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Abstract. The paper deals with discrete time-invariant systems with
a delay in the control variable. The relations between different types
of controllability and stabilizability are presented and discussed. The
results are related to asymptotic null controllability, bounded feedback
stabilizability and small feedback stabilizability for linear discrete-time
systems with delay in control. The main tool employed is the technique
of reducing the delayed equation to a delay-free equation. Thanks to this
idea the criteria for bounded feedback stabilizability and small feedback
stabilizability for the delayed systems are expressed in the appropriate
properties of delay-free systems. Main results are analogical of this one
proved in [18] for discrete time-invariant delay-free systems and to those
from [14] for continuous-time systems. One of the additional result of
this paper provides a criterion for controllability of discrete time system
with delay in control. An important contribution of this paper is the
indication of further generalizations of the obtained results.
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1 Introduction

One of the fundamental problems in control theory is designing of an efficient
feedback which guarantees control strategy capable to stabilize the possibly
unstable system and guarantee a certain level of performance. This problem
is well-known and it was extensively investigated in the literature [2,4,13,14] for
the delay-free systems.
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However, delay system constitute, nowadays, an important class of math-
ematical models of real phenomena. Many applications of delayed systems in
engineering, mechanics and economics are presented in [5]. Delay is very often
encountered in different technical systems, such as electric, pneumatic and
hydraulic networks, chemical processes, long transmission lines, etc. [11]. Delays
are inherent in many physical and engineering systems. In particular, pure delays
are often used to ideally represent the effects of transmission and transportation.
This is because these systems have only limited time to receive information and
react accordingly. Such a system cannot be described by purely differential equa-
tions, but has to be treated with differential-difference equations or the so-called
differential equations with difference variables. The basic theory concerning the
stability of systems described by equations of this type was developed by Pon-
tryagin in 1942. Also, important work has been written by Bellman and Cooke
in 1963, [3]. The presence of time delays in a feedback control system leads to a
closed-loop characteristic equation which involves the exponential type transcen-
dental terms. The exponential transcendentally brings infinitely many isolated
roots, and hence it makes the stability analysis of time-delay systems a chal-
lenging task. It is well recognized that there is no simple and universally appli-
cable practical algebraic criterion, like the Routh-Hurwitz criterion for stability
of delay-free systems, for assessing the stability of linear time-invariant time-
delayed systems. On the other side, the existence of pure time delay, regardless
if it is present in the control or/and state, may cause an undesirable system
transient response, or generally, even an instability. Numerous reports have been
published on this matter, with a particular emphasis on the application of Lya-
punovs second method, or on using the idea of matrix measure [8]. The analysis
of time-delay systems can be classified such that the stability or stabilization
criteria involve the delay element or not. In other words, delay independent cri-
teria guarantee global asymptotic stability for any time-delay that may change
from zero to infinity.

This arguments motivate us to investigate certain properties of discrete linear
equation with delay in control. We study asymptotic null controllability, bounded
feedback stabilizability and small feedback stabilizability. The main idea we use
is to convert the delay equation into a delay-free equation.

We call a system asymptotically null controllable with bounded control if
there exists a control, which steers the solution asymptotically to origin. A nat-
ural question is whether the control can be realised in a feedback form or in a
form of feedback with small feedback gain. This questions are the main topic
of this paper. References closely related to these questions are [10,16]. In these
papers results on semi-global stabilizability and global stabilizability for some
special systems are presented for delay-free systems. In the context of stabi-
lization of discrete-time systems is worth to notice the paper [15], where the
authors consider the problem of stabilization of a linear time-invariant system
given by transfer function, by a first-order feedback controller. The paper con-
tains a description of stabilizing controller in the controller parameter space. The
solution is describe by Chebyshev representations of the characteristic equation
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in the unit circle. Moreover, it is shown that the set can be computed explicitly.
Also stabilization of discrete-time invariant system with delay is investigated
in [19]. The main results of this paper are about observer based output feed-
back stabilization. Based on predictor feedback theory a design method of the
controller is proposed. Two classes of controllers, namely, the memory observer
and memory less observer are considered. The problem of stabilization of time-
invariant discrete linear systems with time-varying delay is considered in [17],
where the authors use the H∞ approach to obtain conditions for the output
feedback stabilization. The paper [9] focuses on the stabilization problem of dis-
crete linear time-invariant systems with multiply delays in the control variable
and multiplicative noise. The authors first transform the original system into a
delay-free system and next use the linear quadratic technique. The main result
of this paper states that the system can be stabilized in the mean-square sense if
and only if the set of solutions of the Riccati difference equations is convergent.

In the present paper we investigate a discrete time-invariant linear system
with delay in the control variable and we describe relations between control-
lability and stabilizability. Following the idea from [9] we use the technique of
converting the original delay system to a delay-free one. In the best knowledge
of the authors such questions for discrete-time systems with delay have not been
investigated in the literature. Similar questions for continuous-time systems with
delay have been investigated in [1,7,12].

2 Main Results

In this paper we consider the following equations

x(k + 1) = Ax(k) +B0u(k) +B1u(k − 1) (1)

y(k + 1) = Ây(k) + B̂v(k) (2)

k = 0, 1, ..., where the states x(k), y(k) ∈ Rn, controls u(k) ∈ Rm, v(k) ∈ Rp

and A, Â, B0, B1, B̂ are given matrices of appropriate sizes. In case of Eq. (1) we
put u(−1) = 0. For initial condition x(0) = x0 ∈ Rn, y(0) = y0 ∈ Rn and fixed
controls u, v the appropriate solutions of (1) and (2) are denoted by x(·, x0, u)
and y(·, y0, v). If the control u in (1) has the form u(k) = L1(x(k)) or u(k) =
L2 (x(k), x(k − 1)) for certain functions L1 : Rn → Rm, L2 : R2n → Rm then we
say that u is a feedback control and then we call L1 and L2 a feedback. Similarly
a control v(k) = L̂1(y(k)) or L̂2(y(k), y(k − 1)) in (2), where L̂1 : Rn → Rp and
L̂2 : R2n → Rp are called feedback controls for (2) and then L̂1 and L̂2 are called
feedbacks. If we apply a feedback u(k) = L(x(k)) to system (1) then we obtain
system

x(k + 1) = Ax(k) +B0L (x(k)) +B1L (x(k − 1)) (3)

which is called closed-loop system. In the same way we define the closed-loop
system for system (2). If the closed-loop system is stable then the feedback is
called a stabilizing feedback.

The main idea of this paper is to connect solutions of (1) and (2) according
to the following theorem.
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Theorem 1. Sequence x(·, x0, u) is the solution of (1) if and only if x(·, x0, u)
is the solution of (2) with Â = A, B̂ =

[
B0 B1

]
, y(0) = x0, p = 2m and

v(k) =
[

u(k)
u(k − 1)

]
k = 0, 1, ... .

Proof. Suppose that x(·, x0, u) is the solution of (1) and let y(·, y0, v) be the
solution of (2) with Â = A, B̂ =

[
B0 B1

]
, y(0) = x0, p = 2m and v is defined

as in the theorem. For k = 0 we have x(0, x0, u) = x0 = y(0, y0, v). Suppose that
x(l, x0, u) = y(l, y0, v) for certain l ∈ N, then

x(l + 1, x0, u) = Ax(l, x0, u) +B0u(l) +B1u(l − 1)

= Ay(l, x0, v) +
[
B0 B1

] [
u(l)

u(l − 1)

]

= Ây(l, x0, v) + B̂v(l) = y(l + 1, x0, v).

Suppose now that y(·, y0, v) is the solution of (2) with Â = A, B̂ =
[
B0 B1

]
,

y(0) = x0, p = 2m and v is defined as in the theorem. For k = 0 we have
x(0, x0, u) = x0 = y(0, y0, v). Suppose that x(l, x0, u) = y(l, y0, v) for certain
l ∈ N, then

y(l + 1, x0, v) = Ây(l, y0, v) + B̂v(k)

= Ax(l, x0, u) +
[
B0 B1

] [
u(l)

u(l − 1)

]

= Ax(l) +B0u(l) +B1u(l − 1) = x(l + 1, x0, u).

The proof is completed.

Definition 1. [18] We say that system (1) is

– asymptotically null controllable with bounded controls (ANCBC) if there is
a bounded subset U of Rm which contains zero in its interior such that, for
each initial state x0 ∈ Rn there exists a sequence u(·) = u(0), u(1), . . . with
all values u(t) ∈ U , which steers the solution x(t) asymptotically to the origin
i.e.

lim
k→∞

x(k, x0, u) = 0.

– bounded feedback stabilizable (BFS) if there exists a bounded locally Lipschitz
feedback L : Rn → Rm that the closed-loop system is asymptotically stable.

– small feedback stabilizable (SFS) if for every ε > 0 there exists a stabilizing
feedback L : Rn → Rm such that ‖L(x)‖ ≤ ε for all x ∈ Rn.

In an analogical way we define ANCBC, BFS and SFS for system (2). The
next theorem proved in [18] shows that this properties are equivalent for system
(2).
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Theorem 2. The following conditions are equivalent

– (2) is SFS,
– (2) is BFS,
– (2) is ANCBC.

The next three theorems describe relations between ANCBC, BFS and SFS
for system (1) and similar properties of system (2).

Theorem 3. Suppose that system (1) is SFS then for (2) with Â = A, B̂ =[
B0 B1

]
for every ε > 0 there exists a stabilizing feedback L : R2n → Rm,

u(k) = L (x(k), x(k − 1)) such that ‖L(x)‖ ≤ ε for all x ∈ R2n.

Proof: Let us fix ε > 0. Suppose that system (1) is SFS and let L : Rn → Rm

be the stabilizing feedback satisfying ‖L(x)‖ ≤ ε√
2
for all x ∈ Rn. Let us define

a feedbeck L : R2n → R2min (2) as follows

L(x, y) =
[
L(x) L(y)

]
, x, y ∈ Rn.

For the control v(k) = L(y(k), y(k−1)) we know by Theorem 1 that the solutions
of (1) and (2) coincide for the same initial condition. Moreover

‖L(x, y)‖ =
∥∥[

L(x) L(y)
]∥∥ ≤

√
2max

{
‖L(x)‖, ‖L(y)‖

}
≤ ε.

The proof is completed.

Theorem 4. Suppose that system (1) is BFS then for (2) with Â = A, B̂ =[
B0 B1

]
there exists a bounded locally Lipschitz feedback L : R2n → Rm such

that the closed-loop system is asymptotically stable.

Proof: The proof is analogical as the proof of Theorem 1 additionally we
have to use the fact that if L : Rn → Rm is bounded and locally Lipschitz, then
L : R2n → Rm, L(x, y) =

[
L(x) L(y)

]
, x, y ∈ Rn is also bounded and locally

Lipschitz.

Theorem 5. If system (1) is ANCBC then (2) with Â = A, B̂ =
[
B0 B1

]
is

ANCBC.

Proof: Suppose that (1) is ANCBC. Let U be the set from the definition of
ANCBC and let us define the subset Û ⊂ R2m by

Û =
{[

u1

u2

]
: u1, u2 ∈ U

}
.

From the properties of the set U it is clear that the set Û contains zero and it
is bounded. We will show that for each y0 ∈ Rn there exist a control sequence
(v(k))k∈N, v(k) ∈ Û such that

lim
k→∞

y(k, y0, v) = 0. (4)
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Let us fix y0 ∈ Rn and consider a sequence (u(k))k∈N, u(k) ∈ Û for all k ∈ N, that
stabilizes system (1) for initial condition y0. Let us define a sequence (v(k))k∈N
as follows

v(0) =
[
u(0)
0

]
(5)

and
v(k) =

[
u(k)

u(k − 1)

]
. (6)

From Theorem 1 we know that x(k, y0, u) = y(k, y0, v) and therefore (4) holds.
The proof is completed.

Finally we will present a result about relations between controllability of
systems (1) and (2). We start with the definitions of this concept.

Consider certain subset G of the set of all sequences which elements are in
Rm.

Definition 2. We say that system (1) is G-controllable in time N , N ∈ N if for
all x0, x1 ∈ Rn there exists a control u ∈ G such that

x(N,x0, u) = x1.

When G is the set of all sequences of vectors from Rm, then we will say that (1)
is controllable in time N

Analogically we define controllability of (2). To formulate the next theorem
which presents relation between controllability of systems (1) and (2) let us
introduce certain special set G of controls in R2m consisting of all sequences
(u(k))k∈N ,

u(k) = [u1(k), ..., u2m (k)]T

satisfying

[u1(k), ..., um (k)]T = [um+1(k + 1), ..., u2m (k + 1)]T .

Theorem 6. System (1) is controllable in time N if and only if system (2) with
Â = A, B̂ =

[
B0 B1

]
is G-controllable in time N .

Proof. Suppose that system (1) is controllable in time N. Let us fix x0, x1 ∈ Rn

and let u = (u(k))k∈N be a control such that

x(N,x0, u) = x1.

If we apply control

v(k) =
[

u(k)
u(k − 1)

]
, k = 0, 1, ...

in system (2) with initial condition x0, then according to Theorem 1, solutions
of (1) and (2) coincides. In particular

x(N,x0, u) = y(N,x0, v)
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and therefore
y(N,x0, v) = x1.

It is also clear that v ∈ G what implies that (2) with Â = A, B̂ =
[
B0 B1

]
is

G-controllable in time N.
Suppose now that system (2) is G-controllable in time N . Let us fix x0, x1 ∈

Rn and let v = (v(k))k∈N be a control from G such that

y(N,x0, v) = x1.

Denote
v(k) =

[
u(k)

u(k − 1)

]
, k = 0, 1, ...

where u(k) ∈ Rm, k = 0, 1, .... Notice that this notation is correct since v ∈ G.
According to Theorem 1, solutions of (1) and (2) coincides. In particular

x(N,x0, u) = y(N,x0, v)

and therefore
x(N,x0, v) = x1.

The proof is completed.

We will illustrate the last theorem on an example.

Example 1. Consider the following system (1)

x(k + 1) =




1 2

3 4



x(k) +




2

−1



u(k) +




−1

1



u(k − 1). (7)

We are going to show that the system is controllable in time 2. According to the
Theorem 6 we have to prove that the following delay-free system

y(k + 1) =




1 2

3 4



 y(k) +




2 −1

−1 1



 v(k) (8)

is G-controllable in time 2. Since

v(k) =




u(k)

u(k)



 =




1

1



u(k)

and 


2 −1

−1 1








1

1



 =




1

0
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then G-controllability in time 2 of system (8) is equivalent to controllability in
time 2 of the following system

z(k + 1) = Az(k) +Bν(k),

where:

A =




1 2

3 4





and

B =




1

0



 .

Finally, controllability in time 2 of the last system follows from the classical
Kalman controllability condition (see [6]) since

[B AB] =




1 1

0 3



 .

3 Conclusions

In this paper we study problems of ANCBC, BFS, SFS and controllability of
system (1). The origin of this paper is in the results of [14,18] where the authors
obtained a complete picture of the relation between global stabilization and
controllability of discrete and continuous delay-free time-invariant systems. Here,
we were able only to provide necessary conditions for ANCBC, BFS and SFS of
delayed systems in terms of analogical properties of delay-free systems. In that
purpose we adapted the idea, from [6], of converting the original systems to an
appropriate delay-free system. As it was shown in [14] and [18] for delay-free
systems the concept of ANCBC, BFS and SFS are equivalent. The problem of
equivalence of ANCBC, BFS and SFS for system (1) is an open problem. Another
important direction of further research should be finding of generalizations of our
results to time-varying systems as well as to systems with time-varying delay.
The goal of this research should be a theory analogical to this which is known
for delay-free system (see [14,18]).
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