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Abstract. Software vulnerability prediction is an important and active
area of research where new methods are needed to build accurate and
efficient tools that can identify security issues. Thus we propose an ap-
proach based on mixed features that combines text mining features and
the features generated using a Static Code Analyzer. We use a Random
Neural Network as a bonding model that combines the text analysis that
is carried out on software using a Convolutional Neural Network, and the
outputs of Static Code Analysis. The proposed approach was evaluated
on commonly used datasets and led to 97% training accuracy, and 93%-
94% testing accuracy, with a 1% reduction in false positives with respect
to previously published results on similar data sets.

Keywords: Random Neural Networks · Software Vulnerability Predic-
tion · Machine Learning · Convolutional Neural Networks · Text Mining

1 Introduction

The cost of building secure software is high but the results of not meeting
security requirements may be much more severe. Cyberattacks occur on a
daily basis and threaten the security and privacy of valuable and sensitive
information. Indeed, the Cisco Consumer Privacy Survey shows that a
significant majority of 84% of respondents care about data privacy [10].
Thus security was stated to be “foundational” and a “top IT priority”
in the Cisco 2019 Annual Report [9].
Security of software is mostly based on carefully written source code,
and software vulnerabilities are the consequence of defects that are hard
to find [89]. Most vulnerabilities are caused by common programming
mistakes introduced by programmers in the early stages of the Software

? This research was funded by the European Commission (EC) through the EU H2020
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Development Life Cycle (SDLC) [79]. Programmers often lack the secu-
rity expertise and their testing resources are limited. Hence, Static Code
Analyzers based on software security standards, e.g. SonarQube [80] and
Veracode [87] are often used in the software production cycle. It has also
become common to use binary classifiers to prioritize testing efforts [69].
Despite the fact that modern programming languages focus on security
and that many software security guidelines are available, vulnerabilities
are still rife. Referring to Veracode’s software security report [86], more
than 85 % of all applications scanned using the Veracode’s application
security platform between April 1, 2017 and March 31, 2018, had at least
one software vulnerability. More than 13 % of the applications contained
at least one critical flaw. Approximately 85.7 % of .NET applications,
87.5 % of Java applications and 92 % of C++ applications contain at
least one vulnerable component.
Unfortunately, code analysis in terms of security is time-consuming and
expensive [50], and thus researchers should commit their efforts to create
accurate and efficient Vulnerability Predictors based on new approaches.
In recent years, results based on heterogeneous features suggest that it is
a good approach to follow [15,99], while the application of deep learning
to Vulnerability Prediction is increasing [12, 62, 69], and it would also
be beneficial to establish guiding principles regarding the representation
and utilization of software components with such models [59]. The cur-
rently used methodologies presented in Section 2 offer a panorama in
this respect.

1.1 Scope of the Present Work

The aim of our work is to create a software vulnerability prediction
model based on Random Neural Networks (RNN) and Convolutional
Neural Networks (CNN) that uses both text mining features and metrics
generated from a Static Code Analyzer.
Over the years, RNNs have found application to video compression [41],
medical image segmentation [25], the search for buried explosive devices
[35], vehicle classification [46], in the field of virtual reality [33, 52], in
augmented reality [34,48], and network attack detection and mitigation
[4, 17,39,65,70].
Other areas where RNNs have been successful include deep learning [98],
smart network management [14, 31, 36, 37, 40], emergency management
and cyberphysical systems [42, 43], the dynamic management of Cloud
and Fog services [21,22,90], the use of machine learning in smart search
[75, 76] and network routing including the use of Software Defined Net-
works [5, 19,20,29,30,38,91].
The CNN has also been successfully used in many fields [1,58], including
for Magnetic Resonance Image reconstruction [94], automatic road seg-
mentation [57], music generation [93] and relation extraction from plain
text [45].
This wide usage and success of both the RNN and the CNN in a variety
of applications justifies their use for Software Vulnerability Prediction
in this paper, where text data processing and dimensionality reduction
is carried out with a small CNN, and the RNN is used as a model that
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bonds both parts of the analysis. We utilize transfer learning: feature
maps generated by a hidden layer of the CNN are provided as input to
the RNN model and additional features that are obtained via metrics
generated from a static analysis tool are used to improve the identifica-
tion of vulnerabilities and the reduction of false positives.
Section 2 describes the background and work regarding Software Vul-
nerability Prediction. It also describes the approaches used in this field.
Section 3 makes a brief introduction to the Random Neural Network.
Section 4 presents the methodology used based on machine learning,
and the dataset that was used for training the network. In section 5 we
describe our experimental results, while Section 6 concludes the article
and discusses future work.

2 Software Vulnerability Prediction

Security plays a crucial role in modern information systems, and has
become a primary concern in programming language design and imple-
mentation [71]. Modern programming languages focus on safety and re-
liability, because weaknesses in language models can be exploited by
attackers, and compilers are used as control mechanisms on program
execution.
To enhance software security, languages such as OCaml, Java, and C#
use static analysis and dynamic checks [71]. RUST is a system program-
ming language recommended for safety critical domains, which assumes
memory-safety and thread-safety [13]. Additionally, software-oriented or-
ganizations such as the Open Web Application Security Project (OWASP)
[66], SANS Institute [72] and the Computer Emergency Response Team
Coordination Center (CERT/CC) [7] create standards concerning soft-
ware security and publish guidelines, e.g. OWASP Secure Coding Prac-
tices Guide [67], on how to create secure software components.
Many critical software vulnerabilities are grouped into rankings such as
OWASP Top10 [68] and CWE/25 [11]. To produce secure code, develop-
ers focus on static security tests [86] that help eliminate vulnerabilities in
the coding stage of the Software Development Life Cycle (SDLC), offered
by some of the Integrated Development Environments (IDEs) themselves,
e.g. Visual Studio (C/C++) [88], IntelliJ IDEA (Java) [49] and Eclipse
(Java) [16]. Dedicated applications that focus on static analysis have also
been created, e.g. SonarQube [80] and Veracode [87].
Two types of software analysis are generally used for vulnerability detec-
tion: static and dynamic analysis, each with testing methodologies that
differ significantly from each other. Static analysis is usually applied in
the early stages of the SDLC. It can be based on Text Mining, Software
Metrics, or security-related Automated Static Analysis (ASA) alerts [79].
It is successful in detecting leaks of private data, unauthorised access to
resources, permission misuse, intent injection, clone detection, code ver-
ification, cryptography implementation issues and test generation [3].
Dynamic testing is much more time consuming; it needs an executable
version of the software, and is therefore used later in the life cycle. It
is perceived to be more complex than static analysis [3] because it not
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only requires an executable version of the software, but also requires
additional resources and the ability to simulate user behaviour.
Dynamic testing can be divided into Fuzz testing [54], Concolic Test-
ing [92] and Search Based Testing [73]. It is important to highlight that
none of these methods should be treated as being superior. They offer
different testing methodologies and environments. Some vulnerabilities
are easier to find using static analysis, and for some of them one must
apply dynamic analysis, as they simply cannot be found before the pro-
gram is actually executed [86]. It is generally a good practice to use
both of them, because using a single testing technique is not sufficient
to identify all vulnerabilities and address all the problems that may be
encountered [85].
Software metrics can be used to discriminate between vulnerable and
non-vulnerable software components [2]. In [61] complexity metrics are
used, while in [8] metrics named complexity, coupling and cohesion have
been used as early indicators of vulnerabilities. In [78] the Complexity,
Code Churn and Developer Activity metrics are used to indicate the
potential presence of vulnerabilities.
ASA alerts which apply Singular Value Decomposition, have been used
to identify fault-prone software components [77]. In [23], ASA alerts have
been used for early identification of vulnerability-prone and attack-prone
software components, and this approach can be used for prioritizing re-
design, as well as for verification and validation efforts.
Text Mining for Software Vulnerability Prediction has also generated
much interest. In [63] software components were represented as a list
of extracted “includes” and “function calls” with information about
whether a file incorporates them. In [51] function calls have been re-
trieved from Abstract Syntax Trees. As a result, a single component
can be represented as a binary vector of features. Some approaches from
Natural Language Processing (NLP) have been applied as well. In [59]
the software components were represented as a series of terms. Using
this approach, the order of the terms is also taken into consideration.
Alternatively, the components can be treated as a Bag-Of-Words (i.e.
a set of tokens or unit terms) with associated frequencies [74] or using
term-weighing called the Term Frequency-Inverse Gravity Moment [56].
As an alternative to a high-level representation of the program, in [50]
cleaned java bytecode lines were treated as a set of words, together with
n-grams, a popular NLP technique. Using this method, bigger groups of
terms are also treated as unit terms. In [69], an approach that combines
n-grams and statistical feature selection is presented.
In some works, mixed features are used to build Vulnerability Predic-
tion models. In [100] Text Mining features are used along with Software
Metrics. In [99] traditional software metrics are used along with Devel-
oper Metrics, Software Property Metrics, Popularity Metrics and Secu-
rity Metrics which are alerts generated by a static code analyzer. In [15],
besides the Complexity Metrics (Software Metrics), special Vulnerabil-
ity Metrics such as Dependency Metrics, Pointer Metrics and Control
Structures are used.
Other works have compared different approaches to vulnerability predic-
tion. In [89] and [81] the approaches based on Software Metrics and Text
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Mining are compared. In a paper [51] three approaches have been dis-
cussed, namely: using the presence of includes and function calls (text
mining based on regex expressions and Abstract Syntax Trees), tradi-
tional text mining using tokens with corresponding frequencies of oc-
currence, and software metrics. The results in [51] suggest that the per-
formance of models based only on software metrics is insufficient. On
the contrary, the results presented in [81] suggest that from a practi-
cal perspective, the performance of models based on software metrics is
comparable to text mining techniques.
Apart from the form of the training features, many different prediction
models have been used in this field: Support Vector Machines (SVM)
[63], Random Forests [50, 56, 74, 81, 89], Bayesian Networks [78], Linear
Discriminant Analysis [78], Decision Trees [56, 99], Boosted Trees [99],
Linear Regression [99], Näıve Bayes Classifier [74], K-Nearest Neighbours
[56], Artificial Neural Networks [6, 99] with Deep Learning in particular
[12,59,62,69].
This paper proposes an approach based on mixed features, i.e. the text
mining features and the features generated using a Static Code Analyzer.
To build our model we use Convolutional Neural Networks and, novel in
this field, Random Neural Networks.

3 Random Neural Networks

The Random Neural Network (RNN) is a specific type of Artificial Neural
Network introduced in [26,27], whose purpose was to mimic the spiking
behaviour of neurons in the mammalian brain. A gradient based learning
algorithm for the RNN was introduced for both feedforward and recur-
rent (feedback) networks [24]. The RNN has been considerably extended
to develop the theory of G-Networks [18, 28] in queueing theory and
stochastic processes, and from a machine learning perspective it has also
resulted in deep learning algorithms [44].
In the RNN, each neuron’s internal state is represented by a non-negative
integer, and information is exchanged between neurons using positive
and negative spikes which play opposite roles: a positive spike received
by a neuron will increase its internal state by 1 representing excitation,
while the arrival of a negative spike will reduce its state by 1 (provided
its state is non-zero) representing inhibition. If a neuron’s potential is
strictly positive, we will say that it is “excited” and it is then able to
“fire” or send out spikes at exponentially distributed intervals, while if
it potential is zero the neuron is quiescent and it cannot send spikes to
other neurons or to entities that are external to the network. When a
neuron fires, its internal state drops by one for each outgoing spike.
RNNs have been shown to exhibit a great classification power and are
able to outperform other traditional methods in many different areas
[47,95–97]. They have been successfully used in the fields of vehicle clas-
sification [46], medical image segmentation [25], inserting 3-D images in
moving virtual reality scenes [33], augmented reality simulation of trans-
portation systems [48], determining the state of servers in a dynamic
network Cloud environment [96] and attack detection [4, 64, 70]. Many
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different models of RNNs have been introduced: multiple signal class
random neural networks [32], the Dense Random Neural Network [4],
the Spiking Random Neural Network Function Approximator [95].
In this paper we use a modification of the RNN’s training process with a
Weight Restriction that reduces the number of computationally-demanding
operations by considering only the derivatives of positive weights dur-
ing the Gradient Descent algorithm. Since in this case the sum of the
outgoing excitatory and inhibitory weights of a neuron to another neu-
ron is fixed, the change of the excitatory weights will imply an identical
but opposite change in the inhibitory weights. Also, as an alternative
to random weight initialization [24, 46] or some other computationally-
demanding approaches [24,83,84], we use a “neutral” initialization that
sets the weights to such values which set the initial excitation probabil-
ity of each neuron in the network to 0.5, when the input values to the
network are also neutral.

4 Methodology

In our approach, we propose a system that combines text mining fea-
tures with metrics obtained from a Static Code Analyzer. To predict the
labels of the examined software components we utilize Artificial Neural
Networks, namely Random Neural Networks and Convolutional Neural
Networks. We used 70 % of the data for training and 30 % for testing. To
eliminate the imbalance of the data, we down-sampled the majority class
(i.e. the non vulnerable class) for the training set and left the original
number of samples in the testing dataset. We select five best features
out of all the metrics generated by the Static Code Analyzer using the
χ2 ranking technique. Additionally, we performed feature analysis using
a visualization method called the t − distributed stochastic neighbour
embedding (t-SNE) which is a non-linear algorithm used to decrease the
dimensionality of data [55]. It is a good choice for examining whether a
local structure exists in high-dimensional data, and as a means to visu-
alise it in a two-dimensional space [60].

4.1 Dataset

We have used a dataset introduced in [59] for our experiments that con-
sists of 61, 638 source code components, of which 43, 913 are not vul-
nerable and 17, 725 are vulnerable. The software elements are written
in C/C++. Two types of vulnerabilities are considered in this dataset:
CWE-119 - buffer error vulnerabilities (10, 440 components) and CWE-
399 - resource management error vulnerabilities (7, 285 components), and
we only consider CWE-399 vulnerabilities.
To achieve the text mining features, we follow a method described in [74].
This approach is based on the assumption that the programming lan-
guage can be treated as an natural language, so that common text mining
techniques can be applied to represent the information that it contains.
Using the Bag-Of-Words techniques, the elements can be represented as
tokens with associated frequencies. To obtain the desired metrics, we
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utilize a static code analyzer named SonarQube [80]. The tool allows to
extract a broad number of metrics, including size (e.g. lines of code) and
complexity. The number of instances in the classes and the whole dataset
has been presented in Table 1.

Table 1: The number of instances in non-vulnerable and vulnerable classes of
the examined data

Category Instances

non-vulnerable 815
1499

vulnerable 684

4.2 Proposed system

The predictive part of the proposed system is composed of two parts:
the first one is used for dimensionality reduction and extracting the in-
formation from text features, the second one is a bonding model for the
extracted feature maps and metrics generated from a static analysis tool.
The first part is built on a small CNN neural network. The text mining
model has been built using the Keras functional API [53], and the second
part is a computationally-efficient RNN. The workflow of the system is
presented in Figure 1.
The feature maps we take from the CNN part are 1-dimensional with
10 features. To enhance the result,s we use additional features generated
using SonarQube tool [80]. The best features are chosen with a popular
ranking technique - χ2, and we take the five best features to estimate
how the feature diverges from the expected distribution [82].

Source Code

Tokens with
frequencies

Reshaping

Feature maps

CNN

RNN
Software Metrics

Decision

Training on text features

Additional training on feature maps and software
metrics

Fig. 1: The workflow of a software vulnerability prediction system based on both
text mining features and metrics generated from a static analysis tool using
Convolutional Neural Networks and Random Neural Networks
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5 Experimental Results

We first examine the generated dataset using the t-SNE algorithm as
presented in Figure 2. It is clearly visible that the algorithm can find a
local structure in high-dimensional data in both the feature maps gen-
erated using a CNN and the software metrics (all the metrics have been
taken under consideration). Although it is harder to divide features gen-
erated in the Static Analysis tool, a local structure exists there and it can
suggest that additional information can be extracted by adding these fea-
tures to the overall analysis. Using both sets of features, an almost linear
separation of vulnerable and non-vulnerable instances can be achieved.

(a) Feature maps from CNN (b) Static Analysis Metrics

(c) Feature maps from CNN + Static
Analysis Metrics

Fig. 2: t-SNE visualization of vulnerable and not vulnerable classes on the basis
of different types of features

The best model created during the experiments for text mining, and the
hybrid model both achieved 97 % training accuracy, while they achieved
93% and 94 % testing accuracy, respectively, for both the CNN model
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based on text mining and the hybrid model using the RNN. The results
for the text mining model and the hybrid model are shown in the form
of normalized confusion matrices in Figure 3.
Although the Hybrid model achieves 1 % lower recall or True Positive
Rate for the training set, the value is this same for the testing set for
both the text mining model and the hybrid model. Using a model that
utilizes both feature maps obtained using CNN and metrics obtained
from SonarQube static code analyzer, we managed to decrease the False
Positive Rate for both training and testing data by 1%. We notice that
the model is good at generalizing and despite the fact that data in the
testing set is distributed differently than in the training set (since we used
down-sampling to balance the vulnerable and non-vulnerable instances)
it achieves satisfactory results in terms of Recall and False Positive Rate.
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Fig. 3: Normalized confusion matrices presenting the best results achieved by the
text mining model and the hybrid model
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6 Conclusions and Future Work

In this paper, we have exploited the successful usage in a wide variety of
applications of two neural network models with their respective learning
algorithms, namely the RNN and the CNN, to address the challenging
issue of Software Vulnerability Prediction. In our proposed approach,
text data processing and dimensionality reduction is accomplished by a
small CNN, while an RNN operates as a bonding model for both parts of
the analysis. Feature maps obtained from a CNN hidden layer are given
to the RNN as input, while additional features obtained from metrics
generated by static analysis, help to improve the correct determination
of vulnerabilities and to reduce the false alarms.
The analysis performed using the t-SNE algorithm have shown that high-
dimensional features used for training the neural networks contain a local
structure that can be used for Software Vulnerability Prediction. Al-
though this local structure obtained using features from a Static Code
Analyzer is not as marked as the features obtained from the text min-
ing, it is reasonable to assume that the information contained in these
features can help improve the approaches based on text mining. It also
appears that the biggest challenge in many Software Vulnerability Pre-
diction techniques and Static Analysis tools is a significant number of
false positives. Our experiments show that by using text features as well
as metrics generated by a static code analyzer, false positives can be
reduced.
To fully evaluate the proposed method, more tests need to be performed.
More complex neural network architectures may also provide us with
even better results. Such models should be tested on larger datasets
containing different types of vulnerabilities, possibly leading to a general
Vulnerability Prediction approach. As an alternative, the use of multiple
predictors that address different types of vulnerabilities, rather than a
tool that predicts the occurrence of vulnerabilities in general, could be
implemented.
In future work we will also consider a more exhaustive set of statistical
features that are generated by a static analyzer, with features extracted
by different feature selection methods. Different Static Code Analyzers
could also be used to identify the best features, which can then be com-
pared and evaluated with respect to their usefulness in building Software
Vulnerability Prediction tools.
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sacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey
of autonomic communications. ACM Transactions on Autonomous
and Adaptive Systems (TAAS) 1(2), 223–259 (2006)

15. Du, X., Chen, B., Li, Y., Guo, J., Zhou, Y., Liu, Y., Jiang, Y.:
Leopard: Identifying vulnerable code for vulnerability assessment
through program metrics. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). pp. 60–71 (2019)

16. Enabling Open Innovation & Collaboration — The Eclipse Founda-
tion. [online], available: https://www.eclipse.org/ [Accessed: 2020-
08-05]

17. Evmorfos, S., Vlachodimitropoulos, G., Bakalos, N., Gelenbe,
E.: Neural network architectures for the detection of syn

https://www.kb.cert.org/vuls/
https://www.cisco.com/c/dam/en_us/about/annual-report/cisco-annual-report-2019.pdf
https://www.cisco.com/c/dam/en_us/about/annual-report/cisco-annual-report-2019.pdf
https://www.cisco.com/c/dam/en_us/about/annual-report/cisco-annual-report-2019.pdf
https://www.cisco.com/c/dam/en_us/about/annual-report/cisco-annual-report-2019.pdf
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://www.eclipse.org/


12 K. Filus, M. Siavvas, J. Domańska, E. Gelenbe
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