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Abstract—Input traffic from Internet of Things (IoT) devices
is often both periodic and requires to be received by a given
deadline. This can create congestion at instants of time when
traffic flowing from multiple devices arrives at a shared input
port or gateway, resulting in missed deadlines at the receiver.
As a consequence, scheduling techniques such as the “Earliest
Deadline First” (EDF) and “Priority based on Average Load”
(PAL) are used to schedule the flow from different devices so as
to try to satisfy the needs of the largest number of traffic flows
in a timely fashion. In this paper, we propose the Randomization
of flow Genaration Times (RGT) in order to smooth the total
incoming traffic to the input port or gateway, on top of the use
of EDF and PAL. We then evaluate the performance of RGT
together with PAL and EDP, for traffic load with a varying
number of up to 6400 IoT devices. Our simulation results show
that RGT provides significantly better performance when added
to EDF and PAL. Also, the additional computation required by
RGT at each device can be quite small, suggesting that RGT
is a very useful addition for improving the performance of IoT
networks.

Index Terms—Internet of Things (IoT), Scheduling, Massive
Access Problem, Predictive networks

I. INTRODUCTION

The number of devices on the Internet is constantly growing,
and expected to attain 30 billion by the year 2023 [1]. In
addition, while the IoT is the key enabler for “smart cities”
and Machine-to-Machine (M2M) communications [2], it is
expected that the majority of devices on the Internet will be
machine-type devices [3] and the usage of the IoT in smart
cities has expanded to a wide range [4][5].

Moreover, it is estimated that 52% of all the IoT will be
comprised of devices that fall in the Massive IoT segment by
the end of 2025 [6] where a large number of low-cost devices
will exist within the coverage area of a single base station
or gateway, causing access problems due to Physical Random
Access Channel (PRACH) overload [3][7] also known as the
“Massive Access Problem”.

The Massive Access Problem has been addressed with
reactive techniques [8], [9], [10], [11], [12], [13], [14], [15],
[16], [3], [17], [18], [19], [20], [21], [22], [7], [23] for IoT
traffic that is generated in a random fashion. On the other
hand, some work [24] has shown that IoT traffic at the MAC-

layer can be predicted with acceptable accuracy via certain
machine-learning models for distinct IoT traffic classes.

Another trend of research [25], [26], [27], [28], [29], [30]
has suggested proactive network solutions, and other research
has used the predictability of traffic generation patterns of
IoT devices to address the Massive Access Problem under the
“predictive network” framework. To this end, a recent paper
[31] proposed the Joint Forecasting-Scheduling (JFS) system
and the Priority based on Average Load (PAL) scheduling
algorithm which allocates available resources to IoT devices
based on forecasting the traffic generation pattern of each
device for the case of single frequency channels.

In addition, in order to improve the performance of JFS and
make it more applicable to longer time windows, a Multi-Scale
Algorithm was proposed [32], and in [33] optimal scheduling
and a Multi-Channel version of PAL was suggested to extend
JFS for multi-frequency channels. The results in [31], [32],
[33] showed that predictive networks with JFS are a promising
for the solution to the Massive Access Problem, and that
scheduling heuristics are crucial when optimal scheduling poli-
cies cannot be implemented due to their high computational
requirements in practical circumstances.

In this paper, we propose an additional heuristic that we
call “Randomization of Generation Times” (RGT) in order to
improve the performance and decrease the optimality gap of
scheduling heuristics for predictive networks. To the best of
our knowledge, RGT could be implemented at each device and
it is a novel pre-processing method that can be applied to any
scheduling heuristic under the JFS system. In particular, we
apply RGT to PAL and to the Earliest Deadline First (EDF)
algorithm.

Our simulation results show that RGT improves the perfor-
mance of each scheduling algorithm significantly, even when
forecasting is conducted with high error, as well as in the case
of zero-error perfect forecasting. Furthermore, we provide and
estimate of the computation time of RGT to be under 2.5 µs
per IoT device, and iindicate that it increases linearly with
the number of devices. Thus we can conclude that RGT is
an important addition that can facilitate the practical usage of
JFS.

The rest of this paper is organized as follows. Section II



provides background on the scheduling of IoT traffic as well
as regarding the PAL and EDF algorithms. Section III proposes
our RGT process. Section IV presents our results. Section V
summarizes our main conclusions and sugget further research
avenues.

II. SCHEDULING OF IOT TRAFFIC

We now explain the scheduling problem of the IoT device
traffic in predictive networks, and start with the JFS system
proposed in [31] which is comprised of the Forecasting and
Scheduling modules. We shall note that we evaluate the
performance of the system for perfect forecasting and for
the increasing forecasting error in Section IV. Between the
Forecasting and the Scheduling modules, we insert a module
that operates our RGT process that we will now define.

First, we define each burst j of any device i by the triple
(rj , dj , aj) where rj is the instant when it is generated, its
deadline is dj and the number of bits is forwards in a particular
burtst is aj . In addition, if cj denotes the maximum number of
bits that can be transmitted by burst j in a single MAC-layer
slot, and pj is the total number of slots pj needed to transmit
burst j, we have:

cj = Ri.τMAC, pj = daj
cj
e, (1)

where Ri is the data rate of device i which generated burst j,
and τMAC denotes the duration of a MAC-layer slot, while each
burst j has a strict delay constraint ∆j = dj−rj . Furthermore,
we let N denote the total number of devices in the coverage
area of IoT gateway and J denote the set of bursts that are
generated by those devices.

Next, in the JFS system, based on the output of the Fore-
casting module, the Scheduling module allocates the available
resources to IoT devices for a given upcoming time interval,
namely the scheduling window. That is, the inputs of the
Scheduling module is the future traffic generation pattern and
the output of that is the binary schedule matrix S, where
S(j,m) = 1 if MAC-layer slot m is allocated for burst j and
S(j,m) = 0 otherwise. We also let uj be a binary variable
which equals 1 if burst j is successfully transmitted, and 0
otherwise.

Although a variety of scheduling algorithms can be used
in the Scheduling module of JFS, in this paper, we only
consider PAL and the EDF. Note that EDF is optimal [?],
[34] in the sense that it will minimize the number of bursts
whose deadline cannot be met. PAL aims to maximize the
total number of bits in transmitted bursts, while EDF aims to
maximize the total number of successfully transmitted bursts
without considering the number of bits in each burst.

A. Priority based on Average Load (PAL)
The greedy scheduling algorithm PAL was proposed in [31]

for resource allocation in predictive networks, and especially
for the JSF system, and it schedules the bursts by prioritizing
each burst j based on its average load over ∆j .For each time
slot m, we define the set of “active bursts”:

Jactive[m] = {j : rj ≤ m ≤ dj}, (2)

and the average load per burst:

αj =
aj
∆j

. (3)

PAL schedules the bursts by prioritizing each burst j based on
its average load over the duration ∆j , and works as follows
starting for m = 1:

• It computes the burst j∗ with the largest average load:

j∗ = arg max
j∈Jactive[m]

αj . (4)

• Then for j∗, PAL allocates the upcoming pj∗ slots starting
with current slot m.

• Finally, it updates m ← m + pj∗ and updates Jactive[m]
accordingly.

As the definition of PAL suggests it is a non-preemptive
algorithm, which means that it completes the transmission of
each burst j which has been started, i.e., when the transmission
of a burst has started, PAL waits for the completion of the
transmission before it schedules another burst.

B. Earliest Deadline First (EDF)

We use the Earliest Deadline First (EDF) algorithm for
the resource allocation for IoT. In this paper, we use a non-
preemptive EDF algorithm which is optimal to maximize
the total number of successfully delivered bursts for our
scheduling problem [35]. In short, the EDF algorithm works
as follows: We first sort the bursts in J with respect to dj’s
into vector Jsorted. Then, for each j in Jsorted starting with the
first burst, if there are enough available slots to transmit j,
EDF reserves the first pj available slots between rj and dj .

C. Performance Metrics

Throughout this paper, in order to measure the network
performance, we define the following metrics:

First, η denotes the cross-layer network throughput and is
defined as

η ≡
∑

j∈J ujaj∑
j∈J aj

(5)

Second, ζ denotes the fraction of the bursts that are suc-
cessfully delivered, which is defined as

ζ ≡
∑

j∈J uj

|J |
(6)

Third, E denotes the transmit energy consumption per
successfully delivered bit. In this paper, we assume that one
unit of energy is consumed by an IoT device for each time
slot at which the IoT device continues its transmission. Thus,
E is defined as

E ≡
∑

j∈J ujpj∑
j∈J ujaj

(7)



III. RANDOMIZATION OF THE GENERATION TIMES

Since the heuristic algorithms are fast, inexpensive with
respect to the computational hardware requirements and able
to achieve relatively high QoS, those are promising for the
scheduling of the IoT traffic in the predictive networks. Thus,
we now aim to improve the performance of the heuristic
scheduling algorithms. To this end, in this section, we propose
Randomization of the Generation Times (RGT) which is a
preprocessing on the predicted IoT traffic for the heuristic
scheduling algorithms. The RGT process relieves the system
by distributing the traffic generations over the scheduling
window with duration of Tsch. In this process, we update the
generation time, rj , of each burst j via uniformly distributed
random offset value as

rnewj ← rj + U [∆j − Sj ] (8)

where U [∆j−Sj ] is the realization of the uniformly distributed
random variable in the range [0,∆j −Sj ]. In addition, Sj is a
safety time via which the RGT limits the upper bound of rnewj .
Sj may take value in the range [0,∆j ], where Sj = 0 indicates
the maximum randomization and Sj = ∆j indicates that there
is no randomization. In this range, in order to determine the
value of Sj , we can use one of the following methods:

• (M1) We search for the best value of Sj ; however, this
method is expensive in computation time and not suitable
for real-time implementation. On the other, we may set
a loose upper bound for the performances of EDF and
PAL algorithms under RGT.

• (M2) We estimate the value of Sj while aiming to achieve
the close to the performance of the upper bound. Even
though the performance of the scheduling under the
estimation of Sj might be inferior to the upper bound, it
is fast and cheap in computation, and is therefore suitable
for real-time applications.

A. Search for Sj to Achieve the Performance Upper Bound

In this method, we aim to determine the best value of Sj so
the upper bound for the scheduling performance under RGT.
To this end, we search for the best value of the fraction γ
of the range [0,∆j ]. That is, for each j ∈ J , we first define
Sj = γ∆j , then search for γ in range [0, 1] as follows:

1) Set γ = 0.
2) Set Sj = γ∆j ∀j ∈ J
3) Update rj for each j according to (6)
4) Schedule IoT traffic for the updated rj’s
5) Compute the performance metric (e.g. η, ζ or E) and

save those in a vector
6) Update γ ← γ + 0.05
7) If γ ≤ 1, return to step 2); else, continue.
8) Find the best value of γ which leads to the best values

of Sj’s to maximize performance metric

Note that in this search, we use each of η, ζ and E as the
performance metric.

B. Estimation of Sj

We now aim to calculate the estimation of Sj based on the
theory of the single server waiting line, M/M/1 queue, model.
First, since our scheduling basically works on the required
processing times of the bursts, we replace a single customer
of M/M/1 queue model with a single required processing slot
of a burst. Due to this replacement, in our system, the average
number of serving at a slot, µ, equals 1.

Then, we let λ denote the average arrival rate of required
processing slots and calculate that as

λ =

∑
j∈J pj

Tsch/τMAC
(9)

We also know that the average waiting time spent in the
system by a single processing slot, denoted by W , equals
1/(µ− λ). When µ = 1,

W =
1

1− λ
(10)

Furthermore, for each burst j, we can estimate the waiting
time that might be spent by that burst. To this end, we scale
the average waiting time per required processing slot, W , for
the total required processing slot by burst j, pj . That is, we
calculate the estimation of the waiting time of burst j, denoted
by W est

j , as

W est
j = pjW

=
pj

1− λ
(11)

However, according to (7), if the network is highly loaded
and the system resources are insufficient to transmit all bursts,
λ will be greater than 1. Since λ > 1, W est

j takes negative
values, which is unrealistic and impossible in real-life. On
the other hand, for the highly loaded networks, this issue is
expected since (7) actually does not satisfy the assumption
µ > λ of M/M/1 models. In order to prevent the case where
W est

j < 0, we are not able to increase the system resources
but we may revise (9) as

W est
j = max(0,

pj
1− λ

) (12)

Considering it is estimated that j might wait for W est
j slots

in the system (including pj), there should be at least W est
j slots

within ∆j to transmit j successfully as long as W est
j < ∆j .

Thus, Sj is defined as

Sj = min(W est
j ,∆j) (13)

Note that, under the case where the offered network traffic
is higher than the resources so λ > 1 and Sj = 0, RGT may
randomly drop some of the bursts when dj − rnewj < pj . This
property of RGT will relieve the system.



IV. RESULTS

In this section, we evaluate the performance of each of the
R-PAL and R-EDF schedulers under the predictive network.
To this end, we use the IoT dataset [?] which is described in
[33], comprised of the bootstrapped traffic generation patterns
of real IoT devices whose traffic output belongs to one of
the following traffic classes: Fixed Bit Periodic, Fixed Bit
Aperiodic, Variable Bit Periodic, and Variable Bit Aperiodic.

In addition, for each burst j of each bootstrapped device
i, the deadline takes one of the following six values ∆j ∈
{0.5, 1, 2, 180, 600, 3600 (in seconds)}.

On this dataset, we measure the performance of the schedul-
ing techniques for N = 12 devices as well as for integer
values in the range[400 ≤ N ≤ 6400] with increments of 400
devices. For each N , we randomly select N/4 devices from
each device traffic class. Thus in our simulations, the set of
devices from each device class is composed of 25% of all
devices that are simulated.

In addition, in order to increase the load of the system and
evaluate the algorithms on a highly loaded network, for each
device i in this dataset, we decreased the data rate Ri by
30% (i.e. Ri ← 0.7Ri). Furthermore, we set τMAC = 100 ms,
and performed the simulations for scheduling windows with a
duration of 900 seconds.

A. Performance Comparison of Scheduling Algorithms under
Perfect Forecasting

We now present the performance of each of the R-PAL and
R-EDF algorithms and their comparison with PAL and EDF,
and the upper bound of those with respect to each of η, ζ and
E .

Fig. 1. Comparison of the Upper Bound R-PAL, R-PAL, PAL and the Upper
Bound R-EDF, R-EDF, EDF algorithms with respect to throughput η for 12
to 6400 devices

In Figure 1, we see that the PAL-based scheduling al-
gorithms significantly outperform the EDF-based algorithms
for N > 4800 devices. The reason is that PAL aims to
maximize the total number of bits in successfully delivered
bursts while EDF aims to maximize the total number of
successfully delivered bursts as described in Section II. We
also see that both R-PAL and R-EDF aare able to achieve
their upper bounds.

Furthermore, within the PAL-base algorithms in Figure 1,
we see that the R-PAL outperforms the PAL for N > 5400
devices and the throughput difference between R-PAL and
PAL increases with N . As explained in Section II-A, the PAL
algorithm is a greedy algorithm that schedules the job with
respect to the generation times. This is why the RGT process
improves the performance of the PAL significantly (about 0.15
for N = 6400 devices). Within the EDF-base algorithms
(Upper Bound R-EDF, R-EDF and EDF) in Figure 1, we
see that the R-EDT outperforms the EDT for N > 4400
devices; that is, the RGT process significantly improves the
performance of EDT for N > 4400.

Fig. 2. Comparison of the Upper Bound R-PAL, R-PAL, PAL and the Upper
Bound R-EDF, R-EDF, EDF algorithms with respect to the fraction of the
successfully delivered bursts (ζ) for 12 to 6400 devices

In Figure 2, we see that the EDF-base algorithms are able
to schedule more bursts for successful transmission than PAL-
based algorithms. The reason is that the EDF aims to schedule
maximum number of bursts without considering the number
of bits that is carried by that burst. On the other hand, PAL
aims to maximize the total delivered bits. This shows that the
EDF is a more fair algorithm than PAL throughout the devices
in the network since its values all burst equally. In this figure,
we also see that the ζ performance of the R-EDF and R-PAL
are comparable with EDF and PAL respectively.

Fig. 3. Comparison of the Lower Bound R-PAL, R-PAL, PAL and the
Lower Bound R-EDF, R-EDF, EDF algorithms with respect to the energy
consumption per bit in delivered bursts (E) for 12 to 6400 devices

In Figure 3, we see that each device consumed more energy
to transmit a single bit under EDF-based algorithms than that



under PAL-based algorithms. The reason is that PAL aims to
schedule bursts with a higher number of bits; in other words,
it maximizes the denominator of (5). Moreover, our results in
Figure 3 shows that the RGT process significantly decreases
the energy consumption of both PAL and EDF algorithms.

B. Sensitivity of Scheduling Algorithms to Forecasting Error
We now aim to evaluate the performance of the schedul-

ing algorithms for the increasing forecasting errors in the
predictive network. To this end, we model the forecasting
error as the realization of a random variable from the Normal
Distribution1. That is, for each burst j, the forecast number of
bits, âj = aj + n, where n is the realization of the random
variable from the Normal Distribution with zero mean and
σ variance. In this subsection, we will analyze the network
performance against the increasing value of σ which leads to
the increasing forecasting error.

Fig. 4. Comparison of the R-PAL, PAL and R-EDF, EDF algorithms with
respect to throughput (η) for σ ∈ {0, . . . , 60} for N = 6400 devices

In Figure 4, we present the network throughput η for the
increasing value of σ so for the increasing forecasting error for
N = 6400 devices. In this figure, we see that the RGT process
significantly improves the network throughput performance of
each of the PAL and EDF algorithm. That is, even while
the forecasting error is very high compared to the maximum
number of bits (σ = 60 and maxj∈J aj = 128), RGT has
impact on the scheduling performance. On the other hand, we
see that the performance difference between R-PAL and PAL
as well as the difference between R-EDF and EDF decreases
as the forecasting error increases. In practice, since it is shown
that the IoT traffic is predictable with acceptable forecasting
error [24], the throughput performance of the algorithms at
σ = 20 can be considered as their performance under an
average performing forecaster (where the σ is higher than the
10% of the maximum generated bit over all devices).

C. Computation Time
We present the computation time of the RGT process for

increasing number of devices. To this end, we measure the

1During the sensitivity analysis, in order to be able to control the forecasting
error, we assume that an imaginary linear forecasting model minimizes the
mean squared error and the distribution of the traffic generation pattern is
Normal Distribution. Thus, we may model the forecasting error via Normal
Distribution as well.

computation time of RGT on MATLAB on a Laptop with
Intel Core i7-10750H cpu and 16 GB ram.

Fig. 5. The mean and the standard deviation of the computation time of the
RGT process over 100 runs for 12 to 6400 devices

In Figure 5, we now present the mean of the computation
time with a standard deviation bar for each N over 100
simulation runs. In this figure, we see that the computation
time of RGT is under 0.015 seconds for all values of N and
increases linearly with N . Thus, the computation time cost of
RGT to scheduling algorithm is very small but the performance
improvement is relatively high.

V. CONCLUSION

In this paper, we propose the Randomization of Release
Times (RGT) process for the scheduling heuristics to allocate
the resources in a predictive IoT network. The RGT can be
implemented as a preprocessing algorithm on any scheduling
heuristics to distribute the load of the network over a time
window. In this paper, we evaluate the performance of the
RGT process under each of the Priority based on Average Load
(PAL) and Earliest Deadline First (EDF) algorithms for the
IoT network with the increasing number of devices up to 6400
devices. Our results showed that the RGT process significantly
improves the performance of both PAL and EDF heuristics in
terms of the QoS metrics (throughput and energy consump-
tion) while the fairness of each heuristic remains almost the
same. In addition, we showed that the computation time of
RGT is under 15 ms for 6400 devices and increases linearly
with the number of devices. That is, the RGT is a fast and
effective preprocessing algorithm that significantly improves
the performance of the scheduling algorithms for IoT. Thus,
since RGT enables to achieve much higher performances via
fast heuristics, it will pave the way to include the devices with
much lower delay constraint into predictive IoT networks.
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