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Abstract

Coronary artery disease (CAD) is the leading cause of morbidity and death world-

wide. Invasive coronary angiography is the most accurate technique for diagnosing

CAD, but is invasive and costly. Hence, analytical methods such as machine learning

and data mining techniques are becoming increasingly more popular. Although physi-

cians need to know which arteries are stenotic, most of the researchers focus only

on CAD detection and few studies have investigated stenosis of the right coronary

artery (RCA), left circumflex (LCX) artery and left anterior descending (LAD) artery

separately. Meanwhile, most of the datasets in this field are noisy (data uncertainty).

However, to the best of our knowledge, there is no study conducted to address this

important problem. This study uses the extension of the Z-Alizadeh Sani dataset,

containing 303 records with 54 features. A new feature selection algorithm is pro-

posed in this work. Meanwhile, by discretization of data, we also handle the uncer-

tainty in CAD prediction. To the best of our knowledge, this is the first study

attempted to handle uncertainty in CAD prediction. Finally, the genetic algorithm

(GA) is used to determine the hyper-parameters of the support vector machine

(SVM) kernels. We have achieved high accuracy for the stenosis diagnosis of each

main coronary artery. The results of this study can aid the clinicians to validate their

manual stenosis diagnosis of RCA, LCX and LAD coronary arteries.
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1 | INTRODUCTION

Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Accurate diagnosis and early institution of secondary pre-

vention measures can avert complications, deaths and also can reduce the treatment costs (Turk-Adawi et al., 2017). Invasive coronary angiogra-

phy (ICA) is the reference standard for CAD diagnosis. It depicts intraluminal coronary anatomy with high accuracy and spatial resolution which is

necessary to make correct decisions (Hamon, Morello, Riddell, & Hamon, 2007). But this procedure requires expert operators, has inherent proce-

dural risks and high costs. So, it is better not to use it as a screening tool for all patients but use it only for suspicious cases. For clinical assessment

and non-invasive tests electrocardiography (ECG) and echocardiography are commonly used instead, but these are not as sensitive or specific as

ICA. Researchers try to improve the sensitivity and specificity of non-invasive methods for CAD diagnoses using machine learning and data mining

algorithms.
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Machine learning can process multiple parallel clinical and/or diagnostic tests. Various algorithms such as support vector machine (SVM)

(Alizadehsani et al., 2016; Alizadehsani et al., 2018; Kadi, Idri, & Fernandez-Aleman, 2017; Mustaqeem, Anwar, Khan, & Majid, 2017;

Pławiak, 2018b; Sharma & Rajendra Acharya, 2019), C4.5 (Abdar, 2015; Abdar, Kalhori, Sutikno, Subroto, & Arji, 2015; Alizadehsani, Habibi,

Hosseini, et al., 2012), particle swarm optimization (PSO) (Zomorodi-moghadam et al., 2019), neural networks (Süt & Şenocak, 2007; Tan

et al., 2018) and deep learning (Butun, Yildirim, Talo, Tan, & Rajendra Acharya, 2020; Yıldırım, Pławiak, Tan, & Acharya, 2018) have been reported

to improve the accuracy of non-invasive triage of CAD. Babagolu et al. (Babao�glu, Fındık, & Bayrak, 2010) employed SVM on exercise stress ECG

data and achieved 81.46% accuracy. Kara et al. (Kara & Dirgenali, 2007) used neural network on echo-Doppler signal to diagnose CAD.

F IGURE 1 The flowchart of the proposed algorithm
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Raghavendra et al. (Raghavendra et al., 2018) used linear discriminant analysis (LDA), and SVM (Polynomial kernel) on ultrasound images and

achieved accuracy rate of more than 94% for CAD diagnosis. Polat et al. (Polat, Şahan, & Güneş, 2007) used artificial immune recognition system

(AIRS) for CAD diagnosis and attained 87% accuracy. In (Acharya et al., 2017), the performance of an ECG-based system for CAD detection was

tested using discrete cosine transform, empirical mode decomposition and discrete wavelet transform. Then, K-nearest neighbour (KNN) was used

for classification, yielded 98.5% accuracy.

In patients who have undergone ICA, machine learning may also add incremental diagnostic value. Wan et al. (Wan, Feng, Tong, Li, &

Qin, 2018) developed an automated method that could grade the severity of coronary artery stenosis on ICA. Tested on 143 patients with

267 stenosed segments, the algorithm achieved 93.93% accuracy for CAD diagnosis. In (Banchhor et al., 2017), principle component analysis

(PCA) was used for dimensionality reduction, after which SVM classifier was applied for classification. The accuracy of the designed system was

91.28%. Cost sensitive algorithm is another algorithms used for this purpose which focuses more on improving the sensitivity of algorithm than

its accuracy (Alizadehsani, Hosseini, Sani, Ghandeharioun, & Boghrati, 2012; Roohallah et al., 2012). In another study, combination of genetic algo-

rithms and artificial neural networks yielded good results for the CAD diagnosis (Arabasadi, Alizadehsani, Roshanzamir, Moosaei, &

Yarifard, 2017).

The detection of CAD can either be patient- or vessel-specific. Knowledge about CAD in individual major coronary arterial branches such as

left anterior descending (LAD), left circumflex (LCX) and right coronary arteries (RCA) are clinically relevant. For instance, a LAD lesion connotes

worse prognosis (as it subtends a larger area of arterial distribution than a LCX or RCA lesion) and may obligate earlier consideration of interven-

tion (Eghbali-Babadi, Khosravi, Feizi, & Sarrafzadegan, 2017). The literature on the use of machine learning methods to diagnose vessel-specific

stenosis is rare, as the complexity of diagnosing individual coronary artery stenosis is more challenging than CAD diagnosis (Alizadehsani

et al., 2018; Alizadehsani, Roshanzamir, et al., 2019b). Babaoglu et al. (Babaoglu, Baykan, Aygul, Ozdemir, & Bayrak, 2009) used a neural network

on exercise stress ECG data and achieved accuracy rates of 73, 64.85, and 69.39% for diagnosis of ICA-validated LAD, LCX and RCA stenosis,

respectively. Various decision support rules have been used for the diagnosis of stenosis of individual arteries (Ordonez et al., 2001; Soni, Ansari,

TABLE 1 Feature discretization of continuous features for Z-Alizadeh Sani dataset

Feature Low range Medium range High range

CrD 0.7 > Cr 1.5 ≥ Cr≥0.7 1.5 < Cr

FBSD 70 > FBS 105 ≥ FBS≥70 105 < FBS

LDLD 130 ≥ LDL 130 < LDL

HDLD 35 > HDL 35 ≤ HDL —

BUND 7 > BUN 20 ≥ BUN≥7 20 < BUN

ESRD If the patient is female & age ≥ (ESR-5)*2

or if the patient is male &

Age ≥ 2*ESR

If the patient is female &

age < (ESR-5)*2 or if the patient

is male & age < 2* ESR

HbD If male & 14 > Hb

or if female &

12.5 > Hb

If the patient is female &

15 ≥ Hb≥12.5 or if the patient

is male & 17 ≥ Hb≥14

If the patient is female & 15 < Hb or if

the patient is male & 17 < Hb

KD 3.8 > K 5.6 ≥ K ≥ 3.8 5.6 < K

NaD 136 > Na 146 ≥ Na≥136 146 < Na

WBCD 4,000 > WBC 11,000 ≥ WBC≥4,000 11,000 < WBC

PLTD 150 > PLT 450 ≥ PLT≥150 450 < PLT

EFD 50 ≥ EF 50 < EF

Regional Wall

motion AbnormalitiesD
— Regional Wall motion

abnormalities = 0

Regional Wall motion abnormalities 6¼0

AgeD If the patient is female & 55 ≥ age

or if the patient is male & 45 ≥ age

If the patient is female & 55 < age or if

the patient is male & 45 < age

BPD 90 > BP 140 ≥ BP≥90 140 < BP

PRD 60 > PR 100 ≥ PR≥60 100 < PR

Neut D 65 ≥ Neut 65 < Neut

TGD 200 ≥ TG 200 < TG

Function Classd 1 2, 3, 4

ALIZADEHSANI ET AL. 3



Sharma, & Soni, 2011; Srinivas, Rani, & Govrdhan, 2010). The performance of few classifiers were compared to determine the association

between work-related features and CAD (Nasarian et al., 2020). A comprehensive review in this field can be found in (Alizadehsani, Abdar,

et al., 2019).

In this work, we proposed a novel algorithm to diagnose stenosis in individual coronary arteries separately. The present study used the

Z-Alizadeh Sani dataset (described in Table S1) (Alizadehsani, Habibi, Hosseini, et al., 2013), which contains granular annotation of clinical variables

and individual coronary artery status. The continuous features of dataset are first discretized to reduce the noise. After that, our proposed feature

selection approach is applied. Finally, the best values of two SVM parameters (C and γ) are identified using a genetic algorithm.

The structure of this paper is organized as follows: Section 2 introduces the medical dataset used in this study. In Section 3, we describe the

data mining methods. In Section 4, experimental results are explained and finally, we conclude the paper in Section 5.

2 | MEDICAL DATASET

There are various datasets available in this field and the complete list can be found in (Alizadehsani, Roshanzamir, et al., 2019a). In this work,

Z-Alizadeh Sani dataset is used (Alizadehsani, Habibi, Hosseini, et al., 2013) as it investigates LAD, LCX and RCA stenosis separately. The cohort

comprised of 303 patients with 54 features grouped into: laboratory data, patient's medical history, ECG, physical examinations and echocardio-

gram. All patients underwent ICA. The coronary artery stenosis in a segment is defined as segment diameter having less than 50% of the diameter

TABLE 2 Weight of features based
on assurance for LAD

Feature Number Assurance

ST elevation 14 1

Q wave 16 0.9375

Regional Wall motion AbnormalitiesD 86 0.872093

Edema 12 0.833333

Ex-smoker 10 0.8

Typical CP 164 0.792683

T inversion 90 0.744444

ST depression 71 0.71831

EFD 197 0.71066

FBSD 84 0.690476

DM 90 0.677778

NeutD 89 0.674157

Current smoker 63 0.666667

BPD 48 0.666667

HTN 179 0.659218

AgeD 238 0.638655

LDLD 61 0.622951

TGD 62 0.612903

Systolic murmur 41 0.609756

FH 48 0.604167

Week peripheral pulse 5 0.6

LVH 20 0.6

HDLD 87 0.597701

HBD 157 0.592357

Obesity 211 0.563981

DLP 112 0.553571

Dyspnea 134 0.537313

PLTD 12 0.5

Atypical CP 93 0.322581

Lung rales 9 0.222222
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of an adjacent normal segment [1]. When any coronary stenosis is present, the affected artery is labelled 1; and 0 when it is absent. Among

303 patients, 177 LAD, 119 LCX and 114 RCA arteries had demonstrable stenosis.

3 | METHOD

In this section, we discussed our approach to predict the diagnosis of coronary artery stenosis.

TABLE 3 Weight of features based
on assurance for LCX

Feature Number Assurance

Ex-smoker 10 0.7

CRD 22 0.681818

Airway disease 11 0.636364

Poor R progression 9 0.555556

Typical CP 164 0.52439

BPD 48 0.520833

DM 90 0.511111

Edema 12 0.5

PLTD 12 0.5

Regional Wall motion AbnormalitiesD 86 0.5

Q wave 16 0.5

FBSD 84 0.464286

HTN 179 0.463687

Lung rales 11 0.454545

EFD 197 0.451777

TGD 62 0.451613

Function ClassD 92 0.445652

AgeD 238 0.445378

T inversion 90 0.444444

Current smoker 63 0.444444

WBCD 27 0.444444

ESRD 46 0.434783

ST elevation 14 0.428571

NeutD 89 0.426966

ST depression 71 0.422535

HBD 157 0.422535

LDLD 62 0.403226

Week peripheral pulse 5 0.4

LVH 20 0.4

FH 48 0.395833

DLP 112 0.383929

Obesity 211 0.379147

Dyspnea 134 0.365672

KD 37 0.351351

HDLD 87 0.344828

NaD 34 0.323529

Systolic murmur 41 0.317073

Atypical CP 93 0.268817

Diastolic murmur 9 0.222222

Thyroid disease 7 0.21
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3.1 | Feature analyzing

We used the information gain (Alizadehsani, Habibi, Hosseini, et al., 2013), wrapper (Monirul Kabir, Monirul Islam, & Murase, 2010) and embed-

ding (Chandrashekar & Sahin, 2014) methods to rank the features in our dataset based on the influence of features on LAD, LCX and RCA steno-

sis. The more weight of feature causes more influence on the stenosis of arteries. The selection of each feature, which forms the basis for further

TABLE 4 Weight of features based
on assurance for RCA

Feature Number Assurance

Poor R progression 9 0.89

Q wave 16 0.63

Weak peripheral pulse 5 0.6

CVA 5 0.6

DM 90 0.58

WBCD 27 0.52

NeutD 89 0.52

FBSD 84 0.52

Typical CP 164 0.51

ST elevation 14 0.5

Ex-smoker 10 0.5

PLTD 12 0.5

BPD 48 0.46

ESRD 46 0.46

Airway disease 11 0.45

Function ClassD 92 0.45

HTN 179 0.44

AgeD 238 0.44

EFD 197 0.43

Regional Wall motion AbnormalitiesD 86 0.43

T inversion 90 0.42

Edema 12 0.42

ST depression 71 0.41

Current smoker 63 0.41

CRD 22 0.41

FH 48 0.4

DLP 112 0.4

TGD 62 0.4

LDLD 62 0.4

HBD 157 0.4

Obesity 211 0.37

Lung rales 11 0.36

KD 37 0.35

LVH 20 0.35

HDLD 87 0.34

Systolic murmur 41 0.34

CRF 6 0.33

Dyspnea 134 0.32

NaD 34 0.32

Thyroid disease 7 0.29
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analyses, is explained in Section 3.3. In all feature selection methods used in the diagnosis of each coronary artery stenosis, features with weights

greater than 0.2 are selected and subsequently classified.

3.2 | SVM classifier

It is a supervised machine learning technique used for classification and regression (Alizadehsani et al., 2016). It uses an optimal hyperplane to

maximize the margins between data points of different classes in a linear space. Different kernels namely: (a) sigmoid, (b) linear, (c) polynomial and

radial basis function (RBF) (Caruana & Niculescu-Mizil, 2006) are used. Choosing the appropriate type of kernel as well as the best values of regu-

larization parameter (C) and gamma (γ) are important to achieve the highest performance. The γ: lower values of γ imply higher influence and

higher values represent lower influence (Ruta & Gabrys, 2000). The parameter C trades off simplicity of decision surface against training mis-

classification. The higher value of C tend to classify all training examples correctly and reduces the generalizability of the model to the test data.

The lower value for C results in a less complex model with smoother decision surface.

3.3 | Assurance feature selection

In this study, a novel feature selection method named ‘assurance feature selection’ is proposed. This method is defined for a binomial feature

F having the values 0 or 1. The assurance of feature F for a binomial class label D shown by AF,D is calculated according to Equation (1).

AF,D =
Count F&Dð Þ
Count Fð Þ ×100, ð1Þ

TABLE 6 The best performance using optimum values of C and γ for various SVM kernels by wrapper and embedded feature selection
methods

Naive
Bayes

Neural
network

Random
forest

SVM with
polynomial
kernel

SVM with
RBF kernel

SVM with
linear
kernel

SVM with
sigmoid
kernel

Selected features

using wrapper

LAD Accuracy (%) 77.56 81.11 81.02 79.04 82.04 79.82 82.08

Sensitivity (%) 84.29 87.22 87.02 85.84 88.21 81.84 84.64

Specificity (%) 70.98 69.04 70.04 71.04 75.12 71.02 77.01

LCX

Accuracy (%) 75.01 79.01 78.01 78.11 79.04 79.03 81.41

Sensitivity (%) 78.02 86.02 87.14 84.94 84.34 83.19 83.99

Specificity (%) 72.33 69.00 68.04 69.02 73.22 72.44 76.04

RCA

Accuracy (%) 77.02 78.92 79.00 78.02 79.24 79.21 77.59

Sensitivity (%) 79.16 86.04 81.02 82.04 85.00 82.33 81.02

Specificity (%) 75.02 69.84 69.02 71.11 69.98 71.88 72.04

Selected features
using embedded

LAD

Accuracy (%) 77.09 82.02 81.04 79.31 83.01 82.65 83.11

Sensitivity (%) 85.03 89.34 88.21 88.96 88.32 87.06 86.87

Specificity (%) 68.02 69.91 71.02 71.22 75.41 73.19 73.96

LCX

Accuracy (%) 76.04 78.91 79.52 79.02 79.92 79.54 81.34

Sensitivity (%) 79.94 88.43 89.21 87.94 81.12 83.12 86.01

Specificity (%) 74.01 69.52 70.05 70.56 74.38 71.12 77.21

RCA

Accuracy (%) 77.04 79.34 79.94 77.46 79.12 78.92 77.97

Sensitivity (%) 78.80 88.11 84.12 82.84 86.31 83.24 81.30

Specificity (%) 75.11 69.12 69.43 71.41 69.32 71.69 72.92

8 ALIZADEHSANI ET AL.



where D � {LAD, LCX, RCA}, F � Z − Alizade Sani dataset features, Count(F&D) shows the number of patients with feature F equals to 1 having ste-

nosis D, and Count (F) shows the number of patients with feature F equals to 1. After the calculation of assurance of each feature, features with

high assurance values are selected for classification.

3.4 | Proposed method

Figure 1 shows our proposed method used to handle uncertainty in CAD prediction. We first discretized the features based on clinical criteria

[23]. Then, data is divided according to 10-fold cross validation. Based on the training results, high assurance features are selected. A feature is

selected, if its assurance is more than 0.2. This value is selected based on what yielding the best performance for the validation data. This is done

to separate LAD, LCX and RCA clearly. Finally, optimal values for the hyper-parameters (C and γ) of SVM are derived using genetic algorithm.

Accordingly, high assurance features are applied to the test data and then using the best values calculated for C and γ, the SVM classifies the test

data. It is described in detail in the following sections.

3.4.1 | Discretization

Z-Alizadeh Sani dataset comprises of 54 features: 35 discretized, and 19 continuous. We discretized the continuous features based on the clinical

criteria according to (Mann, Zipes, Libby, & Bonow, 2014). The discretized values are presented in Table 1. This discretization reduces uncertainty

presented in the imprecise data, thereby enhancing the performance of classification algorithms.

TABLE 7 The best performance using optimum values of C and γ for various SVM kernels by information gain and assurance feature
selection methods

Naive
Bayes

Neural
network

Random
forest

SVM with

polynomial
kernel

SVM with
RBF kernel

SVM with
linear kernel

SVM with
sigmoid kernel

Selected features

using information

gain

LAD Accuracy (%) 77.86 81.19 81.85 79.19 82.51 82.31 83.17

Sensitivity (%) 84.92 89.27 89.29 85.57 88.70 88.14 89.27

Specificity (%) 70.67 69.84 71.43 72.22 73.81 74.60 74.60

LCX

Accuracy (%) 76.56 79.92 79.22 79.12 81.84 80.86 81.51

Sensitivity (%) 80.16 89.83 88.40 87.57 86.44 85.31 86.44

Specificity (%) 75.71 69.84 69.05 70.63 77.78 74.60 76.98

RCA

Accuracy (%) 77.56 79.87 79.68 77.27 80.86 80.52 78.51

Sensitivity (%) 78.53 88.14 83.01 82.44 85.88 88.14 83.70

Specificity (%) 76.19 68.25 70.63 70.63 73.81 72.22 73.81

Selected features

using assurance
(Proposed)

LAD

Accuracy (%) 78.56 83.83 84.82 80.12 86.64 84.49 85.15

Sensitivity (%) 79.57 89.83 90.96 86.44 92.96 90.41 90.96

Specificity (%) 76.84 75.40 76.19 72.63 79.37 75.37 76.98

LCX

Accuracy (%) 78.22 81.82 81.85 79.16 83.47 83.12 82.19

Sensitivity (%) 78.53 93.62 89.83 84.44 90.96 90.40 89.83

Specificity (%) 77.78 65.08 70.63 75.12 75.22 73.02 69.05

RCA

Accuracy (%) 77.95 79.89 80.58 78.26 82.85 80.71 81.10

Sensitivity (%) 78.66 84.27 83.01 79.66 87.01 88.74 83.44

Specificity (%) 76.98 71.43 75.40 76.98 74.60 72.22 76.12

Note: The best accuracy achieved for diagnosing stenosis of LAD, LCX, and RCA arteries are bold in this table.

ALIZADEHSANI ET AL. 9



3.4.2 | Hyper-parameter optimization of SVM

The best value for C and γ are selected using genetic algorithm (GA) (Haupt & Haupt,2004). The GA is an efficient and reliable meta-heuristic search

algorithm for optimal solutions. The method mimics natural evolutionary processes based on bio-inspired operators such as selection, crossover and

mutation. In this problem, we are looking for optimal values for C and γ. From a population of 1,000 initial values for C and γ, tournament selection

(Haupt & Haupt,2004) is implemented for crossover and mutation, producing the next generation. To update these two variables, a random number

of 0≤α≤1 is generated. Then if parents are x and y, their corresponding offspring's are (Zhou, Jin, Zhang, Sendhoff, & Tsang,2006):

Offspring 1ð Þ= α:x + 1−αð Þ:y ð2Þ

Offspring 2ð Þ= 1−αð Þ:x + α:y: ð3Þ

The crossover and mutation rates are 1 and 0.01, respectively. The algorithm terminates after 100,000 generations.

4 | EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the effect of features for the diagnosis of LAD, LCX and RCA stenosis are discussed. Then, classification results are presented in

terms of accuracy, sensitivity and specificity.

4.1 | Analysis of arteries' stenosis

To analyze the arteries' stenosis, the assurance (the proposed feature selection method) of the features in classifying the arteries are used. The

effect of features on the diagnosis of LAD stenosis is shown in Table 2 based on their assurance. In this table, the assurance of features and the

number of patients corresponding those features is equal to 1.

F IGURE 2 Graph of accuracy versus γ of various kernel functions for LAD artery with C = 10
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Table 2 demonstrates that the highest assurance values related to ST Elevation, Q Wave, Regional Wall Motion Abnormalities, Edema, Ex-

Smoker, Typical chest pain (CP), T inversion, ST Depression, ejection fraction (EF)D, fasting blood sugar (FBS)D, diabetes mellitus (DM), neutrophil

count (Neut)D, Current Smoker, blood pressure (BP)D and hypertension (HTN), respectively. The effect of features on the diagnosis of LCX steno-

sis including their assurance and the number of patients who had those features (value = 1) are shown in Table 3. Ex-Smoker, serum creatinine

(Cr)D, Airway Disease, Poor R Progression, Typical CP, BPD, DM, Edema, platelet count (PLT)D, Regional Wall Motion AbnormalitiesD, Q wave,

FBSD, HTN, Lung Rales, EFD, serum triglycerides (TG)D, Function ClassD, AgeD, T inversion, Current Smoker and white blood cell count (WBC)D

are shown in the table in descending order of their assurance values. The effect of features on the diagnosis of RCA stenosis including their assur-

ance and the number of patients who had those features (value = 1) are shown in Table 4.

Poor R Progression, Q Wave, Weak Peripheral Pulse, cerebral vascular accident (CVA), DM, WBCD, NeutD, FBSD, Typical CP, ST Elevation,

Ex-Smoker, PLTD, BPD, erythrocyte sedimentation rate (ESR)D, Airway Disease, Function ClassD, HTN, AgeD, EFD, Regional Wall Motion

AbnormalitiesD, T inversion, Edema, ST Depression, Current Smoker and CrD have the highest impact on RCA stenosis in terms of assurance.

A comparison of Tables 2–4 shows that the weight of the features in Table 2 is higher than other tables, demonstrating that LAD stenosis

can be diagnosed with better accuracy rate than the other two arteries (LCX and RCA).

4.2 | Classification results

The two SVM tuning parameters namely regularization parameter (C) and gamma (γ) are used to obtain the highest classification performance.

Table 5 shows the best values of (C, γ) for each kernel and dataset. The accuracy of the method obtained for different values of γ is presented in

Figures 2–4 for various kernel functions with C = 10. The RBF kernel does not show much variance for different values of γ. The polynomial ker-

nel is ranked second highest which shows slightly higher variation than RBF, and its fluctuations are less than linear and sigmoid kernels. The lin-

ear and sigmoid kernel variances are significantly more than RBF and polynomial kernels. Hence, finding the optimal values for linear and sigmoid

kernels are more important than RBF and polynomial kernels for this dataset.

F IGURE 3 Graph of accuracy versus γ of various kernel functions for LCX artery with C = 10
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To study the effect of assurance feature selection and discretization, we compared the experimental results with three other feature selection

algorithms: (a) embedded, (b) wrapper and (c) information gain. The algorithms are compared in Tables 6 and 7. With information gain s feature

selection method, the highest accuracy of 83.1% is obtained for the diagnosis of LAD stenosis with sigmoid kernel as indicated in the first row of

Table 7. Using RBF kernel, the highest accuracies of 81.84 and 80.86% are achieved for the diagnosis of LCX and RCA, respectively.

It can be noted from Figure 5 that, the best results are obtained for the proposed algorithm, followed by information gain, embedding and

wrapper methods. The second row in Table 7 shows the results using assurance feature selection method followed by SVM algorithm (RBF kernel

function). The best accuracy for the stenosis diagnosis of LAD, LCX and RCA is 86.64, 83.47 and 82.85%, respectively. Our proposed method

achieved the highest accuracy as compared to other reported methods when other feature selection algorithms such as wrapper, embedded and

information gain are applied.

4.3 | Discussion

As far as we know, there is no paper that considered the uncertainty in CAD data for vessel-specific diagnosis of CAD. In Table 8, we compared

the works conducted in the automated diagnosis of major coronary arteries, separately. It is clear from this discussion table that our proposed

method is the best algorithm for diagnosing each main coronary artery stenosis.

Two types of uncertainties exists: (a) uncertainty in the data and (b) uncertainty in themodel (Gal & Ghahramani, 2016; Kendall & Gal, 2017). Investi-

gating uncertainty in the models while each vessel is considered separated was done by (Alizadehsani, Roshanzamir, et al., 2019b). Distance of sample

from hyperplane alongside with accuracy rate of the classifier was used to handle the model uncertainty. As far as we know there is no research investi-

gating the uncertainty in the data. The advantage of our proposed method is its robustness against uncertainty in the data. The uncertainty in the clinical

data is a common problem. For example, the error caused due to usage of instruments or humanmistakes can easily generate uncertainty in the extracted

data. Some of them may be vital in the disease diagnosis process. Unfortunately, this important problem is ignored in most of those studies which use

machine learning anddatamining algorithms for diagnosing different diseases and cancers. Hence, solving this issue can improve the reliability ofmachine

learning and dataminingmethods in disease diagnosis. However, in our proposedmethod, we cannot handle uncertainty in both data andmodels. This is

F IGURE 4 Graph of accuracy versus γ of various kernel functions for RCA artery with C = 10
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one of the weaknesses of our method that we can overcome it in our future works using evolutionary algorithms (Alkeshuosh, Moghadam, Mansoori, &

Abdar, 2017; Hassoon, Kouhi, Zomorodi-Moghadam, & Abdar, 2017; Książek, Abdar, Acharya, & Pławiak, 2019; Pławiak, 2018a; Pławiak &

Acharya, 2019). Meanwhile, it is obvious that handling uncertainty is computationally intensive. Having sound primary knowledge in the area of stenosis

diagnosis for the discretization of features is an importantweakness of our proposedmethod.

F IGURE 5 Graph of performance
(accuracy %) versus different classifiers for
different stenosis: (a) LAD, (b) LCX
and (c) RCA
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5 | CONCLUSION

In this work, a novel method for automated stenosis diagnosis of LAD, LCX and RCA coronary arteries is proposed. We have achieved an accuracy

of 86.64, 83.47 and 82.85% for the stenosis diagnosis of LAD, LCX and RCA, respectively. As far as we know, this paper is the first one that inves-

tigates the data uncertainty in the stenosis diagnosis of LAD, LCX and RCA. We have obtained the highest accuracy for the diagnosis of LAD ste-

nosis as compared to LCX and RCA. Moreover, SVM with RBF kernel function is the best as compared to other classification methods. The results

show that discretization together with assurance feature selection can improve the efficiency of classification algorithms significantly. In future,

we intend to use new methods to handle the data uncertainty and improve the performance of stenosis diagnosis. Also, different types of evolu-

tionary algorithms may be used instead of genetic algorithm to develop a hybrid feature selection algorithm (Alizadehsani, Abdar, et al., 2019;

Alizadehsani, Habibi, Hosseini, et al., 2013; Alizadehsani, Hosseini, et al., 2012; Alizadehsani, Roshanzamir, et al., 2019b; Alizadehsani,

Roshanzamir, et al., 2019a; Arabasadi et al., 2017; Roohallah et al., 2012; Zomorodi-moghadam et al., 2019).
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