The IoTAC Software Security-by-Design Platform:
Concept, Challenges, and Preliminary Overview

Miltiadis Siavvas*, Erol Gelenbe T, Dimitrios Tsoukalas*, Ilias Kalouptsoglou®, Maria Mathioudaki*, Mert Nakip t
Dionysios Kehagias*, Dimitrios Tzovaras*
* Centre for Research and Technology Hellas, Thessaloniki, Greece
Institute of Theoretical & Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
siavvasm@iti.gr, seg@iitis.pl, tsoukj@iti.gr, iliaskaloup @iti.gr, mariamathi @iti.gr, mnakip @iitis.pl,
diok @iti.gr, dimitrios.tzovaras @iti.gr

Abstract—Ceritical everyday activities handled by modern IoT
Systems imply that security is of major concern both for the end-
users and the industry. Securing the IoT System Architecture is
commonly used to strengthen its resilience to malicious attacks.
However, the security of software running on the IoT must be
considered as well, since the exploitation of its vulnerabilities
can infringe the security of the overall system, regardless of how
secure its architecture may be. Thus, we present an IoT Software
Security-by-Design (SSD) Platform, which provides mechanisms
for monitoring and optimizing the security of IoT software
applications throughout their development lifecycle, to validate
the broader security of the IoT software. This paper describes
the proposed SSD platform that leverages security information
from all phases of development, using some novel mechanisms
that have been implemented, and which can lead to a holistic
security evaluation and future security certification.

Keywords—Internet of Things, Software Security, Requirements
Engineering, Static Analysis, Vulnerability Prediction

I. INTRODUCTION

Modern Internet of Things (IoT) Systems consist of a large
number of interconnected and highly diverse devices, such
as sensors, actuators, gateways, etc., often accessible and
controllable through the Internet. The high interconnectivity
and accessibility of modern IoT Systems, along with the
criticality of the daily activities that they monitor and control
(e.g. smart living, autonomous driving, industrial control, etc.)
render their security an aspect of utmost concern, both for the
users and the owning enterprises [1].

An effective way of securing an IoT System is by securing
its architecture. This can be achieved through conformance
to International IoT Security Standards and the deployment
of various security countermeasures, such as intelligent at-
tack detection, prevention, and mitigation mechanisms, se-
curity gateways, honeypots, etc. Several initiatives have re-
cently focused on extending well-established IoT Architectures
(e.g., the ISO/IEC 30141 Reference Architecture [2]) towards
strengthening their security (e.g., SerloT [1]). Apart from a
secure IoT Architecture however, the software that is running
on the different nodes of an IoT System should also be
considered. As per the “security of the weakest link” principle,
if the software contains vulnerabilities, the security of the
overall system could be compromised regardless of how secure

978-1-5386-7097-2/18/$31.00 ©2018 European Union

the overall architecture may be. Hence, to ensure a secure IoT
System, the security level of the software running on its nodes
should be assessed and optimized throughout its development.

To this end, we develop the Software Security-by-design
(SSD) Platform, i.e., a novel software security monitoring
and optimization platform that provides mechanisms for as-
sessing and improving the security of IoT software applica-
tions, throughout their overall Software Development Lifecy-
cle (SDLC). In particular, SSD allows the developers of an
IoT software application to (i) ensure the correct definition
of the security requirements, (ii) ensure the adherence of the
produced IoT software application to the originally defined
requirements, (iii) evaluate the security level of the source code
the IoT software application, and (iv) provide recommenda-
tions for security improvements. In that way, the SSD Platform
provides a more holistic software security assessment, as it
covers all the phases of the SDLC horizontally.

The purpose of the present paper is to present the overview
of the envisaged SSD Platform and describe its main func-
tionalities, i.e., the main novel mechanisms that have been
proposed and developed so far. The SSD Platform is one of
the main outcomes of the [oTAC Project, an EU Project funded
through the Horizon2020 Programme.

In the sequel, Section 2 discusses the related work focusing
on the main challenges that we try to address. Section 3
provides an overview of the broader SSD Platform, whereas
Section 3 describes the main novel mechanisms that have been
developed so far. Finally, Section 5 concludes the paper and
discusses directions for future work.

II. RELATED WORK

According to the Security-by-Design paradigm, security
should be monitored and optimized at all phases of the SDLC,
and particularly during the Requirements, Design, Coding, and
Testing phases.

During the Design and Requirement phases, security can be
added by ensuring that the security requirements are correctly
defined, since a large portion of software vulnerabilities stem
from missing, incorrect, or vague security requirements [3].
Although several approaches for specifying, verifying, and
validating functional requirements exist [4]-[6], highly limited

contributions can be found with respect to non-functional
requirements, including security requirements. In particular,
several templates and dedicated specification languages have
been proposed [3], but their adoption in practice is limited as
they are highly complex and tedious to apply. Hence, there
is a need for a mechanism able to facilitate the specification
of security requirements and enable their verification and
validation, preferably in a highly automated way.

During the Coding and Testing phases of the SDLC, several
mechanisms have been proposed for detecting security issues,
with static analysis being the most promising solution [7].
However, the fact that their results (i.e., static analysis alerts)
are in a very raw and low-level form, hinders their practicality,
since the encapsulated security information is not easily con-
veyed to the end-users. Hence, dedicated tools are needed, able
to post-process the results of these tools in order to provide
more intuitive security information to developers and project
managers, assisting them in making strategic decisions.

Two common post-processing mechanisms are: (i) the se-
curity assessment models, which aggregate the static analysis
results to provide high-level quantified security measures that
reflect important security aspects, and (ii) the vulnerability
prediction models, which highlight software components (e.g.,
classes, functions) that are likely to contain vulnerabilities.
However, despite some notable attempts [8], [9], no well-
accepted security models exist in the literature (especially for
the case of IoT software). In addition, existing vulnerability
prediction models [10] have not demonstrated sufficient re-
sults, and do not consider system-level information in order to
assess the vulnerability status of software components. Finally,
no assessment methodology exists that takes into account
information from all the phases of the SDLC and provide a
more holistic security evaluation.

Within the context of the IoTAC project, we attempt to
address the aforementioned challenges by proposing novel
security monitoring and optimization mechanisms for the
various phases of the SDLC. We also develop the SSD Plat-
form that integrates these individual security monitoring and
optimization solutions, and aggregates their results in order
to provide a more holistic security evaluation. The broader
evaluation results will be issued in the form of a pseudo-
certificate, in order to showcase how the SSD Platform can
be leveraged for future security certification activities.

III. OVERVIEW OF THE IOTAC SECURITY-BY-DESIGN
PLATFORM

The SSD Platform is an independent platform that aims
towards offering solutions for monitoring and optimizing the
security level of software application running on IoT devices,
throughout their overall SDLC. In particular, it enables the user
to (i) correctly specify security requirements of a given IoT
software application in a uniform and concrete manner, (ii)
assess the adherence of the specified security requirements,
(iii) detect potential vulnerabilities that reside in the source
code of the software application or potentially vulnerable
components (i.e., security hotspots), and (iv) quantify the

security level of IoT software through the provision of high-
level security measures. Solutions will be also provided for
validating (in fact, certifying) the overall security of an IoT
software application by considering (i) security evaluation re-
sults from the aforementioned phase-level security monitoring
mechanisms, and (iii) its compliance to selected International
Security Standards (e.g., ISO/IEC 27001, IEC 62443-4-2, etc.).
The high-level overview of the SSD Platform is illustrated
in Figure 1. As can be seen, the proposed platform consists
of three main modules, i.e., the Design and Requirements
Module, the Security Assurance Module, and the Security
Certification Module. The first two modules provide mech-
anisms for monitoring and optimizing the security of a given
application during the Requirements, Design, Coding, and
Testing phases of the SDLC. The third module is responsible
for validating the overall security of the analyzed software
based on the results of the other two modules, and issuing a
certificate (in fact, a pseudo-certificate) that reflects its overall
security level. To better understand the overall goal of the SSD
Platform, its core modules are briefly described in the rest of
this section, while a more detailed description of the main
already-developed mechanisms is provided in Section IV.

=]l

Sourc? Code

|
T
ﬁecurity Assurance Modula

{
Design and Requirements\

Module
Natural Curated list of
Language Security Sec.
Requirements
Specification I'
— itati
User e Vulnerability
Security Assessment Pt
Requirements
Ontology V&Y
ook Lofotal " ,u‘“,,
Adherence Scores Seares ot
Check

N = 2N)

T
Certifilcation Module \

il
Security

Standards and
Best Practices

Software
Security
Certification

2

Certificate Report

@50 SSD PLATFORM

Fig. 1: The high-level overview of the I0TAC Software
Security-by-Design (SSD) Platform

The Design and Requirements Module is responsible for
monitoring and improving the security level of a software
application during the Design and Requirement phases of the
SDLC. As shown in Figure 1, this module consists of three
main mechanisms (i.e., components):

o Software Security Requirements Specification: This
mechanism is meant to facilitate the specification of the
security requirements of a given software product. It
allows the user to define the desired security require-
ments into natural language (avoiding tedious templates),

processes them to automatically determine their main
concepts and underlying semantics, and turns them into
a well-structured and unified form.

o Software Security Requirements Verification and Val-
idation: The purpose of this mechanism is to evaluate
the correctness and completeness of the software security
requirements defined by the user, as well as to provide
recommendations regarding their improvement.

o Software Security Requirements Adherence Check: This
mechanism is responsible for evaluating whether the
final IoT software application adheres to the originally
imposed security requirements. More specifically, this
mechanism is expected to pinpoint security requirements
that either have not been addressed at all, or have partially
been implemented and require more technical work.

The Software Security Assurance Module is responsible for
monitoring and improving the security level of a software
application during the Coding and Testing phases of the SDLC.
As shown in Figure 1, this module provides the following core
mechanisms (i.e., components):

o Quantitative Software Security Assessment: The purpose
of this component is to provide quantitative expressions
of internal security aspects of an IoT Software applica-
tion, based on the existence of potential security issues
that may reside in their code. This component is based
on state-of-the-art concepts from the fields of software
quality and software security evaluation (e.g., [8], [9]).

o Vulnerability Prediction: This component is responsible
for identifying security hotspots, i.e., software compo-
nents that are likely to contain vulnerabilities. It is based
on vulnerability prediction models that are built based on
(i) advanced machine learning techniques (mainly deep
learning) and (ii) popular vulnerability datasets.

Finally, the purpose of the Software Security Certification
module is to provide solutions for validating the overall
security of a given IoT software application, focusing on
individual security assessments from the various phases of its
SDLC that could be used to potentially support its future cer-
tification. To do so, this module takes into account (i) project-
specific security evaluations (retrieved from the other two
modules), and (ii) conformance/compliance to international
security standards (e.g., ISO/IEC 27001, IEC-62443-4-2, etc.)
and produces a pseudo-certificate reflecting the security level
of the analysed IoT software, along with a report on various
aspects that require fixing.

IV. CORE ELEMENTS

This section describes the novel mechanisms that have been
developed as part of the SSD Platform, along with details
regarding their main elements. To date, novel mechanisms
have been developed as part of the Design and Requirements
module and the Software Security Assurance module.

A. Design and Requirements Module

1) Software Security Requirements Specification: The pur-
pose of this component is to aid software engineers formally

specify security requirements in a well defined and structured
way, without having to utilize tedious formal templates or
specification languages. To this end, as part of the SSD
Platform, a novel security requirements specification mech-
anism has been implemented, able to automatically identify
the main concepts of a security requirement defined by the
user in natural language (i.e., text), and express them in a
well-structured and common form [11]. More specifically, the
proposed mechanism applies Natural Language Processing
techniques (i.e., syntactic and semantic analysis) to identify
the main syntactic and semantic concepts of the submitted
requirements, and maps these concepts into dedicated Ontol-
ogy objects (i.e., Actor, Action, etc.), which are stored into
a dedicated Ontology. In that way, the submitted raw textual
requirements are automatically turned into a formal ontology-
based representation. The high-level overview of the proposed
mechanism is illustrated in Figure 2.

Security Requil

Syntactic Analysis Semantic Analysis

Semantic Role
Labeling

Tokenization

Input | Output
S lemmatization | | prege——
Requirement

(in NL)

Identify instances
of Actions

1 Ontology
Part-of-speech Instances
Tagging
| . Identify instances
Dependency . of Actor, Objects
Parsing 1 and Properties i

for each Action

Fig. 2: The high-level overview of the Software Security
Requirements Specification mechanism

As can be seen by Figure 2, the proposed mechanism
consists of two main steps, namely the Syntactic Analysis,
which identifies the main grammatical terms (e.g., noun,
verb, etc.) of the requirement along with their grammatical
relationships (e.g., subject-verb-object, etc.), and the Semantic
Analysis, which identifies the main semantic concepts (e.g.,
Action, Actor, Object, etc.) of the requirement along with their
semantic relations.

The Syntactic Analysis step receives as input the require-
ment expressed in natural language and applies tokenization
in order to split the sentence into word tokens, as well
as lemmatization in order to derive the uninflected form
of each word token. Subsequently, it applies part-of-speech
tagging to identify the grammatical category of each word and
dependency parsing to determine the grammatical relations
between them. For the above procedure, the Mate Tools! were
employed, since they are widely-used for such tasks.

In the next step, the results of the Syntactic Analysis, and
particularly the identified grammatical terms and relations, are
provided as input to the Semantic Analysis mechanism, in
order to be mapped to semantic terms and relationships. Ini-
tially, a semantic role labeling process is performed to assign
labels to words or phrases that indicate their semantic concept
in the sentence, using the semantic role labeller provided by

Thttps://code.google.com/archive/p/mate-tools/

the Mate tools. However, since this semantic role labeller is
able to detect only generic thematical concepts and relations
(e.g., acceptor, property, etc.), it has been extended in order to
also detect the main requirement-specific concepts (i.e., Actor,
Action, etc.), based on a set of custom rules [11]. In brief, as
can be seen by Figure 2, initially the Priority and the Action of
the requirement are identified. Subsequently, for each Action,
the associated Actor and Object are identified. Finally, for
each identified Object, several Properties (e.g., requirement
prerequisites, etc.) are detected and reported. Finally, all the
identified requirement concepts are stored into a dedicated
Ontology, called Security Requirements Knowledge Base.

2) Software Security Requirements Verification and Vali-
dation: As already mentioned, a large portion of software
vulnerabilities stem from incorrect, missing, or vague security
requirements. The purpose of this component is to verify and
validate the correctness and completeness of the user-defined
security requirements and provide recommendations for their
improvement. To this end, a novel mechanism has been
developed, aiming to compare a given security requirement to
a curated list of well-defined security requirements (normally
retrieved from international standards and other projects),
identify inconsistencies, and finally propose refinements [11].
The high-level overview of the aforementioned mechanism is
depicted in Figure 3.

Security Requirements Verification & Validation Component

Similarity between new
Ontology Instances and
stored Instances of the
Input curated Requirements

Obtain corresponding
Curated
Requirements

Output
Ontology Instances of
Sec. req. provided by —— —
the user

Recommendations
for Improvement

Obtain cor

If Similarity > i
Priority Term

threshold

Fig. 3: The high-level overview of the Software Security
Requirements Verification and Validation mechanism

As can be seen by Figure 3, the mechanism receives as
input the Ontology instances of a security requirement, i.e.,
its main semantic concepts (e.g., Action, Actor, Object, etc.),
as derived by the specification mechanism presented in Section
IV-Al. Subsequently, these instances are compared to the
ontology instances of the carefully curated list of security
requirements that are stored in the Software Security Require-
ments Knowledge Base. In particular, similarity checks are
performed between the user-defined requirement and those of
the curated list, utilizing popular NLP toolkits (e.g., WordNet
with NLTK?). Based on the values of the calculated similarity
scores, several recommendations for improvement are pro-
vided, such as: (i) rephrasing the analyzed security requirement
based on a highly similar requirement found in the curated
list, (ii) inclusion of additional security requirements that are
observed to be closely related to the analyzed requirement, and
(iii) changing the priority of the analyzed security requirement
based on the priority of similar requirements in the curated list.

Zhttps://www.nltk.org/

B. Security Assurance Module

1) Quantitative Security Assessment: The purpose of this
component is to provide quantitative security indicators (i.e.
security measures) that reflect important security attributes of
an JoT application’s source code, and help developers identify
code-level issues that may correspond to critical vulnerabil-
ities. Those indicators are computed by aggregating security
information retrieved from static code-level analysis, which is
acknowledged to be one of the most effective mechanisms for
detecting vulnerabilities that reside in source code [7], [12].

To this end, as part of the SSD Platform, we developed the
Security Evaluation Framework (SEF), which is a mecha-
nism that evaluates the security level of the source code of
a given IoT software application in a quantitative manner,
based on the results of security-specific static analysis. More
specifically, SEF (i) integrates popular static code analyzers
known to detect security issues, and (ii) enables the calculation
of high-level security measures by aggregating the low-level
results of the security-specific static analysis. High-level secu-
rity measures are more intuitive and easily understandable even
by stakeholders with little or no technical knowledge, such
as project managers, facilitating in that way decision making
during the overall development of the software application.
The high-level overview of SEF is illustrated in Figure 4.

valuation Framework (SEF)

Security
Measures
Computation

= =

SonarQube
Platform

Software

Project (Central API)

Security
Evaluation Report

Security Model

Fig. 4: Overview of the Security Evaluation Framework

As can be seen by Figure 4, SEF receives as input a software
application and employs static analysis in order to detect
potential security issues (i.e., security-related static analysis
alerts) that may reside in the software. This is achieved mainly
via a popular static analysis platform, namely SonarQube?,
which is configured in order to detect important security
vulnerabilities (e.g., SQL Injection, Cross-site Scripting, Mem-
ory Leaks, Weak Cryptography, etc.). Additional open-source
static code analyzers are also utilized (e.g., CppCheck and
FindBugs) through dedicated SonarQube plugins.

Subsequently, the low-level static analysis alerts are fed
to the Security Measures Computation mechanism, which
aggregates them to compute the high-level security measures.
IoT-specific security models are utilized (leveraging concepts
from state-of-the-art security and quality models [8], [9]) to
determine (i) the high-level security measures that should
be computed, and (ii) which low-level static analysis results
should be aggregated (and in what way) to quantify those

3https://www.sonarqube.org/

measures. The output of SEF is a report containing the detailed
results of the analysis, and particularly: (i) the calculated high-
level security measures, and (ii) the low-level static analysis
alerts that were utilized for computing those measures.

Security Alerts Criticality Assessor: Although effective in
detecting security issues, static analysis is known to produce
long lists of alerts, most of them not being critical from a se-
curity viewpoint. This hinders its practicality, since developers
often have to go through the tedious process of triaging the
alerts to detect those that correspond to critical security issues.

In an attempt to address the aforementioned problem,
we propose a novel mechanism for assessing the criticality
of security-related static analysis alerts [13]. In particular,
we developed a self-adaptive technique, the Security Alerts
Criticality Assessor (SACA), for classifying and prioritizing
security-related static analysis alerts based on their critical-
ity, by considering information retrieved from (i) the alerts
themselves, (ii) vulnerability prediction (see Section IV-B2),
and (iii) user feedback. The proposed technique is based on
machine learning models, particularly on neural networks,
which were built using data retrieved from static analysis
reports of real-world software applications. The high-level
overview of the tool is presented in Figure 5.

7 : e
Security Alerts Criticality Assessor S
' User Feedback \
! I
1 Static Analysis

Tool |
1 Security Alerts = 1

Assessor o
I Software vulnerability Alerts with I
I Project Vulnerability scores criticality 1
Predictor
! I
\ /
N o o o o o o e e e e e o e - -

Fig. 5: Overview of the Security Alerts Criticality Assessor

As can be seen by Figure 5, a software project is provided
as input to the system and subsequently, security-specific static
analysis is employed to retrieve the alerts that are relevant to
this project. In addition, vulnerability prediction models are
employed to compute the vulnerability scores (see Section
IV-B2) of its software components, which reflect the likelihood
of each component to contain vulnerabilities. Then, the alerts
along with the vulnerability scores are provided as input to
the Security Alerts Assessor (SAA), i.e., a neural network
that assesses how critical each one of the alerts is from a
security viewpoint. More specifically, for each one of the
received alerts, it reports (i) a criticality flag (i.e., a binary
value between 0 and 1, with 1 denoting that the corresponding
alert is considered critical), and (ii) a criticality score (i.e., a
continuous value in the [0,1] interval denoting how likely it
is for the alert to be security-critical). Hence, developers can
start their refactoring activities by fixing alerts that have higher
criticality, increasing in that way the probability of detecting
and mitigating actual vulnerabilities.

As illustrated in Figure 5, the user can also correct the
outputs of the model, and the SAA can be retrained on

demand, based on user feedback. In that way, the SAA adapts
to the specific characteristics of the software product to which
it is applied to provide more accurate assessments.

2) Vulnerability Prediction: Vulnerability Prediction is re-
sponsible for the identification of security hotspots, i.e., soft-
ware components (e.g., classes) that are likely to contain
critical vulnerabilities. For the identification of potentially vul-
nerable software components, vulnerability prediction models
(VPM) are constructed, which are mainly machine learning
models that are built based on software attributes retrieved
primarily from the source code of the analyzed software (e.g.,
software metrics, text features, etc.). The results of the vul-
nerability prediction models are highly useful for developers
and project managers, as they allow them to better prioritize
their testing and fortification efforts by allocating limited test
resources to high-risk (i.e., potentially vulnerable) areas.

a) Component-level Vulnerability Prediction: Existing
vulnerability prediction models focus on the intrinsic charac-
teristics of the analyzed software component, and particularly
on attributes of its source code, in order to judge whether it
is vulnerable or not. Among the different attributes that have
been examined in the literature, those that are derived through
text mining have demonstrated the most promising results [10],
[14]. To this end, as part of the Software Security Assurance
module of the SSD Platform, we developed vulnerability
prediction models based on deep learning, utilizing as input the
sequences of word tokens that reside in the source code of the
component, and word embedding vectors for their effective
representation [15]. A high-level overview of the proposed
models is illustrated in Figure 6.

s

\
1 External Embedding
1 Vectors Generation I
1
1
! Text Embeddiny Deep Neural Output Dense Vulnerability
| = [— N — 0 — = flagsand

Tokenization Layer Network Layer

1 sigmoid
1
1
1
1
AY

outputs per

Software
component

Component's
source code

Fig. 6: Overview of Component-level Vulnerability Prediction

As can be seen by Figure 6, the source code of a software
component is provided as input to the model and subsequently,
text tokenization is applied in order to extract the word
tokens and construct their corresponding sequence. Then, since
Deep Neural Networks (DNN) operate on numerical values,
the token sequences need to be properly transformed into
numerical vectors. For this purpose, word embedding vectors
are utilized. Word embedding refers to the representation of
words, in the form of a real-valued vector that encodes the
meaning of the word in such a way that words that are close in
the vector space are expected either to have similar meanings
or to be in close proximity in the source code. Our mechanism
utilizes two popular word embedding algorithms to generate
the word embedding vectors, namely word2vec* and fast-text’.

“https://radimrehurek.com/gensim/models/word2vec.html
Shttps://radimrehurek.com/gensim/models/fasttext.html

The derived word embedding vectors constitute the word
embedding layer, i.e., the input layer of the DNN, which
is the core element of the model. The output of the model
is a vulnerability flag (i.e., a binary value between 0 and
1) indicating whether the given component is potentially
vulnerable (i.e., 1) or not (i.e., 0), and a vulnerability score
(i.e., a continuous value within the [0,1] interval) denoting how
likely it is for the component to be vulnerable. The developers
can use this information in order to decide where to focus their
testing and refactoring activities, starting, for instance, from
those components that have higher vulnerability score.

b) System-wide Vulnerability Prediction: Section IV-B2a
summarized existing models to predict software vulnerability
based solely on analyzing the software component’s source
code to indicate whether it may contain a critical vulnerability.
Such models do not account for the overall architecture
of the application, which is an important issue when soft-
ware consists of multiple interconnected components; i.e. the
vulnerability of a component can affect other components,
regardless of their individual vulnerability. To the best of
our knowledge, vulnerability prediction models including such
interdependencies have not been published.

Thus we present a novel mechanism for system-wide vul-
nerability prediction based on Adversarial Random Neural
Networks (ARNN) [16] with learning [17] previously used
for network cyber-attack detection [18]. The ARNN takes
into account (i) the vulnerability score of each software
component derived from component-level VPMs, and (ii) the
interconnections among components of the software under
analysis, to compute the resulting system-level vulnerability
likelihood of each component, as summarized in Figure 7.

,System-wide Vulnerability Prediction

Vulnerability scores
(probabilities)

Vulnerability
Prediction Models

Adversarial
Random Neural
Network

Software
Project Components

Interconnection

Connection
between modules
(matrix)

—— o ——

-—— - - —

Analyzer

Fig. 7: Overview of the System-wide Vulnerability Prediction

Figure 7 shows how the source code of the application
under analysis is inputed to the proposed mechanism. First, the
text mining-based vulnerability prediction models of Section
IV-B2a are used to derive their vulnerability scores denoting
how likely it is for each software component to contain
vulnerabilities in its source code. Then a Component Intercon-
nection Analyzer is used to detect interconnections between
components based on function calls, providing an Adjacency
Matrix. The Adjacency Matrix and the individual vulnerability
scores of components are inputed to the ARNN [16], which
outputs the Likelihood Ratio indicating how likely it is for
each interconnected software component to be vulnerable,
based both on its own vulnerability and the effect of other
components in the application. Thus the proposed mechanism

combines vulnerability scores of individual components, with
a system-level data regarding the interconnected components.

V. CONCLUSION

The present paper provides an overview of the Software
Security-by-Design (SSD) Platform, developed within the con-
text of the IoTAC project. It describse the main novel mech-
anisms proposed and developed in IoTAC, including novel
security monitoring and optimization mechanisms developed
in several phases of the overall SDLC, regarding the Design,
Requirements, Coding, and Testing phases which are at the
core of the SSD Platform. They constitute the basis on which
the Software Security Certification module operates to provide
a broad evaluation of the security level of an IoT software
application, which may be issued as a “pseudo-certificate”.
In the rest of the IoTAC project, emphasis will be given
on building the Software Security Certification module, and
further improving the mechanisms described in this paper.

REFERENCES

[1] J. Soldatos, Security Risk Management for the Internet of Things: Tech-
nologies and Techniques for IoT Security, Privacy and Data Protection.
Now Publishers, 2020.

[2] ISO/EC, ISO/IEC 30141:2018 - Internet of Things (IoT) — Reference
Architecture. 1SO/IEC, 2018.

[3] M. Ramachandran, “Software security requirements engineering: State
of the art,” in Int. Conf. on Global Security, Safety, and Sustainability.

[4] T. Diamantopoulos and A. L. Symeonidis, Mining Software Engineering
Data for Software Reuse. Springer Nature, 2020.

[5] T. Diamantopoulos and A. Symeonidis, “Enhancing requirements
reusability through semantic modeling and data mining techniques,”
Enterprise information systems, 2018, publisher: Taylor & Francis.

[6] E. Yu, “Modeling Strategic Relationships for Process Reengineering.”
Social Modeling for Requirements Engineering, no. 2011.

[7] G. McGraw, “Software security,” IEEE Security & Privacy, 2004.

[8] U. Dayanandan and V. Kalimuthu, “Software architectural quality as-
sessment model for security analysis using fuzzy analytical hierarchy
process (fahp) method,” 3D Research, 2018.

[9] 1. Heitlager, T. Kuipers, and J. Visser, “A practical model for measur-

ing maintainability,” in 6th international conference on the quality of

information and communications technology. 1EEE, 2007.

R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting

vulnerable software components via text mining,” IEEE Transactions on

Software Engineering, vol. 40, no. 10, pp. 993—-1006, 2014.

D. Tsoukalas, M. Siavvas, M. Mathioudaki, and D. Kehagias, “An

ontology-based approach for automatic specification, verification, and

validation of software security requirements: Preliminary results,” in

2021 IEEE 2lIst International Conference on Software Quality, Reli-

ability and Security (QRS), 2021.

M. Howard, Writing secure code. Microsoft Press, 2003.

M. Siavvas, I. Kalouptsoglou, D. Tsoukalas, and D. Kehagias, “A self-

adaptive approach for assessing the criticality of security-related static

analysis alerts,” in International Conference on Computational Science

and Its Applications. Springer, 2021, pp. 289-305.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning

based vulnerability detection: Are we there yet,” IEEE Transactions on

Software Engineering, 2021.

I. Kalouptsoglou, M. Siavvas, D. Kehagias, A. Chatzigeorgiou, and

A. Ampatzoglou, “An empirical evaluation of the usefulness of word

embedding techniques in deep learning-based vulnerability prediction,”

in EuroCybersec2021, 2021.

E. Gelenbe and M. Nakip, “The Adversarial Random Neural Network

and Botnet attack detection,” Submitted for publication, 2021.

[17] E. Gelenbe, “Learning in the recurrent random neural network,” Neural

Computation, no. 1, pp. 154-164, 1993.

M. Nakip and E. Gelenbe, “Mirai botnet attack detection with auto-

associative dense random neural networks,” in 2021 IEEE Global

Communications Conference. 1EEE Communications Society, 2021.

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(18]

