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Abstract
The emergence of complex structures in the systems governed by a simple set of rules is among the
most fascinating aspects ofNature. The particularly powerful and versatilemodel suitable for
investigating this phenomenon is provided by cellular automata, with theGame of Life being one of
themost prominent examples. However, this simplifiedmodel can be too limiting in providing a tool
formodelling real systems. To address this, we introduce and study an extended version of theGame
of Life, with the dynamical process governing the rule selection at each step.We show that the
introducedmodification significantly alters the behaviour of the game.We also demonstrate that the
choice of the synchronization policy can be used to control the trade-off between the stability and the
growth in the system.

1. Introduction

Cellular automata (CA) provide a powerfulmodel of computation, whichwas developed tomimic the
emergence of complex phenomena, including self-replication [1], in the systems governed by afinite set of
simple rules. CAhave found applications inmany branches of science [2], including physics, where theywere
utilized as amodel for thermodynamic systems [3] and to develop a formulation of quantummechanics [4], in
computer science, where thismodel has been used to study various aspects of computation [5–7], or even in
chemistry as amodel for complex reactions [8, 9]. Depending on the characteristic of the studied phenomena,
the variety ofmodifications of the basemodel has been proposed [10], and the recent survey of different
approaches to cellular automata is provided by Bhattacharjee et al [11].

Significant research effort has been devoted to investigate the significance of the updating policy for the
systemsmodelled byCA. The study of asynchronous cellular automata has been actively developed, and the
summary of recent developments is provided in a review paper by Fatès [12]. In particular, the effect of the
update policy on the stability of cellular automata has been investigated by Baetens et al [13]. The detailed
comparison of synchronous, asynchronous, and sequential updating for a class of cellular automatawas
provided by Reia andKinouchi [14], demonstrating that the changes in the update policy destroy the typical
structures in the studied automata. Similarly, the stochastic update policy—including the randomupdate or
disruption of the cell-to-cell transmission of information— has been used to probe the robustness of the
behaviour of elementary cellular automata [15]. As a result, a wide variety of results has been observed for the
case of 1D cellular automata. The detailed study of the asynchronous behaviour, based on the disruption of
information, is presented by Bouré et al [16]. However, in that case themain focuswas on randomdisruptions of
the transmission of information between cells.

AmongCA, the prominent example is provided by theGame of Life (GoL), which is an example of 2DCA
capable of universal computation [17]. As the synchronous update is not suited to provide amodel ofmany
realistic systems, alternativemodels for obtaining behaviour observer in theGoL have been proposed [18]. In
[19] amodification of theGoL has been introduced inwhich only a fraction of patches is updated during each
time step. The updating scheme proposed in [19] has been utilized in the asynchronousGoL described in [20],
where the statistical properties of the introducedmodel have been investigated.

RECEIVED

2March 2023

REVISED

5 July 2023

ACCEPTED FOR PUBLICATION

22 September 2023

PUBLISHED

4October 2023

© 2023 IOPPublishing Ltd

https://doi.org/10.1088/1402-4896/acfc6c
https://orcid.org/0000-0001-8790-101X
https://orcid.org/0000-0001-8790-101X
mailto:jmiszczak@iitis.pl
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/acfc6c&domain=pdf&date_stamp=2023-10-04
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/acfc6c&domain=pdf&date_stamp=2023-10-04


Concerning themotivation behind the chosen updating policy, it can be influenced by the particular
research topic. For example, in [21] the asynchronous updatingwas based on themutual influence of agents.
Probabilistic cellular automatawere investigated usingmotivation fromphysics, computer science, and biology
[22–24].More recently, a systematic study of cellular automatawith random rules has been provided [25, 26]. In
particular, Aguilera-Venegas et al [27] considered a probabilistic version of theGoL. Thismodel has also been
exploited to study the power of quantumannealing devices [28].

Several variants of theGoLwere studied to explore the possibility of extending thismodel. For example, a
version including asymmetry in the interaction has been proposed [29], where a system inwhich agents are
biased towards their nearest neighbours and annihilate as theymeet was proposed.Moreover, a self-referencing
variant has been studied tomodel the traces each generation leaves in the environment [30]. Such traces affect
the shape of the next generations of the population. Thismodification overcomes the lack of state feedback,
which is one of the limitations of conventional cellular automata, but can be observed in natural evolving
systems.

Another opportunity to enrich theGoL is to extended the space of possiblemoves. In particular, the
continuous variant of theGoLwas proposed [31, 32] and it was observed that this system supports a great
diversity of complex structures. As one of the emerging paradigms of computing is based on the quantum
mechanics [33], the quantumversion of theGoL has also been introduced [34, 35], and studied in the context of
non-classical correlations [36].Moreover, it it has been suggested that theGoL can be realized on quantum
computing platforms [37] and result in behaviour leading to the formation of small-worldmutual information
networks [38].

In this work, we follow this track ofmodifications, andwe study themodel of 2D cellular automata enriched
by the possibility of altering the set of rules during the game. In particular, we propose a variant of theGoLwith
space of possible rules governed by rulemodification processes.We consider two scenarios—probabilistic rule
switching and deterministic rule switching.Our goal is to demonstrate the trade-off between the stability and the
growth in the system.We provide arguments suggesting that this trade-off can be controlled if one can consider
synchronous and asynchronous updating policies combinedwith the rule selectionmechanisms.

The remaining part of this paper is organized in the followingmanner. In section 2, we extend the standard
model of theGoL and introduce two variants of the rule switchingmechanisms by enabling the selection of the
rules during the evolution.We investigate the properties of the introducedmodels in section 3 by presenting a
series of numerical results and commenting on the presented results. Finally, in section 4we summarize the
paper, discuss the possible extensions, provide possible applications of the selectedmodels, and include some
concluding remarks.

2. Rule switchingmechanisms

The standard version of theGoL is defined by the 2D lattice, with each cell being in one of the states—dead (state
0, white cell) or alive (state 1, black cell). At each step, the cell is updated by taking into account itsMoore
neighbourhood. If the living cell has two or three living neighbours, it will stay alive. However, if it has only one
living neighbour (underpopulation) ormore than three living neighbours (overpopulation) it will die. On the
other hand, if a dead cell has exactly three living neighbours, it will become alive, emulating the birth process.
Finally, the state of the lattice is updated after the state of each cell has been calculated.

Clearly, the requirement for updating the start of all cells at the same time is very limiting. Thus, it is natural
to consider a relaxed version of theGoL, where only a fraction of cells has their state updated simultaneously
[19]. However, the rule used by each cell is independent and identical at each step, which limits the flexibility of
themodel.

This limitation is intrinsic to deterministic cellular automata. To address it, a stochastic version of 1D
version of theGoLwas proposed in [39]. In this case, the randomness is incorporated into themodel by altering
the rule governing the evolution of each cell. In particular, in 1Dmodel from [39], a cell has afixed probability of
remaining alive in the case of overpopulation.

In this work, we aim at combining both approaches, andwe consider an extended version of theGoLwith
the possibility of choosing at each step a rule to be used for updating the state. Thus, we extend the freedomof the
systemby the possibility of altering the rules used at each step to calculate the next state of the cells. Additionally,
we consider twomodes of updating. In the asynchronousmode, each cell updates its state immediately after
calculating it, while in the synchronousmode, the state update is thefinal element of the simulation step.

As theGoLwas designed tomimic the behaviour of living organisms such as bacteria, it is natural to expect
that the choice of rules will be dictated by the desire to balance the interplay between the resistance to
overpopulation and the need to breed new living cells. In the presentedworkwe focus only on the changes
dictated by the alternation of the cell resistance to overpopulation.
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For the sake of simplicity, we do not consider thememory of the process. To bemore specific, in the
describedmodels the rules selected at each step do not depend on the history of previous decisions. In such case,
it is natural to consider two possible scenarios.

In thememory-less scenario, the rule to be applied at step is based on a random choicemade during the
move. To bemore precise, the random choice is used to select the rule-set to be used. Aswe are aiming at using
themodified definition of theGoL, the particular rule for each cell depends—as in the case of the standardGoL
—on the number of living cells in its neighbourhood.

Alternatively, one can consider a scenario inwhich the rule switching is based on a prescribed sequence of
moves. In this case, the resulting game is equivalent to a deterministic composition of two games. Again, in this
variant, one can consider a variety of processes used to construct the policy of the cells for choosing the update
rules. In this paper, we consider only a fully deterministic case, where the rules from some set of rules are used
periodically.

2.1. Probabilistic rule switching
Let us start by considering the case where the rule selection is governed by amemoryless, randomprocess. In
suchmodewe extend the original GoL and include two evolution rules,1 and2 Each of the rules is givenwith
afixed probability, p and q= 1− p, respectively. Additionally, we assume that the probability of choosing one of
the rules is constant during the evolution.

As it has already been pointed out, we restrict our considerations to the case where the behaviour of the
system is alteredwith respect to the overpopulation. This is equivalent to stating that we consider the case where
the rules differ regarding the threshold, r, for which the living cell will die due to the overcrowding. In the case of
the standardGoL, this threshold is set to r= 4. Such setup leads to the process described by the pseudocode
presented in Procedure 1.

Procedure 1.Random selection of rules in theGoL.

Input: threshold r for overpopulation, probability p of using the standard rule

for i = 0 to n do

x←U(0,1) {Randomnumber fromuniformdistribution on [0,1)}
if x p then

¬ci ( )GoL r2, 3, {Use an alternative rule}
else

¬ci ( )GoL 2, 3, 4 {Use the standard rule, r = 4}
end if

end for

Clearly, the situation presented in Procedure 1 describes one of the possible situations where each cell can
use one of the rules from a predefined set of rules. One can considermore complexmethods, e.g., withmore
alternative rules used in the procedures.

The process of selecting the rule to be used at each step is governed by the uniformdistribution.However, in
a general case one could incorporate into thismodel an arbitrary strategy for randomly selecting one of the rules,

¼  , , , n1 2 , from a predefined set. This, in principle, can be used to alter the behaviour of the cells by
modifying their preferences for choosing the rules.

2.2.Deterministic rule switching
In the above scenario, the limitation of the standardGoL for using only a predefined rule was lifted by
introducing random selection policy. However, the rule switchingmechanism can be introduced inmany
differentmanners.

As an alternative approach, one can consider a deterministic policy for switching between the rules. In such
case, instead of selecting among the available rules, ¼  , , , n1 2 , the system is evolving by specifying the order
of utilizing the rules at each step,  ...k k k

m1 1
m1 2
.

A particulate case of this scheme, with n= 2, is presented in Procedure 2.Here, we restrict ourselves to1

and2, representing the standard rule and the rule with themodified resistance for the overpopulation. In this
particular case, the specification of the rule switching is given by the string of 0s and 1s.

Procedure 2.Deterministic selection of rules in theGoL based on the predefined sequence.
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Input: threshold r for the alternative rule, s string of 0s and 1s describing the rule selectionmechanism

for i = 0 to n do

[ ( )]¬  x s i smod {Select the next element of s}
if x = 1 then

( )¬c GoL r2, 3,i

else

¬ci ( )GoL 2, 3, 4

end if

end for

One should note that the particular case of n ones results in the situationwhere the alternative rule is always
applied. Similarly, the sequence of n zeros leads to the standard version of theGoL.On the other hand, it is
possible to define an arbitrary policy for rule selection by specifying a string s or by defining amethod for
updating it depending on the internal state of the systemor some external conditions. Thanks to this, the
proposed version of theGoL ismore flexible in the applications related to biological and social systems, where it
is natural to expect that the rule selection policy will evolve due to some factors affecting the system.

2.3. Updating policy
In addition to considering the possibility of switching rules during the course of the game, we consider two cases
of the updating policy. In the synchronous case, the state of each cell is calculated and the state updating is
executed after all cells have their next state calculated. Naturally, in this case, the order of calculating the next
state is not relevant.

On the other hand, we also consider a situationwhere the state of the cell is updated immediately after it is
calculated. Thus, the order of the cells used to calculate their next state is important [40]. In particular, one
should note that the updating order could also be used to significantly alter the behaviour of themodel. For
example, in the populationwith two variants of agent, the updating speed could be different. However, in the
following considerations, we assume that the cells are selected in a randomorder.

3.Numerical results

In this sectionwe present the results of numerical experiments executed for selected instances of themodified
GoL.We start with the presentation of the patters formingwhen the variants introduced in the previous section
are used. For this purpose, we include a comparison of the final configurations obtained for different setups.
Next, we describe the stability of the system in synchronous and asynchronous scenarios. Finally, we show to
what degree the change in the rule selectionmechanism and the synchronization policy has impact of the growth
in the system.

3.1. Pattern formation
Let us start by discussing themain differences one can observe in thefinal configurationswith different
parameters used by the rule selectionmechanism. For this purpose, we describe the results of the numerical
experiments based on the described procedures. Unless stated otherwise, in each case we consider a lattice L× L
with L= 26= 64, with periodic boundary conditions tominimize the finite-size effect. To ensure that the state
of the lattice is representative, we use 250 simulation steps, each one consisting of playing the game by all agents.

In the synchronous update policy, corresponding to the standard version of theGoL, the state of the lattice is
updated globally at the end of each simulation step. Thus, the state of the lattice is calculated using the state
obtained in the previous step.

On the other hand, in the asynchronous policy, the state of each agent is calculated and updated
immediately. Thus, each simulation step consists of the calculation of the next state of the cell and the update of
the cell state. The order of cells is chosen randomly [40]. However, one should note that even for the
deterministic choice of cells, the asynchronous and the synchronous policies will lead to different behaviours.

Thefirst observation one canmake from the comparison of synchronous versus asynchronous updating is
the latter leads to the formation of stable, long-range patterns. From the examples presented infigure 1, one can
see that the patters formed for the values of the threshold r> 4 have homogeneity increasing with both the value
of r and the probability of utilizing the rule based on the higher threshold. This effect is not visible for the
synchronous updating. Thus, one can conclude the asynchronous policy leads tomore predictable pattern
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formation, while the synchronous policy leads to unstable patterns, even for alternative rules with high
resistance for overpopulation.

It is also interesting to note the difference in the behaviourwhen comparing the deterministic and the
probabilistic rule selectionmechanisms for a fixed alternative threshold. In the probabilistic case, from the
configurations presented infigure 2 one can conclude that the random selectionmechanism leads to a higher
density of living cells (cf figures 2(j) and (t)withfigures 2(e) and (j)). It is also visible that the long-range patterns
observed in the asynchronous case aremore robust for the random rule selectionmechanism (cf figures 2(g) to
(j)with figures 2(q) to (t)). This suggests that the random selection of rules leads to amore stable behaviour of the
system. Additionally, one can note that the deterministic selection of rules does not increase the density of living
cells for the synchronous updating policy (cf. figures 2(a) to (e)). For this reason, one can see that the
randomness of rule selection is essential for the observed effects, and it is preferred over the deterministic rule
switchingmechanism.

Figure 1.Typical configurations for random rule switchingmechanisms for the synchronous (top two rows) and the asynchronous
(bottom two rows) updating policies. Examples of configurations after 500 steps of simulation for values of rule switching probability,
p = 0.25 and p = 1, and the second threshold r = 4, 5, 6, 7, 8 used in the alternative rule. The gamewas played on a periodic lattice of
size 64 × 64. In this case, the asynchronous updating leads to the formation of long-range patterns. The patters formed for the values
of the threshold r > 4 have homogeneity increasingwith the value of r and the probability of utilizing the rule based on the higher
threshold. This effect does not occur for the synchronous updating, and one can conclude that the asynchronous policy leads tomore
predictable pattern formation.
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3.2. Stability
Another aspect of the consideredmodel is the stability of the pattern formation. From the results presented in
figures 1 and 2 one can observe thefinal configurations of the system.However, it is well-known that in the
standardGoL, thefinal configurations is rarely static.

In this case, themost interesting observation is the interplay between the synchronization and the stability.
From the results presented infigure 1, one can observe that the system can achieve higher number of the living
cells with the increasing value of the threshold used in the alternative rules. This is expected, as the increase in the
value of the alternative thresholdmight be understood as a immunity against overpopulation.

However, as one can see infigure 3, this effect ismore prominent for the asynchronous updating policy.
Moreover, in random rule selectionmechanism itmore effective in both synchronous and asynchronous
scenario. In the synchronous policy, the growth in the number of living cells is slower than in the asynchronous
case. This suggests that asynchronous policymakes the systemmore suitable for growth. Additionally, for the

Figure 2.Typical configurations for deterministic and probabilisticmechanisms of rule switching. In the probabilistic case, the rules
are selectedwith equal probability. Examples illustrate thefinal configurations after 250 steps of simulation for the second threshold,
r = 4, 5, 6, 7, 8, for the synchronous—panels (a) to (e) and (k) to (o)—and the asynchronous—panels (f) to (j) and (p) to (t)—version
of the updating policy. In the deterministic case, the standard and the alternative rules are applied interchangeably. In the probabilistic
case, the choice of the rules ismade using a bitflip. From the obtained configurations, one can conclude that the random selection
mechanism leads to a higher density of living cells (cf. panels (t) and (o)with panels (j) and (e)). It is also visible that the long-range
patterns observed in the asynchronous case aremore robust for the random rule selectionmechanism (cf. panels (g) to (j)with panels
(q) to (t)). This suggests that random selection of rules leads to amore stable behaviour of the system. It is alsoworth noting that the
deterministic selection of rules does not increase the density of living cells for the synchronous updating policy (cf panels (a) to (e)).
Thus, the randomness of rule selection is essential for the observed effects.
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deterministic rule selectionmechanisms, it is impossible to achieve a stable number of living cells. Thus, in the
case of synchronous policy, deterministic rule selection leads to unstable behaviour. The above observations
suggest that the random rule selection policy leads tomore stable andmore predictable growth in the system.

3.3. Synchronization and growth
Finally, themain conclusion from the numerical results presented in the previous sections is that the introduced
model clearly displays the trade-off between the stability and the growth. To assess the impact of the rule

Figure 3. Sample realization for the percentage of living cells for theGoLwith different rule switchingmechanisms and for
synchronous and asynchronous cases. In this case, the gameswere playedwith the second threshold set to (a) r = 6 and (b) r = 8. For

the random rule switchingmechanics, each rule is appliedwith probability
1

2
. One should note that for the deterministic case, rules are

switched after each step. For both cases, both synchronization policies were used. Each plot contains realizations of four possible
scenarios. For the higher values of the alternative threshold, the system can achieve higher number of the living cells. However, this is
possible only for the asynchronous updating policy. Random rule selectionmechanism ismore effective in both synchronous and
asynchronous scenarios. Additionally, for the deterministic rule selectionmechanisms, it is impossible to achieve a stable number of
living cells.
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selectionmechanism and the updating policy on the growth in theGoL, we calculate average number of living
cells for all introduced scenarios and compare this vale with different values of the second threshold.

The results for the random rule selectionmechanisms are presented in figure 4. In this situation, it is possible
to distinguish two cases. For the second threshold r= 4 and r= 5, representing a small increase in the immunity
comparingwith the standardGoL, it is impossible to achievemore than 50%of the living cells. Comparing this
with the baseline of≈50% in the asynchronous scenario, one can conclude that the small changes in the
immunity are irrelevant in the case of the asynchronous updating. Additionally, in the asynchronous case for
r= 6, the increase in the probability above p≈ 0.7 leads to the decrease in the growth. This can be explained
considering that the increased immunity for overpopulation is in this case compensated by the increased
growth. For r= 7 and r= 8 one can observe that for both updating policies such increase in the immunity is
beneficial for the growth. It is also visible that the asynchronous updating policy leads to the stronger growth in
the system.Moreover, one should note that the difference between the immunity levels ismore prominent in the
case of the synchronous policy, especially for the larger values of p. This leads to a conclusion that the
asynchronous updating promotes the growth in the system, even for the case when a small fraction of population
has increased immunity to overpopulation.

3.4. Pattern complexity
Let us nowprovide an attempt at grasping the quantitative difference in the spatial correlations and the formof
structures observed during the evolution of the introducedmodels. To this endwe adapt the approach utilized in
[41], based on the analysis of the complexity of the patterns [42–44] formed by theGoL.

In this approach, the complexity of 2Dpatterns is described by the conditional entropy

( ∣ ) ( ) ( ∣ ) ( )å= -H x y P x y P x y, log , 1
x y,

2

where P(x, y) is the joint probability of observing state (x,y) of points x and y, andP(x|y) is the conditional
probability of observing x given y. Conditional entropy quantifies the amount of information required to
describe the state of variable x, provided that the information about the state of the variable y is available. Hence,
it can be understood as the amount of information required to describe the complexity.

In the case of 2Dpattern, x and y represent discrete states of the cells, x, y ä {0, 1}. For a given cell x, the
conditional entropy is calculated as the average of the conditional entropies regarding its neighbourhood. For
the purpose of our analysis we follow the approach from [41] andwe use the vonNeumannneighbourhood.
Hence, the complexity of the pattern is captured by averaging conditional entropies calculated in four directions,

Figure 4.Average number of living cells for different values of probability in the random rule selectionmechanism. Plotted results
were obtained for synchronous (left) versus asynchronous (right) updating policy for different values of the second threshold. Average
number of living cells for 64 × 64 lattice, 250 steps, averaged over 200 realizations, for the values of the second threshold r = 4, 5,K,9.
Datamarkedwith black pluses depict the baseline case of the standardGoL.Datamarkedwith yellow squares depict the case r = 9,
representing the situationwith the total immunity to overpopulation. One can see that in both cases for the second threshold r = 4
and r = 5 it is impossible to achieve above 50%of the living cells. In the asynchronous case for r = 6, the increase in the probability
above p ≈ 0.7 leads to the decrease in the growth. For r = 7 and r = 8 one can observe that the asynchronous updating policy leads to a
stable growth in the system.Note that for the case with the second threshold r = 4, the values do not depend on the probability.
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( ) [ ( ∣ ( )) ( ∣ ( )) ( ∣ ( )) ( ∣ ( ))] ( )= + + + - + + + + -C x H x x H x x H x x H x x
1

4
1, 0 1, 0 0, 1 0, 1 , 2

where x+ (dx, dy) represents the cell at positionwith coordinates shifted by (dx,dy). The conditional entropy of
the full configuration is calculated as the average conditional entropy of all cells,

˜
∣ ∣

( ) ( )å=
Î

C
X

C x
1

, 3
x X

whereX is the set of all cells. One should note that the increasing value of C̃ corresponds to the increasing
randomness of the configurations resulting from the rule applications.

The results for the averagemutual entropy for the random rules with different second threshold are provided
infigure 5.One can observe that both for the synchronous and for the asynchronous updating regimes, one can
reduce the entropy by increasing the probability of utilizing the alternative rule. In the case of the synchronous
updating, the entropy of the generated patterns increases with the probability of utilizing the alternative rules, as
long as p< 0.5. For the values of p> 0.5, the effects of entropy reduction occur in both the synchronous and the
asynchronous case for all values of the alternative threshold r> 5.However, for values p> 0.5 the effect ismore
noticeable in the case of the asynchronous regime for r� 7. Interestingly, for the case of r= 9, corresponding to
introducing total immunity to overpopulation, for p< 0.5, the effect of entropy increase is observed in the
synchronous regime.On the other hand, for r> 0.5, for both regimes, with the increasing domination of the rule
promoting total immunity to overpopulation, themutual entropy is decreasing similarly.

4. Final remarks

In the presentedworkwe introduced an extended version of theGoL cellular automata incorporating
randomness into the rule selection policy.We also provided an insight into the connections between the
synchronization policy and the rule selection in theGoL, and their impact on the dynamics of the system. The
introduced version of theGoL is extendedwith the possibility of selecting one of the rules during the evolution.
Thanks to this, we relaxed the condition of using only a single rule during the evolution. As such, the introduced
model can be used tomodify a policy for rules selection during the evolution bymodifying the probability of rule
selection depending on the state of the system.Hence, the proposed version can bemore flexible in applications
related to biological and social systems.

One should note that the presentedmodels significantly extend themodels of 1D stochastic GoL developed
in [39], where the randomness of themodel was due to the presence of noise. In theGoLwith random rules, the
randomness is controlled in the sense that it can be tuned to provide the desired effect. Hence, the presented
model is richer and provides aflexible tool for describing complex systems.

Figure 5.Complexity of the patterns generated for the synchronous and asynchronous scenarios for theGoL for different values of
random rule switching probabilities. Each line represents a variant with the gamewith a specified second threshold. The datawere
obtained for averaging over 103 realizations of the process, with each process evolving for 250 steps. In this case the lattice size was set
to 32 × 32.Note that for the casewith the second threshold r = 4, the values do not depend on the probability.
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For the purpose of the presented studywe used only simplemechanisms—deterministic, where the rules are
exchanged after each step, or random,where the rule is chosenwith some fixed probability. In both cases, we do
not take into account thememory.We also do not adapt the rule selection to the current state of the cell or
neighbouring cells. Suchmechanism could be included by altering the probability of choosing one of the rules
depending on the population of the living cells in the neighbourhood.

Moreover, we have limited our investigation to the case where the rule switchingmechanisms do not depend
on the history.However, one can consider the version of the rule switchingmechanismwhere the selection of a
rule at the current time-step depends on the history of the cell. In particular, it is possible to consider a
mechanism inwhich the cell tends to decrease its resistance to the overpopulation. This is equivalent to
increasing the probability of using an alternative rule growingwith the living time of the cell. Such amechanism
would be useful for incorporating into theGoL a kind of acquired immunity. As the cellular automata stores the
memory of the previousmoves in its states, it is natural to use the current state of the cell to choose the rule to be
applied at a given step. Thesemechanisms are actually applied in the standard case of theGame of Life, where the
next state is calculated using the number of living cells in theMoore neighbourhood and using the current state.
However, by introducing the additional parameter stored by each cell, one can significantly increase the
complexity of the studiedmodel.

Anothermethod for studying the effects of the variable rulemechanismon the formed patterns could be
based on the underlying connectivity of the resulting graphs.However, in this case one has to take into account
that the formed patterns are not static, and the dynamics has to be included into the process of computing
metrics such as clustering coefficient.

The presentedwork provides a simple example of themodification of theGoLwhich can lead to interesting
newbehaviour. Recent applications of probabilistic cellular automata in physics [45] and chemistry [46] provide
some of the examples of using such automata. This suggests that by combining the asynchronous updating
policy with the freedomof choosing the updating rules, one can describemany interestingmodels, capable of
grasping the rich behaviour patterns in complex physical and biological systems.
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AppendixA.Model implementation

Thismodel used to execute numerical experiments is implemented inNetLogo language as a version ofGoL
cellular 2D automaton extendedwith the ability to alter the rules utilized by the cell during the evolution. The
implementation of themodel can be downloaded from [47]. Additionally, in order to facilitate the
reproducibility, themodel, description of experiments, controlling scripts, and visualization scripts weremade
available frompublic repository [48].

Simple versions of randomand deterministicmechanisms of rules selection are implemented. In both case,
at each step, the cell can be updated according to one of the rules - the standard one and the alternative one. The
standard rule is identical to the rule for dying due to overpopulation (Any alive cell with four ormore alive
neighbours dies, because of the overpopulation). The alternative rule for threshold r is: Any alive cell with r of
more alive neighbours dies, because of the overpopulation.

Additionally, one can switch between synchronous and asynchronous state updating policies. In the
synchronous updating policy, corresponding to the standard version ofGoL, the state of the lattice is updated
globally at the end of each simulation step. In the asynchronous policy, the state of each agent is calculated and
updated immediately. Thus, each simulation step consists of the calculation of the next state of the cell, and the
update of the cell state. The cells are updated in randomorder randomly.
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The following parameters of themodel are available through the controls (see figure A1):

• world-size—size of the lattice used to run the simulation;

• init-life—percentage of living cells at the beginning of the simulation;

• synchronous—toggle between synchronous and asynchronous updating policy;

• deterministic—toggle between deterministic and random rule selectionmechanism;

• deterministic-period—the number of iterations between the utilizations of the alternative rule in the
deterministic rule switchingmechanism;

• rule-switch-prob—set the probability of utilizing an alternative rule in the random rule switching
mechanism;

• second-threshold—threshold used in the second (alternative) rule used in the game.

After setting the required parameters, useSetupworld button to initialize the simulation. To run the
model ones, usePlaylife button.Loop button runs the game in a loop, andPlay50times runs 50
simulation cycles.
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