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Abstract. We present a model of the edge router between electronic
and all optical networks. Arriving electronic packets of variable sizes are
stored at a buffer the volume of which is equal to the fixed size of optical
packet. When the buffer is filled, its content becomes an optical buffer
and dispatched to optical network. To avoid excessive delays, the optical
packet is sent also after a specified deadline. The model is based on diffu-
sion approximation and validated by discrete event simulation. Its goal is
to determine the probability distribution of the effective optical packet
sizes an distribution of their interdeparture times as a function of the
interarrival time distribution, distribution of the electronic packet sizes,
the value of deadline and the size of buffer. We use real traffic data from
the CAIDA (Center for Applied Internet Data Analysis) repositories.

1 Introduction

In all-optical networks which are still a technology under development, switching
is performed by optical nodes and the optical signal is not converted to electronic
form along the whole way through the network. This may improve substantially
the network performance. However, it is not easy to organize. Electronic nodes
are able to queue and prioritize packets, to decide the further routing, while the
optical ones may only, if needed, delay the signal in special fibre loops. That is
why the ingress router should do as much work as possible: incoming electronic
packets are here sorted by destination and by class of service (e.g. CoS1, CoS2,
Best Effort). We consider the performance of a single buffer where packets of
the same destination and class are stored.

The high demand for more bandwidth and high speed networks have moti-
vated a lot of research in the design, optimization and performance evaluation of
IP over all-optical networks [6]. There is a great need to improve the efficiency
of the packetization process since the delay in IP over all optical network is the
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sum of the delays in the packetization process, the delays in the buffer where
the packets are scheduled into the all optical network, the propagation delays in
the optical transmission links and the delays in the optical nodes.

Here, we use diffusion approximation which is an analytical tool developed to
evaluate the performance of queueing systems with general arrival and general
service time distributions, [12,13]. The diffusion process represents here the pro-
cess of assembling and framing electronic IP packets into optical packets. Our
study is based on the packetization model proposed in [7] which we formerly
studied in [6] using Markovian model solved numerically with a Probabilistic
Model Checker (Prism).

The diffusion models are validated by a discrete event simulation model devel-
oped using the JAVA programming language. We use a synthetic traffic in form
of Poisson process and real traffic traces from the CAIDA repositories. The
performance measures we consider are the distribution of optical packet inter-
departure times (delays introduced by packetization and regularity of traffic at
optical side) and the distribution of the size of content in optical packets which
are of constant size but may be only partially filled (throughput).

2 Packetiztion in IP over All-Optical Networks

Packetization in IP over all optical networks is the process of grooming smaller
electronic IP packets into larger optical packets. It is carried out in the edge
node where the incoming IP packets are classified based on their QoS classes,
destination and other relevant parameters, queued in a buffer until the buffer
is full or until the filling deadline expires. This has given rise to two types of
packetization algorithms adopted in IP over all optical networks. These are the
maximum time (Max Time) and the maximum time maximum size (Max Time
Max Size) algorithms described in detail in [8]. In the Max Time algorithm, after
a predefined deadline T , the content of the buffer is emptied while in the Max
Time Max Size, the buffer is emptied after the predefined deadline has expired
or after the maximum size of the buffer N is reached, even if the deadline has
not yet expired.

The authors in [4,6,7] adopted the Max Time Max Size algorithm but with
the modification that if the mean size of the arriving IP packet say m, is larger
than the free available space in the buffer, the buffer is considered to be full,
its content is dispatched as an optical packet and the rejected IP packet is
rescheduled in the next filling cycle. The authors in [9] proposed two adaptive
packetization (assembly) algorithms which are packet-based dynamic-threshold
algorithm for burst assembly (dyn-threshold-packet) and the byte-based dynamic
threshold algorithm for burst assembly. They used synthetic traffic (Poisson
traffic and Markov Modulated Poisson Process traffic) and the real traffic traces
from a traffic data repository maintained by the measurement and analysis on
the WIDE Internet (MAWI) working group of the WIDE Project to demonstrate
that the dynamic threshold-based assembly algorithms perform substantially
better than the usual timer-based schemes. The authors in [14] are proposing a
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packetization scheme with adaptive expiration times, determined in response to
local and/or global queue sizes.

In this paper, we considered the first two criteria above and then solve diffu-
sion equations without considering the influence of the deadline (MTMS-S) and
in another case without considering the influence of the buffer size (MTMS-T),
that is considering the influence of the deadline. However, we still considered the
packetization mechanism that we used in [6], alongside the first two criteria.

3 Simulation Model

A discrete event simulation model written in Java was prepared. In simulation
we used traffic traces from CAIDA (Center for Applied Internet Data Analysis)
[1] repositories. CAIDA routinely collects traces on several backbone links, in
the examples that follow we used measurements of the size of IP v4 packets and
their interarrival times from Equinix Chicago link collected during one hour on
18 February 2016, having 22 644 654 packets belonging to 1 174 515 IPv4 flows,
[2].

In the model we compare the performance of the buffer in presence of the
resulting intensity of CAIDA traffic flow (in bytes per time unit) with Poisson
traffic of the same intensity. The dispersion of the real traffic intensity is clearly
larger and limited only by the maximum throughput of the link. The time unit
is 0.01 sec, in this scale the burstiness of traffic is seen the best. The same time
unit was then applied in diffusion model.

The assumed size of the buffer was N = 10000 bytes, corresponding to the
size of about 15 (14.32) average packets or 6.66 maximum packets size. The
simulation results concerning the distribution of interdeparture times of optical
packets and their filling without and with deadline T = 0.02 s are in next sections
compared with diffusion approximation results.

4 Diffusion Approximation Model Without Deadline

In this section we develop diffusion approximation model for the interdeparture
times of optical packets with no deadline. Since the incoming IP packets are
queued up in the buffer until the buffer is full we can treat this system as a
queueing system with mean interarrival rate λ and mean service rate μ = 0.

The principle of the diffusion approximation is to replace the number of
customers in a queueing system by the value of diffusion process X(t), [12,13].
The solution of the diffusion equation

∂f(x, t;x0)
∂t

=
α

2
∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)
∂x

(1)

where βdt and αdt represent the mean and variance of the changes of the diffusion
process at dt, defines the conditional probability density function (pdf) of the
diffusion process f(x, t;x0) = P [x ≤ X(t) < x + dx | X(0) = x0] of X(t).
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The density of the unrestricted diffusion process starting from x0 is, e.g. [3]

φ(x, t;x0) =
1√

2Παt
exp

[
− (x − x0 − βt)2

2αt

]
(2)

and in case of starting the process at x0 = 0 and having the absorbing barrier
at x = N (i.e. the process is ended when it comes to the barrier, f(N, t) = 0 for
t > 0), is

φ(x, t) =
1√

2Παt

{
exp

[
− (x − βt)2

2αt

]
− exp

[
2βN

α
− (x − 2N − βt)2

2αt

]}
. (3)

The first passage time from x = 0 to the barrier has density γ0,N (t)

γ0,N (t) = − d

dt

∫ N

−∞
φ(x, t)dx =

N√
2Παt3

exp
[
− (N − βt)2

2αt

]
. (4)

This first passage time approximates the time of filling the buffer and also the
interdeparture time between optical packets. The filling of the buffer starts at
x = 0 when t = 0, and ends at the barrier at x = N where N corresponds to the
size of the buffer. The value x of the diffusion process at time t represents the
current filling of the buffer.

The number of bytes arrived at a unit of time is a product of two independent
random variables: X – the number of packets and Y – the size of packets. The
mean of a product variable XY is E(XY ) = E(X)E(Y ) and the variance is

V ar(XY ) = E(X2Y 2) − (E(XY ))2 =
V ar(X)V ar(Y ) + V ar(X)(E(Y ))2 + V ar(Y )(E(X))2,

the mean number of arrived at a time unit packets is E(X) = λ and the variance
is V ar(X) = λ3σ3

A, therefore the mean of arrived at time unit bytes is β = λm
and the variance of number of arrived at a time unit bytes that define α is

α = λ3σ2
Aσ2

m + λ3σ2
Am2 + σ2

mλ2

We may refine this model having in mind that the interdeparure time includes
time the buffer stays empty, that means completion time of the interarrival time
(below, for simplicity we take the interarrival time distribution fA(x) of packets
after which the diffusion is started not at zero but at a point corresponding to
the size of the first arriving packet, i.e. at x0 = ξ given by the distribution fH(ξ)
of the packet size:

γ(t) = fA(t) ∗
∫ H

0

γξ,N (t)fH(ξ)dξ

where * is the convolution operation.
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5 Diffusion Approximation Model with Deadline

If we do not consider the deadline, the optical packets leaving the buffer are
always full. In case of deadline T , the expression (4) of the first passage time
evaluates the density of probability γ0,x(x)

γ0,x(x) = − x√
2ΠαT 3

exp
[
− (x − βT )2

2αT

]
(5)

that the filling of the buffer ends at position x (provided that the process was
not ended on its way to x) because of the deadline T . Dispatched this way the
optical packet contains x bytes, the remaining N −x of its volume being empty:
The probability density that the diffusion process will end exactly when the
deadline T is reached is given by:

γ0,N (T ) =
∫ ∞

T

γ0,N (t)dt = N

[
2 − erfc

(
N − Tβ√

2Tα

)
+ e

2Nβ
α erfc

(
N − Tβ√

2Tα

)]

(6)
where

erfc(t) = 1 − erf(t), erf(t) =
2√
Π

∫ t

0

e−ξ2
dξ.

Figure 1 compares the interdeparture times obtained by simulation and dif-
fusion approximation in case of deadline and Poisson input. The influence of
deadline is hardly seen as the passage time in case of Poisson traffic are usually
shorter than T . In case of more dispersed real traffic the passage time may be
larger and probability that the filling ends with deadline, expressed by Eq. 6 is
distinct. The solutions for the model without deadline are quite similar to those
in the figures except spikes resulting from deadline.

When the deadline is reached, the buffer should be cleared and the diffusion
equation should be provided with jumps performed from the point x to x = 0
with the density γ0,x(x). Some similar models of diffusion with jumps back were
discussed in [10]. Here, the diffusion equation

∂f(x, t, x0)
∂t

=
α

2
∂2f(x, t, x0)

∂x2
+ β

∂f(x, t, x0)
∂x

− γf(x, t, x0) (7)

in steady state becomes a second order homogeneous linear differential equation
with solution

f(x) = C1e
z1x + C2e

z2x

where z1, z2

z1 =
β

α
+ W, z2 =

β

α
− W, W =

√
β2

α2
+

2γ

α

are the roots of the characteristic polynomial

α

2
z2 − βz − γ = 0
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Fig. 1. Interdeparture times, simulation and diffusion approximation with deadline
(Poisson input).

0

20

40

60

80

100

120

140

160

180

200

0 0.005 0.01 0.015 0.02 0.025 0.03

PD
F

interdeparture time [s]

sim CAIDA sizes, deadline
diff CAIDA sizes, deadline

Fig. 2. Interdeparture times, simulation and diffusion approximation with deadline
(CAIDA input).

e.gelenbe@imperial.ac.uk



74 G. S. Kuaban et al.

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 2000 4000 6000 8000 10000

PD
F

size [b]

sim CAIDA sizes, deadline
diff CAIDA sizes, deadline

Fig. 3. Distribution of packet sizes in case of deadline, diffusion approximation and
simulation, (CAIDA input).

Using the border condition limx→0 f(x) = 0 (C1 = −C2) and the normaliza-
tion

∫ N

0
f(x)dx = 1, we have

f(x) = C(ez2x − ez1x), C = z2e
−z2N − z1e

−z1N . (8)

We use this solution to approximate the probability that the the buffer is filled up
to the value x when the deadline comes with density given by Eq. 5. Distribution
of effective packet sizes, given by diffusion approximation and simulation real
(CAIDA) traffic is displayed in Fig. 3.

6 Conclusions

In a comparatively easy way diffusion approximation gives reasonable model of
interdeparture time distribution and of useful packet size after framing electronic
packets to optical packet at the electronic-optical edge node. The model may be
refined to capture the influence of the insufficient space when the buffer is almost
full and the incoming packet starts a new filling cycle.
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