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parallel in time dynamics 
with quantum annealers
Konrad Jałowiecki1*, Andrzej Więckowski2, piotr Gawron3,4 & Bartłomiej Gardas3,5

Recent years have witnessed an unprecedented increase in experiments and hybrid simulations 
involving quantum computers. in particular, quantum annealers. there exist a plethora of algorithms 
promising to outperform classical computers in the near-term future. Here, we propose a parallel 
in time approach to simulate dynamical systems designed to be executed already on present-day 
quantum annealers. in essence, purely classical methods for solving dynamics systems are serial. 
therefore, their parallelization is substantially limited. in the presented approach, however, the time 
evolution is rephrased as a ground-state search of a classical ising model. Such a problem is solved 
intrinsically in parallel by quantum computers. The main idea is exemplified by simulating the Rabi 
oscillations generated by a two-level quantum system (i.e. qubit) experimentally.

It is needless to say that simulating dynamical systems with near-term quantum technology poses one of the 
most difficult and technologically challenging  endeavor1. Various computations of certain aspects of many-
body quantum physics can already be assisted by the existing  hardware2–4. For instance, recent experiments 
have demonstrated that quantum  annealers5 can be turned into neural networks that can learn the ground state 
energy of a physical  system6. A similar task can also be accomplished with fewer qubits using quantum  gates7, 8.

The aforementioned examples characterize static processes where there is no real-time dynamics being 
simulated directly. Noticeably, near-term quantum annealers do simulate quantum annealing, which is a time-
dependent phenomenon. However, the optimization problem itself, i.e., the one to be solved by the annealer, 
exhibits no time  dependence9. Thus, following the time evolution, even of a single qubit on a quantum annealer 
is a challenging task for the current technology. This should, nonetheless, be possible at least in principle. Indeed, 
a time-dependent quantum problem can be (re)formulated as a static one, defined on an appropriately enlarged 
Hilbert  space10. This is realized using the Feynman’s clock  operator11, 12.

This observation naturally encapsulates a family of powerful algorithms referred to as parallel in time or 
parareal methods, often invoked to simulate the system’s dynamics on heterogeneous classical  hardware13, 14. 
The latter techniques effectively take advantage of the fact that a part of the evolution can be distributed and 
carried out in parallel. Nevertheless, with such an approach, one can never reach full parallelism on any classical 
hardware (of the Turing type) due to the communication  bottlenecks15. Nonetheless, these limitations do not 
apply to the quantum hardware. Quite the contrary, quantum computers operate in parallel and any algorithm 
(cf. Refs.16–18) they execute needs to be carefully designed from scratch to utilize their intrinsic parallelism fully.

As a proof of concept, in this article, we demonstrate how present-day quantum annealers may be pro-
grammed to simulate dynamical systems in parallel (due to their noisiness only in the specific regime of the 
problem’s parameters). In particular, we determine the time evolution of a single qubit (Rabi oscillations) solely 
from experiments conducted on the newest D-Wave 2000Q quantum  chip19–22. At the same time, due to the 
underlying connectivity (all-to-all) and the extensive amount of qubits it requires, the proposed algorithm 
constitutes a natural test which can determine the usefulness of various annealing technology realized by e.g. 
the Floquet  annealer23, the large-scale  (photonic24) Ising  machines25–28, and the Fujitsu digital  annealer29 in 
simulating physical systems.
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parallel in time dynamics
Consider a dynamical system (e.g. a quantum system isolated from its  environment30) whose behavior can 
be described by a L dimensional and possibly time-dependent, Kamiltonian K(t) (“Kamiltonian” refers to a 
Hamiltonian-like operator, K31.). The system dynamics is encoded, at all times, in a (quantum) state, |ψ(t)� , 
whose evolution is governed by a Schrödinger like  equation32,

This first order differential equation admits a unique solution |ψ(t)� := U(t, t0)|ψ(t0)� , where

propagates an arbitrary initial state, |ψ(t0)� , from t0 to t ≥ t0 whereas T denotes the time-ordering  operator33. 
Such an ordering can be omitted whenever [K(t),K(t ′)] = 0 . In particular, for time independent systems, 
∂tK(t) = 0 . Furthermore, when K(t) = −iH(t)/� where H(t)† = H(t) is a Hamiltonian, the evolution opera-
tor (2) is unitary and the dynamics (1) is norm preserving and reversible, i.e. U(t, t ′)† = U(t, t ′)−1 = U(t ′, t).

To solve Eq. (1), one usually discretizies the time interval [t0, t] selecting N distinct moments, i.e. 
t := tN−1 > · · · > tn+1 > tn > · · · > t0 . The dynamics can then be formulated as a sequence of unitary gates,

acting on an initial state. Note, each Un := U(tn+1, tn) can also be formally expressed using Eq. (2). Practically, 
however, for small time steps, all gates Un are approximated using variety of  methods32. Those include exact 
diagonalization for small  system34, Suzuki–Trotter  decomposition35, commutator-free  expansion36 or sophisti-
cated tensor networks  techniques37.

The latter equation provides a starting point for various sequential numerical schemes for solving differential 
equations on classical  computers38. In principle, however, those gates could also be realized on a quantum com-
puter, which could then resolve the unitary dynamics  efficiently32. Unfortunately, current quantum hardware 
does not allow for such gates to be constructed yet. Nevertheless, the underlying idea behind decomposition (3) 
can be harnessed to formulate an optimization problem that can be solved by present-day quantum  annealers4. 
This is the main idea we put forward in this work.

Indeed, consider a superposition of quantum states in different moments of time tn,

where the clock states are orthonormal, �tn|tm� = δnm . With the corresponding clock operator,

one obtains C |�� = 0|�� . Thus, |�� is the ground state of C . Obviously, this state is not unique since we have 
specified neither initial nor boundary condition. However, introducing a penalty, say C0 , allows one to provide 
additional constrains. In particular, specifying that C0 = |t0��t0| ⊗ (I − |ψ0��ψ0|) , the following linear system

encodes Eq. (1) subjected to |ψ(t0)� = |ψ0� . For hermitian systems, the above complex linear system of N × L 
equations expresses the reversible dynamics of the system in terms of a sequence of unitary gates (3). The her-
mitian clock operator can also be derived from e.g. time-embedded discrete variational principle (that is, the 
principle of least action)10. The idea can be further extended to open quantum  systems39.

To solve the dynamics expressed in Eq. (6) on a quantum annealer one needs to formulate it as an optimiza-
tion  problem12, 40, 41. Moreover, such an optimization needs to be encoded via the Ising spin-glass  Hamiltonian5 
(or  QUBO42) defined on a particular sparse graph called  chimera43 (or  pegasus44). We stress that these particular 
graphs are specific for the D-Wave hardware, and other architectures allow for a different connectivity between 
qubits. For instance, all-to-all (complete graph) in case of the (classical) Fujitsu Digital  annealer29. Furthermore, at 
least complex fixed-point arithmetic is also required to express quantum states in consecutive moments of  time45. 
Here, we incorporate a strategy introduced only recently in Ref.46, cf. also Ref.45 for real matrices. To this end, we 
employ a natural correspondence between complex numbers and real 2× 2 matrices, namely a+ bi �→ aÎ + ibσ̂y , 
to represent A using only real entries.

We further rely on a straightforward observation that the solution to Eq. (6), expanded in the standard basis 
as |x� =

∑

xi|i� , also minimizes the following functional h(x) = �A |x� − |���2 and vice versa. That is, a global 
minimum of h, i.e. x0 is a solution (6) as h(x0) = 0 . Moreover, when the simulated system is hermitian then A 
is positive definite. Therefore, x0 is also a minimum of

(1)
∂|ψ(t)�

∂t
= K(t)|ψ(t)�.

(2)U(t, t0) = T exp

(∫ t

t0

K(τ )dτ

)

,

(3)U(t, t0) = UN−1 · · ·Un+1Un · · ·U0,

(4)|�� =

N−1
∑

n=0

|tn� ⊗ |ψ(tn)�,

(5)C =

N−2
∑

n=0

(

|tn+1��tn+1| ⊗ I − |tn+1��tn| ⊗ Un + h.c.
)

,

(6)A |�� = |t0� ⊗ |ψ0�, A = C + |t0��t0| ⊗ I ,

(7)f (x) =
1

2
�x|A |x� − �x|�� as ∇f (x) = A |x� − |��, and ∇2f (x) = A > 0.
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Henceforward, we consider only hermitian systems and focus exclusively on the latter equation (This is mostly 
due to the technical limitations (e.g. coupling’s precision) of the current annealing technology.).

Since variables xi are real, the objective functions f (x) can not be programmed directly to be optimized on 
a quantum annealer. Nevertheless, one can obtain the so called fixed-point representation for each xi as a linear 
combination of binary variables qαi 45

The above correspondence is constructed with the assumption that R bits of binary representation are used for 
every real number in the solution vector. In our approach, the order of magnitude of the solution’s coefficients 
is also assumed, i.e. xi ∈ [−2D , 2D] for a fixed D ∈ N.

Therefore, the minimization problem to be solved on a quantum annealer can finally be formulated as

where

The constant energy contribution, f0 , can be omitted as both f (q) and f (q)− f0 have the same optimal solution 
q0 . Since f (q0) = 0 , one can easily asses the quality of the solution found by any heuristic approach.

For small N, QUBO (9) is defined on a complete graph [cf. Fig. 1b] with |V | = R × N × (2L) vertices. In 
contrast, when N ≫ 2 the number of edges is equal to the number of nonzero elements of A which is sparse. 
Currently, the biggest complete graph that can be embedded on the 2000Q chip has |V | = 65 vertices ( |V | = 180 
for the Pegasus  topology47), cf. Fig. 1. It is worth mentioning that classical solvers (hardware-based or otherwise) 
usually offer better connectivity and thus can realize much denser graphs without the need for embedding. For 
example, the so-called coherent Ising machines (among others) can incorporate complete graphs consisting of 
the order of 103  vertices26. Therefore, QUBO generated from the dynamics provide a natural “stress” test for those 
machines which can asses their usefulness in simulating physics.

Quantum annealing
Adiabatic quantum computing can be seen as an alternative paradigm of  computation5. Essentially, it is equivalent 
to the gate model of quantum computation that uses logical gates operating on quantum states to implement 
quantum  algorithms32. The main idea is based on the quantum adiabatic  theorem48. When a system starting 

(8)xi = 2D

(

2

R−1
∑

α=0

2−αqαi − 1

)

.

(9)f (q) =
∑

i,α

aαi q
r
i +

∑

i,j,α,β

b
αβ
ij qαi q

β
j + f0,

(10)
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αβ
ij = Aij2
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Figure 1.  (a) An example of a sparse chimera graph [here C2 (e.g., 2× 2× 8 ) consisting of 2 · 2 · 8 = 32 qubits, 
cf. Eq. (12)] and (b) the 9 qubits complete graph K9 embedded on C2 . Certain interactions on the chimera graph 
(marked as red) effectively “glue” physical qubits, σ̂ z

j  , to form logical variables, qαi  . (c)–(f) Rabi oscillations 
simulated on two generations of D-Wave quantum annealers. (c, d) the distribution of energy outputted by the 
annealers for different annealing times τ . The two instances were generated from Eq. (9) where R = 2 bits of 
precision was assumed. The total number of variables in the corresponding QUBO was |V | = 168 . Probability 
distributions are constructed from 104 samples retrieved from quantum annealers. (e, f) the evolution in time 
of the spin z-component of a two level system (13), ω = π/2 . The annealing time (green open square—20, red 
open circle—200, blue dots—2000) is measured in microseconds.
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from its ground state is driven slowly enough, it has time to adjust to any change, and thus it can remain in the 
ground state during the entire evolution.

Assume a quantum system is prepared in the ground state of an initial (“simple”) Hamiltonian H0 . Then, it 
will slowly evolve to the ground state of the final (“complex”) Hamiltonian Hp that one can harness to encode 
the solution to an optimization problem. In particular, the dynamics of the current D-Wave 2000Q quantum 
annealer is supposed to be governed by the following time-dependent Hamiltonian (cf. Ref.9)

where the problem Hamiltonian Hp realizes the spin-glass Ising model defined on the chimera graph, (E ,V ) , 
specified by its edges and vertices,

The annealing time τ varies from microseconds to milliseconds depending on the programmable  schedule9. 
Typically, during the evolution g(s) varies from g(0) ≫ 0 [i.e. all spins point in the x-direction] to g(τ ) ≈ 0 
whereas �(s) is changed from �(0) ≈ 0 to �(τ) ≫ 0 [i.e. H(τ ) ∼ Hp ]. Note, the Hamiltonian Hp is classical 
in a sense that all its terms commute. Thus, its eigenstates translate directly to classical optimization variables, 
qαi  , which we introduced to encode the time evolution (6) as QUBO (9). The Pauli operators σ̂ z

i  , σ̂ x
i  describe the 

spin degrees of freedom in the z- and x-direction respectively.
Dimensionless real couplers, Jij ∈ [−1, 1] , and magnetic fields, hi ∈ [−2, 2] , are programmable. In practice, 

the actual values of those parameters that are sent to the quantum processing unit differ from the ones speci-
fied by the user by a small amount δJij , δhi49. This is due to various reasons including noise effects which we will 
neglect in this work (cf. Ref.4, 50).

Most practical optimization problems are defined on dense graphs which can be embedded onto the chimera 
 graph51. There is, however, a substantial overhead that effectively limits the size of problems that can be solved 
with current quantum annealers. This is, nonetheless, an engineering issue that will most likely be overcome in 
the near  future23, 47.

Results
To exemplify the main idea we consider a two-level quantum system (qubit) whose Hamiltonian reads

where σ̂y is the Pauli spin matrix in the y-direction. For the sake of simplicity, we further set ω = π/2 . Moreover, 
due to the limited number of qubits and sparse connectivity of D-Wave quantum annealers, we mainly consider 
the system’s evolution at six distinct integer time points, starting from |ψ0� = |0� . This ensures that the dynamics 
can be captured precisely with two bits of precision per component of the state vector, thus allowing one to run 
experiments on the D-Wave 2000Q annealer. For the illustrative purposes we reconstruct �σ̂z�(t).

As depicted in Fig. 1, the low noise D-Wave 2000Q annealer was able to capture the dynamics faithfully [cf. 
Fig. 1d,f], for τ = 200 µs, 2000 µs. Therein, probability distributions, ρ , were constructed from 104 anneals. There 
were no post-processing involved and the Boltzmann temperature, β , was set to its default value. Furthermore, 
to construct the dynamics (Fig. 1d,f) only the lowest energy state, reported by the device, was utilized. For 
this particular problem excited states (also returned by the annealer) are not, a priori useful. This experiments 
demonstrate an improvement in comparison to the (not that) older generation, results for which are shown in 
Fig. 1c and e.

In contrast, results obtained from an emulation of the D-Wave output with tensor networks (cf. Ref.52) are 
presented in Fig. 2. As a reference point, we have also included solutions found by the CPLEX  optimizer53. 
Both these solvers, being purely classical, exhibit superior performance in comparison to the D-Wave quantum 
annealers (Assuming sufficiently large precision of all Aij.). This is noticeable especially for problems that require 
bigger graphs resulting from higher precision—(R ≥ 3 , N = 6 ), cf. Fig. 2a—or extra time points ( N > 6 , R = 2 ), 
cf. Fig. 2b. Similar degradation of the solution quality with the increasing problem size has been observed, 
e.g., in Ref.54, 55 in the context of problems requiring complete graphs, cf. Fig. 1. The behavior, as mentioned 
above, is expected from an early stage device which is prone to errors. Their origins, however, are anything but 
straightforward to pinpoint precisely. In stark contrast, there is yet another source of errors that is related to the 
precision of Jij , and hi56. Those errors are believed to be predominant for the type of simulations introduced in 
this work. Indeed, Fig. 2c–h shows the destructive (above all not monotonic) effect of the limited precision—r, 
of the problem coefficients Aij—on the solution. Beyond a certain threshold, neither the D-Wave annealer nor 
the aforementioned classical heuristics can reproduce the dynamics (i.e., oscillations) accurately.

As a final note, we stress that the precision R (the only one that influences the graph size) is the number of 
bits required for representing the discretized continuous variables, x [cf. Eq. (8)], which is different from r. The 
latter is an inherent characteristic of the hardware which stems from the DAC quantization step (for more details 
cf. D-Wave’s technical  notes56).

conclusions
In this article, we have proposed a parallel in time approach to simulate dynamical systems with the quantum 
annealing technology. While one should not expect current quantum annealers to be faster/better than classical 
computers, our results constitute, first and foremost, a proof of concept demonstrating how the technology can 

(11)H(s)/(2π�) = −g(s)
∑

i

σ̂ x
i −�(s)Hp, s ∈ [0, τ ],

(12)Hp =
∑

�i,j�∈E

Jijσ̂
z
i σ̂

z
j +

∑

i∈V

hiσ̂
z
i .

(13)H = ωσ̂y ,
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be employed to simulate the time evolution of simple (e.g. two-level) quantum systems (in certain regime of the 
corresponding parameters). This task is a priori difficult for the current prototypical quantum computers which 
are prone to errors and has been designed mostly to simulate static phenomena.

Furthermore, not only the Ising instances we have generated can be executed on the commercially available 
D-Wave annealers, but they can also be tested on: coherent Ising  machines24–28, the Floquet  annealer23, and the 
Fujitsu digital  annealer29 that celebrate all-to-all connectivity. This provides a practical “stress” test for those 
machines which can determine their usefulness in simulating various time-dependent properties of physical 
systems.

Received: 14 April 2020; Accepted: 24 June 2020

References
 1. Feynman, R. P. There’s plenty of room at the bottom. Caltech Eng. Sci. 23, 22–36 (1960).
 2. King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 456–460. https ://

doi.org/10.1038/s4158 6-018-0410-x (2018).
 3. Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165. https ://doi.org/10.1126/

scien ce.aat20 25 (2018).
 4. Gardas, B., Dziarmaga, J., Zurek, W. H. & Zwolak, M. Defects in quantum computers. Sci. Rep. 8, 4539. https ://doi.org/10.1038/

s4159 8-018-22763 -2 (2018).
 5. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363. https ://doi.

org/10.1103/PhysR evE.58.5355 (1998).
 6. Gardas, B., Rams, M. M. & Dziarmaga, J. Quantum neural networks to simulate many-body quantum systems. Phys. Rev. B 98, 

184304. https ://doi.org/10.1103/PhysR evB.98.18430 4 (2018).
 7. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 

242–246. https ://doi.org/10.1038/natur e2387 9 (2017).
 8. Cervera-Lierta, A. Exact Ising model simulation on a quantum computer. Quantum 2, 114. https ://doi.org/10.22331 /q-2018-12-

21-114 (2018).
 9. Lanting, T. et al. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041. https ://doi.org/10.1103/PhysR evX.4.02104 

1 (2014).
 10. McClean, J. R., Parkhill, J. A. & Aspuru-Guzik, A. Feynman’s clock, a new variational principle, and parallel-in-time quantum 

dynamics. Proc. Natl. Acad. Sci. USA 110, E3901–E3909. https ://doi.org/10.1073/pnas.13080 69110  (2013).
 11. Caha, L., Landau, Z. & Nagaj, D. Clocks in Feynman’s computer and Kitaev’s local Hamiltonian: bias, gaps, idling, and pulse tuning. 

Phys. Rev. A 97, 062306. https ://doi.org/10.1103/PhysR evA.97.06230 6 (2018).
 12. Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78, 012352. https 

://doi.org/10.1103/PhysR evA.78.01235 2 (2008).
 13. Baffico, L., Bernard, S., Maday, Y., Turinici, G. & Zérah, G. Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66, 

057701. https ://doi.org/10.1103/PhysR evE.66.05770 1 (2002).
 14. Ruprecht, D. Shared memory pipelined parareal. In Euro-Par 2017: Parallel Processing (eds Rivera, F. F. et al.) 669–681 (Springer 

International Publishing, Cham, 2017). https ://doi.org/10.1007/978-3-319-64203 -1_48.
 15. Hill, M. D. & Marty, M. R. Amdahl’s Law in the Multicore Era. Comput. J. 41, 33–38. https ://doi.org/10.1109/MC.2008.209 (2008).
 16. Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. 

Comput. 26, 1484–1509. https ://doi.org/10.1137/S0097 53979 52931 72 (1997).

(c) (d) (e)

(f) (g) (h)

Figure 2.  (a, b) Performance of the two state of the art heuristic algorithms: the CPLEX optimizer (CP) 
and a recent solver based on tensor networks (TN) in comparison to the D-Wave 2000Q quantum annealer 
(DW), cf. Fig 1. The corresponding QUBO instances (encoded using double numerical precision) had total 
of |V | = 360 and |V | = 624 spin variables for (a), and (b) respectively. The annealing time was set to τ = 200

µs. The numerical precision of the solution vector is denoted as R. (c)–(h) Degradation of the solution quality 
resulting from the truncation of the problem coefficients, cf. Eq. (10), to a given numerical precision denoted 
as r. The numerical results were obtained by finding the ground state with tensor networks (TN). As a reference 
point, we included experimental data from the D-Wave 2000Q quantum annealer (DW). This effect is expected 
to be predominant for the current quantum annealing technology. It is already visible on Figs. 1c–f,  2a,b and it 
further increases with the increasing graph size V.

https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1038/s41598-018-22763-2
https://doi.org/10.1038/s41598-018-22763-2
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevB.98.184304
https://doi.org/10.1038/nature23879
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1073/pnas.1308069110
https://doi.org/10.1103/PhysRevA.97.062306
https://doi.org/10.1103/PhysRevA.78.012352
https://doi.org/10.1103/PhysRevA.78.012352
https://doi.org/10.1103/PhysRevE.66.057701
https://doi.org/10.1007/978-3-319-64203-1_48
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1137/S0097539795293172


6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13534  | https://doi.org/10.1038/s41598-020-70017-x

www.nature.com/scientificreports/

 17. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328. https ://doi.org/10.1103/
PhysR evLet t.79.325 (1997).

 18. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502. https ://
doi.org/10.1103/PhysR evLet t.103.15050 2 (2009).

 19. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654. https ://doi.org/10.1103/PhysR ev.51.652 (1937).
 20. Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced rabi oscillations in two-level atoms excited 

inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178. https ://doi.org/10.1103/PhysR evLet 
t.51.1175 (1983).

 21. Brune, M. et al. Quantum rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803. https ://doi.
org/10.1103/PhysR evLet t.76.1800 (1996).

 22. Barnes, E. & Das Sarma, S. Analytically solvable driven time-dependent two-level quantum systems. Phys. Rev. Lett. 109, 060401. 
https ://doi.org/10.1103/PhysR evLet t.109.06040 1 (2012).

 23. Onodera, T., Ng, E. & McMahon, P. L. A quantum annealer with fully programmable all-to-all coupling via Floquet engineering. 
NPJ Quantum Inf. 6, 48. https ://doi.org/10.1038/s4153 4-020-0279-z (2020).

 24. Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic ising machine by spatial light modulation. Phys. Rev. Lett. 122, 
213902. https ://doi.org/10.1103/PhysR evLet t.122.21390 2 (2019).

 25. McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617. 
https ://doi.org/10.1126/scien ce.aah51 78 (2016).

 26. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606. https ://doi.org/10.1126/
scien ce.aah42 43 (2016).

 27. Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a 
coherent Ising machine. Nat. Photonics 8, 937. https ://doi.org/10.1038/nphot on.2014.249 (2014).

 28. Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photonics 10, 415. https 
://doi.org/10.1038/nphot on.2016.68 (2016).

 29. Aramon, M. et al. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48. 
https ://doi.org/10.3389/fphy.2019.00048  (2019).

 30. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775. https ://doi.
org/10.1103/RevMo dPhys .75.715 (2003).

 31. Goldstein, H., Poole, C. & Safko, J. Classical Mechanics (Addison Wesley, New York, 2002).
 32. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University 

Press, Cambridge, 2010).
 33. Kosovtsov, Y. N. The chronological operator algebra and formal solutions of differential equations (2004). arXiv:math-ph/0409035.
 34. Iskakov, S. & Danilov, M. Exact diagonalization library for quantum electron models. Comput. Phys. Commun. 225, 128–139. https 

://doi.org/10.1016/j.cpc.2017.12.016 (2018).
 35. Hatano, N. & Suzuki, M. Finding Exponential Product Formulas of Higher Orders, 37–68 (Springer Berlin Heidelberg, Berlin, 

Heidelberg, 2005).
 36. Alvermann, A. & Fehske, H. High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. 

Phys. 230, 5930–5956. https ://doi.org/10.1016/j.jcp.2011.04.006 (2011).
 37. Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315. https ://doi.org/10.1103/RevMo dPhys 

.77.259 (2005).
 38. Wanner, G. & Hairer, E. Solving ordinary differential equations II (Springer, Berlin Heidelberg, 1996).
 39. Tempel, D. G. & Aspuru-Guzik, A. The Kitaev-Feynman clock for open quantum systems. New J. Phys. 16, 113066. https ://doi.

org/10.1088/1367-2630/16/11/11306 6 (2014).
 40. Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15, 3241. https ://doi.

org/10.1088/0305-4470/15/10/028 (1982).
 41. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5. https ://doi.org/10.3389/fphy.2014.00005  (2014).
 42. Wang, Di. & Kleinberg, R. Analyzing quadratic unconstrained binary optimization problems via multicommodity flows. Discrete 

Appl. Math. 157, 3746. https ://doi.org/10.1016/j.dam.2009.07.009 (2009).
 43. Choi, V. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193. 

https ://doi.org/10.1007/s1112 8-008-0082-9 (2008).
 44. Next-Generation Topology of D-Wave Quantum Processors. https ://www.dwave sys.com/sites /defau lt/files /14-1026A -C_Next-

Gener ation -Topol ogy-of-DW-Quant um-Proce ssors .pdf. Accessed 05 June 2020.
 45. Chang, C. C., Gambhir, A., Humble, T. S. & Sota, S. Quantum annealing for systems of polynomial equations. Sci. Rep. 9, 10258. 

https ://doi.org/10.1038/s4159 8-019-46729 -0 (2019).
 46. Michael L Rogers, R. L. S. J. Floating-Point Calculations on a Quantum Annealer: Division and Matrix Inversion (2019). 

arXiv:1901.06526.
 47. Dattani, N., Szalay, S. & Chancellor, N. Pegasus: The Second Connectivity Graph for Large-scale Quantum Annealing Hardware 

(2019). arXiv:1901.07636.
 48. Avron, J. E. & Elgart, A. Adiabatic theorem without a gap condition. Commun. Math. Phys. 203, 445–463. https ://doi.org/10.1007/

s0022 00050 620 (1999).
 49. Więckowski, A., Deffner, S. & Gardas, B. Disorder-assisted graph coloring on quantum annealers. Phys. Rev. A 100, 062304. https 

://doi.org/10.1103/PhysR evA.100.06230 4 (2019).
 50. Gardas, B. & Deffner, S. Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. 8, 17191. https ://doi.

org/10.1038/s4159 8-018-35264 -z (2018).
 51. Dattani, N. & Chancellor, N. Embedding Quadratization Gadgets on Chimera and Pegasus Gaphs (2019). arXiv:1901.07676v1.
 52. Rams, M. M., Mohseni, M. & Gardas, B. Heuristic Optimization and Sampling with Tensor Networks (2018). arXiv:1811.06518.
 53. CPLEX optimizer. https ://www.ibm.com/analy tics/cplex -optim izer. Accessed 29 July 2020.
 54. King, A. D., Bernoudy, W., King, J., Berkley, A. J. & Lanting, T. Emulating the Coherent Ising Machine with a Mean-Field Algorithm 

(2018). arXiv:1806.08422.
 55. Hamerly, R. et al. Experimental investigation of performance differences between coherent ising machines and a quantum annealer. 

Sci. Adv. 5, eaau0823. https ://doi.org/10.1126/sciad v.aau08 23 (2019).
 56. D-Wave System Documentation. https ://docs.dwave sys.com/docs/lates t/c_qpu_1.html. Accessed 8 Sept 2019.

Acknowledgements
All authors are thankful to Marek M. Rams and Jacek Dziarmaga for very fruitful discussions and comments. 
This work was supported by the National Science Centre (NCN, Poland) under Grant No. 2015/19/B/ST2/02856 
(KJ), 2016/22/E/ST6/00062 (PG), 2016/23/B/ST3/00647 (AW), 2016/20/S/ST2/00152 (BG) and NCN together 
with European Union through QuantERA ERA–NET program 2017/25/Z/ST2/03028 (BG). BG acknowledges 

https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRevLett.51.1175
https://doi.org/10.1103/PhysRevLett.51.1175
https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1103/PhysRevLett.109.060401
https://doi.org/10.1038/s41534-020-0279-z
https://doi.org/10.1103/PhysRevLett.122.213902
https://doi.org/10.1126/science.aah5178
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1038/nphoton.2014.249
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1016/j.cpc.2017.12.016
https://doi.org/10.1016/j.cpc.2017.12.016
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1088/1367-2630/16/11/113066
https://doi.org/10.1088/1367-2630/16/11/113066
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1016/j.dam.2009.07.009
https://doi.org/10.1007/s11128-008-0082-9
https://www.dwavesys.com/sites/default/files/14-1026A-C_Next-Generation-Topology-of-DW-Quantum-Processors.pdf
https://www.dwavesys.com/sites/default/files/14-1026A-C_Next-Generation-Topology-of-DW-Quantum-Processors.pdf
https://doi.org/10.1038/s41598-019-46729-0
https://doi.org/10.1007/s002200050620
https://doi.org/10.1007/s002200050620
https://doi.org/10.1103/PhysRevA.100.062304
https://doi.org/10.1103/PhysRevA.100.062304
https://doi.org/10.1038/s41598-018-35264-z
https://doi.org/10.1038/s41598-018-35264-z
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1126/sciadv.aau0823
https://docs.dwavesys.com/docs/latest/c_qpu_1.html


7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13534  | https://doi.org/10.1038/s41598-020-70017-x

www.nature.com/scientificreports/

the Google Faculty Research Award 2018. We gratefully acknowledge the support of NVIDIA Corporation with 
the donation of the Titan V GPU used for this research.

Author contributions
K.J., A.W., P.G., B.G. developed ideas and derived the main results. K.J. and A.W. prepared figures. K.J., A.W., 
P.G., B.G. wrote and reviewed the manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Parallel in time dynamics with quantum annealers
	Anchor 2
	Anchor 3
	Parallel in time dynamics
	Quantum annealing
	Results
	Conclusions
	References
	Acknowledgements


