 99, 

195445. https:// doi. org/ 10. 1103/ PhysR evB. 99. 195445 (2019).
 60. Zawadzki, K., Serra, R. M. & D’Amico, I. Work-distribution quantumness and irreversibility when crossing a quantum phase 

transition in finite time. Phys. Rev. Res. 2, 033167 (2020).
 61. Tarruell, L. & Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C. R. 

Phys. 19, 365–393. https:// doi. org/ 10. 1016/j. crhy. 2018. 10. 013 (2018) (Quantum simulation / Simulation quantique.).
 62. Bowen, G. & Bose, S. Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 

267901 (2001).
 63. Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323. https:// doi. org/ 10. 1080/ 09500 34941 45521 71 (1994).
 64. Horodecki, M., Horodecki, P. & Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 

60, 1888–1898. https:// doi. org/ 10. 1103/ PhysR evA. 60. 1888 (1999).
 65. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. 

Rev. A 54, 3824–3851. https:// doi. org/ 10. 1103/ PhysR evA. 54. 3824 (1996).
 66. Albeverio, S., Fei, S.-M. & Yang, W.-L. Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301. https:// doi. 

org/ 10. 1103/ PhysR evA. 66. 012301 (2002).
 67. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942. https:// doi. 

org/ 10. 1103/ RevMo dPhys. 81. 865 (2009).
 68. Ou, Y.-C., Fan, H. & Fei, S.-M. Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78, 012311. https:// 

doi. org/ 10. 1103/ PhysR evA. 78. 012311 (2008).
 69. Li, M., Fei, S.-M. & Wang, Z.-X. A lower bound of concurrence for multipartite quantum states. J. Phys. A: Math. Theor. 42, 145303. 

https:// doi. org/ 10. 1088/ 1751- 8113/ 42/ 14/ 145303 (2009).
 70. Zhu, X.-N., Li, M. & Fei, S.-M. Lower bounds of concurrence for multipartite states. In AIP Conference Proceedings, Vol. 1424. 

https:// doi. org/ 10. 1063/1. 36889 55 (2012).
 71. Weinberg, P. & Bukov, M. Quspin: A python package for dynamics and exact diagonalisation of quantum many body systems part 

i: Spin chains. SciPost Phys. 2, 1. https:// doi. org/ 10. 21468/ scipo stphys. 2.1. 003 (2017).

https://doi.org/10.1103/PhysRevA.69.062314
https://doi.org/10.1103/PhysRevA.69.062314
https://doi.org/10.1103/PhysRevA.76.052328
https://doi.org/10.1088/0256-307x/25/7/005
https://doi.org/10.1088/0256-307x/25/7/005
https://doi.org/10.1088/1367-2630/12/2/025019
https://doi.org/10.21468/SciPostPhys.7.4.053
https://doi.org/10.21468/SciPostPhys.7.4.053
https://doi.org/10.1016/j.physa.2022.128170
https://doi.org/10.1088/1367-2630/17/9/093014
https://doi.org/10.1088/1367-2630/17/9/093014
https://doi.org/10.1140/epjd/e2018-90297-1
https://doi.org/10.1103/PhysRevLett.99.060401
https://doi.org/10.1088/1367-2630/8/5/075
https://doi.org/10.1103/PhysRevA.88.032305
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevA.88.032309
https://doi.org/10.1103/PhysRevA.92.042314
https://doi.org/10.1103/PhysRevA.92.042314
https://doi.org/10.1103/PhysRevA.82.032318
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1103/PhysRevA.106.022421
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1038/nature23022
https://doi.org/10.1103/PhysRevB.99.195445
https://doi.org/10.1016/j.crhy.2018.10.013
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1103/PhysRevA.60.1888
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.66.012301
https://doi.org/10.1103/PhysRevA.66.012301
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevA.78.012311
https://doi.org/10.1103/PhysRevA.78.012311
https://doi.org/10.1088/1751-8113/42/14/145303
https://doi.org/10.1063/1.3688955
https://doi.org/10.21468/scipostphys.2.1.003


10

Vol:.(1234567890)

Scientific Reports |          (2023) 13:964  | https://doi.org/10.1038/s41598-023-28180-4

www.nature.com/scientificreports/

 72. Johansson, J., Nation, P. & Nori, F. Qutip 2: A python framework for the dynamics of open quantum systems. Part II: Bosons, 
fermions and higher spins. Comput. Phys. Commun. 184, 1234–1240. https:// doi. org/ 10. 1016/j. cpc. 2012. 11. 019 (2013).

 73. Johansson, J., Nation, P. & Nori, F. Qutip 2: A python framework for the dynamics of open quantum systems. Comput. Phys. Com-
mun. 184, 1234–1240. https:// doi. org/ 10. 1016/j. cpc. 2012. 11. 019 (2013).

 74. Johansson, J., Nation, P. & Nori, F. Qutip: An open-source python framework for the dynamics of open quantum systems. Comput. 
Phys. Commun. 183, 1760–1772. https:// doi. org/ 10. 1016/j. cpc. 2012. 02. 021 (2012).

 75. Guo, H. & Shen, S.-Q. Topological phase in a one-dimensional interacting fermion system. Phys. Rev. B 84, 195107. https:// doi. 
org/ 10. 1103/ PhysR evB. 84. 195107 (2011).

 76. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701. https:// doi. org/ 10. 1103/ PhysR 
evLett. 42. 1698 (1979).

 77. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850. https:// doi. 
org/ 10. 1103/ RevMo dPhys. 60. 781 (1988).

 78. Wang, D., Xu, S., Wang, Y. & Wu, C. Detecting edge degeneracy in interacting topological insulators through entanglement entropy. 
Phys. Rev. B 91, 115118. https:// doi. org/ 10. 1103/ PhysR evB. 91. 115118 (2015).

 79. Ye, B.-T., Mu, L.-Z. & Fan, H. Entanglement spectrum of Su–Schrieffer–Heeger–Hubbard model. Phys. Rev. B 94, 165167. https:// 
doi. org/ 10. 1103/ PhysR evB. 94. 165167 (2016).

Acknowledgements
S.A. acknowledges gratefully the National Center for Scientific and Technical Research (CNRST) for financial 
support (Grant No. 1UM5R2018). Z.M. acknowledges support from the National Science Center (NCN), Poland, 
under Project No. 2020/38/E/ST3/00269. This research is supported through computational resources of HPC-
MARWAN (www. marwan. ma/ hpc) provided by CNRST, Rabat, Morocco.

Author contributions
The authors confirm contribution to the paper as follows: study conception and data collection: S.A., Z.M.; 
analysis and interpretation of results: S.A., Z.M., M.E.B.; draft manuscript preparation: S.A., Z.M., M.E.B. All 
authors reviewed the results and approved the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 28180-4.

Correspondence and requests for materials should be addressed to Z.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1103/PhysRevB.84.195107
https://doi.org/10.1103/PhysRevB.84.195107
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/PhysRevB.91.115118
https://doi.org/10.1103/PhysRevB.94.165167
https://doi.org/10.1103/PhysRevB.94.165167
http://www.marwan.ma/hpc
https://doi.org/10.1038/s41598-023-28180-4
https://doi.org/10.1038/s41598-023-28180-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Long distance entanglement and high-dimensional quantum teleportation in the Fermi–Hubbard model
	The model and the teleportation protocol
	The Fermi–Hubbard model. 
	Quantum teleportation with -dimensional channels. 

	Long distance entanglement and fidelity enhancement
	The Hubbard model with alternating bonds. 
	Teleportation protocol with Hubbard projective measurement. 
	Hubbard model with alternating hopping amplitudes. 

	Conclusion
	References
	Acknowledgements


