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Abstract. The following article presents recent results of controllability
problem of dynamical systems in infinite and finite-dimensional spaces.
Roughly speaking, we describe selected controllability problems of frac-
tional order systems, including approximate controllability and complete
controllability.
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1 Introduction

Controllability is very important property of dynamical systems and it plays
a crucial role in many control problems. The assumption that the control sys-
tem is controllable performs fundamental establishment among other in optimal
control, stabilizability and pole placement problem [26,35]. In general controlla-
bility means that there exists a control function which steers the solution of the
dynamical system from its initial state to a final state using a set of admissible
controls, where the initial and final states may vary over the entire space. A stan-
dard approach to the controllability problems is to transform it into a fixed point
problem for an appropriate operator in a functional space. There are many stud-
ies are related to the controllability problem. In [5,6,15,20,23,24,28,30] authors
used the theory of fractional calculus. A fixed point approach we can find in
[3,12,17,37].

Nowadays the fractional calculus and its applications in control theory are
very popular and they became standard tool in designing of control systems.
Moreover, the fractional calculus has become a powerful tool in modeling several
complex phenomena in numerous seemingly diverse and widespread fields such
as engineering, chemistry, mechanics, aerodynamics, physics, etc. [13,14].

A lot of dynamical systems based on mathematical modelling of realistic
models can be described as partial fractional differential or integrodifferential
inclusions [4,9,32,33]. A new approach to obtain the existence of mild solutions
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and controllability results are presented in [41]. For this purpose they avoid
hypotheses of compactness on the semigroup generated by the linear part and
any conditions on the multivalued nonlinearity expressed in terms of measures
of noncompactness. Author of [39] studied fractional evolution equations and
inclusions and they presented application of obtained results in control theory.
Many authors [7,8,21,31,40] investigated the existence of solutions for fractional
semilinear differential or integrodifferential equations.

The special case of dynamical systems so-called the impulsive differential
systems can be used to model processes which are subject to sudden changes and
which cannot be described by the standard types of differential systems [22]. In
[36] authors considered the controllability problem for impulsive differential and
integrodifferential systems in Banach spaces. Articles [29] and [38] are devoted to
the controllability of fractional evolution systems. The problem of controllability
and optimal controls for functional differential systems has been extensively
investigated in many articles [1,2].

In this paper we discuss selected problems of controllability for various types
of fractional order systems. We present the latest results for finite and infinite-
dimensional fractional nonlinear systems.

2 Basic Notations

In this section, we introduce some definitions. Let (X, ‖ · ‖) be a Banach space,
J = [0, t1], α ∈ (0, 1) and f : J → X be a given function.

Definition 1 [16]. The Caputo fractional derivative of order α is given as fol-
lows

CDαf(t) =
1

Γ (1 − α)

∫ t

0

f
′
(s)ds

(t − s)α
,

where: f is the function which has absolutely continuous derivative, Γ is the
Gamma function and f

′
is the derivative of function f .

For completeness of presentation, below the definition of the measure noncom-
pactness is shown. It is the generalization of the Schauder’s theorem [18].

Definition 2. Let (X, ‖ · ‖) be a Banach space and E be a bounded subset of X.
Then the measure noncompactness of the set E is defined as

μ(E) = inf{r > 0 : E can be covered by
a finite number of balls whose radii are smaller than r}.

Theorem 1 (Darbo fixed point theorem) [27]. Let Q be a nonempty,
bounded, convex and closed subset of the space X and let F : Q → Q be a
continuous function such that

μ(F (S)) ≤ kμ(S),

for all nonempty subset S of Q, where k ∈ [0, 1) is a constant. Then F has a
fixed point in the set Q.
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Theorem 2 (Schauder’s fixed point theorem) [19]. Let Q be a closed con-
vex subset of X and F : Q → Q be a continuous function. Then F has at least
one fixed point in the set Q.

Theorem 3 (Krasnoselskii fixed point theorems) [11]. Let X be a Banach
space and Q be a bounded, closed, and convex subset of X. Let V1, V2 be maps
of Q into X such that V1x + V2y ∈ Q for every x, y ∈ Q. If V1 is a contraction
and V2 is compact and continuous, then equation V1x + V2x = x has a solution
on Q.

Moreover the relative and approximate controllability definitions are recall
below.

Definition 3 [25]. The dynamical system is said to be relative controllable on
interval [0, t1], if for every initial function φ and every final state x1 ∈ R

n there
exists a control function u defined on [0, t1] such that the solution of dynamical
system satisfies x(t1) = x1.

Definition 4. The dynamical system is said to be approximately controllable in
time interval [0, t1], if for every desired final state x1 and ε > 0 there exists a
control function u such that the solution of dynamical system satisfies

‖x(t1) − x1‖ < ε.

3 Controllability of Semilinear Fractional Systems

In this section mathematical models of fractional systems with different delays
in state and control will be presented. Let us introduce the following necessary
notation:

– 0 < α < 1 is order of derivative,
– φ is a continuous function on [−h, 0], h ∈ [0,∞), φ : [−h, 0] → R

n,
– A,B are n × n dimensional matrices and C is n × m dimensional matrix,
– u is the control function u : [−h,∞) → R

m,
– L is the Laplace transform,
– Xα(t) = L−1

[
[sα · I − A − Be−s]−1sα−1

]
(t),

– Xα,α(t) = tt−α
∫ t

0
(t − s)α−2

Γ (α − 1) Xα(s)ds,

– xL(t;φ) = Xα(t)φ(0) +
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds,

– H(t, s) is an n×m matrix, continuous in t for fixed s, H : J×[−h, 0] → R
n×m,

–
∫ 0

−h
dsH(t, s) denotes the integrals in the Lebesgue-Stieltjes sense with respect

to s.

The next definition will be used in investigation about controllability of semilin-
ear dynamical systems.
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Definition 5 [25]. Assume that there exist positive real constants K and k with
0 ≤ k < 1 such that

|f(t, x, y, z, u)| ≤ K, (1)
|f(t, x, y, z, u) − f(t, x, y, z, u)| ≤ k(|z − z|) (2)

for all x, y, z, z ∈ R
n and u ∈ R

m, where f is nonlinear function.

3.1 Fractional System with Distributed Delays in Control

The fractional delay dynamical system with distributed delays in control can be
presented by the following equation:

CDαx(t) = Ax(t) + Bx(t − h) +
∫ 0

−h

dsH(t, s)u(t + s)+

+f
(
t, x(t), x(t − h),C Dαx(t), u(t)

)
x(t) = φ(t), t ∈ [−h, 0].

(3)

Using the well-known result of the unsymmetric Fubini theorem [10], the
solution of (3) can be expressed by the following form:

x(t) = xL(t;φ)

+
∫ 0

−h

dHτ

∫ 0

τ

(
t − (s − τ)

)α−1
Xα,α

(
t − (s − τ)

)
H(s − τ, τ)u0(s)ds

+
∫ t

0

∫ 0

−h

(
t − (s − τ)

)α−1
Xα,α

(
t − (s − τ)

)
dτHt(s − τ, τ)u(s)ds

+
∫ t

0

(t − s)α−1Xα,α(t − s)f
(
s, x(s), x(s − h),C Dαx(s), u(s)

)
ds,

where

Ht(s, τ) =
{

H(s, τ), s ≤ t,
0, s > t,

.

The below, we present the main result of relative controllability for the system
(3).

Theorem 4. Assume that the nonlinear function f satisfies the conditions (1)
and (2) and suppose that the controllability Gramian

W =
∫ t1

0

S(t1, s)S∗(t1, s)ds

where:

S(t, s) =
∫ 0

−h

(
t − (s − τ)

)α−1
Xα,α

(
t − (s − τ)

)
dτHt(s − τ, τ).

is positive definite. Then the nonlinear system (3) is relatively controllable on J .

In order to prove of Theorem 4 authors using Darbo fixed point theorem. Spec-
ifying the matrix function H(t, s), it is possible to obtain systems with different
lumped delays in control.
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3.2 Fractional Systems with Multiple Delays in Control

In the same article [25] the authors focus on the implicit fractional delay dynam-
ical system with time varying multiple delays in control given by the equation

CDαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi(t))

+f
(
t, x(t), x(t − h),C Dαx(t), u(t)

)
,

x(t) = φ(t), t ∈ [−h, 0],

(4)

where Ci for i = 0, 1, . . . ,M are n × l matrices.
In order to obtain the main result we present some necessary hypotheses.

Hypothesis 1. The functions σi : J → R, i = 0, 1, . . . ,M , are twice con-
tinuously differentiable and strictly increasing in J . Moreover σi(t) ≤ t, i =
0, 1, . . . ,M , for t ∈ J .

Hypothesis 2. Introduce the time lead functions ri(t) : [σi(0), σi(t1)] → [0, t1],
i = 0, 1, . . . ,M , such that ri(σi(t)) = t for t ∈ J . Further, σ0(t) = t and for
t = t1 the following inequality holds:

σM (t1) ≤ · · · ≤ σl+1(t1) ≤ 0 = σl(t1)
< σl−1(t1) = · · · = σ1(t1) = σ0(t1) = t1.

(5)

Hypothesis 3. Given σ > 0, for functions u : [−σ, t1] → R
l and t ∈ t1, we use

the symbol ut to denote the function on [−σ, 0] defined by ut(s) = u(t + s) for
s ∈ [−σ, 0).

Using (5), we can write solution of (4):

x(t) = xL(t;φ) + H(t)

+
l∑

i=0

∫ t

0

(t − ri(s))α−1Xα,α(t − ri(s))Ciṙi(s)u(s)ds

+
∫ t

0

(t − s)α−1Xα,α(t − s)f
(
s, x(s), x(s − h),C Dαx(s), u(s)

)
ds,

(6)

where

H(t) =
l∑

i=0

∫ 0

σi(0)

(t − ri(s))α−1Xα,α(t − ri(s))Ciṙi(s)u0(s)ds

+
M∑

i=l+1

∫ σi(t)

σi(0)

(t − ri(s))α−1Xα,α(t − ri(s))Ciṙi(s)u0(s)ds.

The main theorem is given by the following form.
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Theorem 5. Assume that the Hypotheses 1–3 hold. Further assume that the
nonlinear function satisfies the condition (1) and (2) and suppose that determi-
nant of Gramian matrix

W =
l∑

i=0

∫ t1

0

(
Xα,α(t1 − ri(s))Ciṙi(s)

)(
Xα,α(t1 − ri(s))Ciṙi(s)

)T

ds

is positive definite. Then the nonlinear system (4) is relatively controllable on J .

As before, the proof was obtained using Darbo fixed point theorem.

4 The Controllability of Nonlocal Nonlinear Fractional
Systems

In this section, we present a recent results concerning nonlinear fractional system
in infinite-dimensional space.

4.1 Approximate Controllability of Fractional Nonlocal Evolution
Equation with Multiple Delays

Authors of [34] consider dynamical system described as follows:
CDαx(t) = Ax(t) + f (t, x(t), x(t − τ1), . . . , x(t − τn)) + Bu(t),

t ∈ J = [0, T ], x(t) + g(x) = ϕ(t), t ∈ [−b, 0],
(7)

where CDα is Caputo fractional derivative of order α ∈ (0, 1), T > 0 is a
constant, A generates a compact analytic semigroup S(t) (t ≥ 0) of uniformly
bounded linear operator, u ∈ L2(J,X) is a control, X is a Banach space, Xα

is the Banach space of D(Aα) with norm ‖x‖α := ‖Aαx‖ for any x ∈ D(Aα),
B : X → Xα is a linear bounded operator, τ1, τ2, . . . , τn are positive constants,
b = max{τ1, τ2, . . . , τn}, ϕ : [−b, 0] → Xα is continuous, f and g are given
functions.

To obtain the main results it should pose a some assumptions.

Hypothesis 4. The function f : J × Xn+1
α → X is continuous and there exist

positive constants β0, β1, . . . , βn and K ≥ 0 such that

‖f(t, ν0, ν1, . . . , νn)‖ ≤
n∑

i=0

βi‖νi‖α + K, t ∈ J, (ν0, ν1, . . . , νn) ∈ Xn+1
α .

Hypothesis 5. The function g : C ([−b, T ],Xα) → Xα is continuous and there
exists a constant L ≥ M , M ≥ 1, such that

‖g(x) − g(y)‖α ≤ ‖x − y‖C

L + ‖x − y‖C
, x, y ∈ C ([−b, T ],Xα) ,

where C ([−b, T ],Xα) is the Banach space of all continuous Xα-valued func-
tions on the interval [−b, T ] with norm ‖x‖C = maxt∈[−b,T ] ‖x(t)‖α for any
x ∈ C ([−b, T ],Xα).
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Hypothesis 6. The function f : J × Xn+1
α → X is bounded.

Hypothesis 7. The linear fractional system given in the form:

CDαx(t) = Ax(t) + Bu(t), t ∈ [0, T ],
x(0) = x0 ∈ Xα

is approximately controllable.

Then, we can present the main results of [34].

Theorem 6. Assume that the Hypotheses 4–7 hold. Then the fractional nonlocal
control system (7) is approximately controllable.

To prove obtained results author used fixed point theory (see [34]).

4.2 Approximate Controllability of Impulsive Nonlocal Nonlinear
Fractional Systems

The controllability problem for impulsive nonlocal nonlinear fractional systems
is discussed in [11]. That system is given in the following form:

CDαx(t) = Ax(t) + f (t, x(t), (Wx) (t)) + Bu(t),
t ∈ (0, b] \ {t1, t2, . . . , tm},

x(0) + g(x) = x0 ∈ X, Δx(ti) = Ii

(
x(t−i )

)
+ Dν(t−i ),

i = 1, 2, . . . ,m,

(8)

where CDα is the Caputo fractional derivative of order α ∈ (0, 1), the state
x(·) takes its values in a Banach space X with norm ‖ · ‖, and x0 ∈ X. Let
A : D(A) ⊂ X → X be a sectorial operator of type (M, θ, α, μ) on X, μ ∈ R,
0 < θ < π

2 , M > 0, W : I × I × X → X represents a Volterra-type operator
such that (Wx)(t) =

∫ t

0
h(t, s, x(s))ds, the control functions u(·) and ν(·) are

given in L2(I, U), U is a Banach space, B and D are bounded linear operators
from U into X. Here, one has I = [0, b], 0 = t0 < t1 < · · · < tm < tm+1 = b,
Ii : X → X are impulsive functions that characterize the jump of the solutions
at impulse points ti, the nonlinear term f : I×X×X → X, the nonlocal function
g : PC(I,X) → X, where PC(I,X) is the space of X-valued bounded functions
on I with the uniform norm ‖x‖PC = sup{‖x(t)‖, t ∈ I} such that x(t+i ) exists
for any i = 0, . . . , m and x(t) is continuous on (ti, ti+1], t0 = 0 and tm+1 = b,
Δx(ti) = x(t+i ) − x(t−i ), x(t+i ) and x(t−i ) are the right and left limits of x at the
point ti, respectively.

The main assumptions are formulated as follows.

Hypothesis 8. The operators Sα(t) = 1
2πi

∫
c
eλtλα−1R(λα, A)dλ and Tα(t) =

1
2πi

∫
c
eλtR(λα, A)dλ with c being a suitable path such that λα 	∈ μ + Sθ for

λ ∈ c, generated by A, are bounded and compact, such that supt∈I ‖Sα‖ ≤ M
and supt∈I ‖Tα‖ ≤ M .
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Hypothesis 9. The nonlinearity f : I × X × X → X is continuous and
compact; there exist functions μi ∈ L∞(I,R+), i = 1, 2, 3, and positive con-
stants q1 and q2 such that ‖f(t, x, y)‖ ≤ μ1(t) + μ2(t)‖x‖ + μ3(t)‖y‖ and
‖f(t, x,Wx) − f(t, y,Wy)‖ = q1‖x − y‖ + q2‖Wx − Wy‖.
Hypothesis 10. Function g : PC(I,X) → X is completely continuous and
there exists a positive constant β such that ‖g(x) − g(y)‖ ≤ β‖x − y‖, x, y ∈ X.

Hypothesis 11. Associated with h : Δ × X → X, there exists m(t, s) ∈
PC(Δ,R+) such that ‖h(t, s, x(s))‖ ≤ m(t, s)‖x‖ for each (t, s) ∈ Δ and
x, y ∈ X, where Δ = {(t, s) ∈ R

2|ti ≤ s, t ≤ ti+1, i = 0, . . . , m}.
Hypothesis 12. For every x1, x2, x ∈ X and t ∈ (ti, ti+1], i = 1, . . . , m, Ii are
continuous and compact and there exist positive constants di, ei such that

‖Ii

(
x1(t−i )

) − Ii

(
x2(t−i )

) ‖ ≤ di sup
t∈(ti,ti+1]

‖x1(t) − x2(t)‖

and
‖Ii

(
x(t−i )

) ‖ ≤ ei sup
t∈(ti,ti+1]

‖x(t)‖.

Additionally, to formulate the main results it have to define a relevant operator:

R(λ, Ψ tk
tk−1,i) =

(
λI + Ψ tk

tk−1,i

)−1

, i = 1, 2

for λ > 0, where

Ψ tk
tk−1,1 =

∫ tk

tk−1

Tα(tk − s)BB∗T ∗
α(tk − s)ds, k = 1, 2 . . . , m + 1,

Ψ tk
tk−1,2 = Sα(tk − tk−1)DD∗S∗

α(tk − tk−1), k = 2, 3, . . . ,m + 1

are the controllability operators associated with the linear impulsive fractional
control system:

CDαx(t) = Ax(t) + Bu(t)
x(0) = x0 ∈ X,

Δx(ti) = Dν(t−i ), i = 1, . . . , m.

(9)

The main theorem of [11] is formulated as follows:

Theorem 7 [11]. If Hypotheses 8–12 are satisfied and λR
(
λ, Ψ tk

tk−1,i

)
→ 0 in

the strong operator topology as λ → 0+, i = 1, 2, then the impulsive nonlocal
fractional system (8) is approximately controllable on t ∈ [0, b] \ {t1, . . . , tm}.
For prove presented results authors of [11] used fractional calculus, sectorial
operators and Krasnoselskii fixed point theorems.
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5 Conclusions

After scrutinizing the selected articles in presented survey we observe a research
methodology, which is used to solve the controllability problem. Below it is shown
the methodology resulting from in-depth analysis of the papers concerning the
controllability of semilinear and nonlinear fractional systems:

(a) showing a mathematical model of dynamical system;
(b) formulation the assumptions concerned dynamical systems;
(c) proof of solution existence of state-space equation using various types of

fixed-point theorem or generally fixed-point technique;
(d) formulation theorem contains necessary conditions of controllability;
(e) proof of the above-mentioned theorem.

We also notice that the main role plays the assumption about Lipschitz conti-
nuity.
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projects funded by the National Science Centre in Poland granted according to decision
UMO-2017/27/B/ST6/00145 (JK) and DEC-2015/19/D/ST7/03679 (AB).
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