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Navigating the phase diagram of quantum many-body systems in phase space
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We demonstrate the unique capabilities of the Wigner function, particularly in its positive and negative parts,
for exploring the phase diagram of the spin -( 1

2 - 1
2 ) and spin-( 1

2 -1) Ising-Heisenberg chains. We highlight the
advantages and limitations of the phase-space approach in comparison with the entanglement concurrence in
detecting phase boundaries. We establish that the equal angle slice approximation in the phase space is an
effective method for capturing the essential features of the phase diagram but falls short in accurately assessing
the negativity of the Wigner function for the homogeneous spin-( 1

2 - 1
2 ) Ising-Heisenberg chain. In contrast, we

find for the inhomogeneous spin-( 1
2 -1) chain that an integral over the entire phase space is necessary to accurately

capture the phase diagram of the system. This distinction underscores the sensitivity of phase-space methods to
the homogeneity of the quantum system under consideration.

DOI: 10.1103/PhysRevE.110.014120

I. INTRODUCTION

The intricate landscape of quantum systems has contin-
ually posed challenges and opportunities for understanding
the behavior of matter at its most fundamental level [1–3].
Quantum phases of matter, like superconductivity or topo-
logical phases, exhibit unique properties that emerge from
quantum effects at a microscopic level [4,5]. These phases
are more than mere theoretical interests; they hold the key
to overcoming some of the major challenges in advancing
the development of quantum computers [6–11]. For instance,
understanding and harnessing these phases can lead to the
development of more stable qubits, which are the fundamental
units of quantum computation [12]. Qubits in certain quantum
phases are less susceptible to decoherence, a major draw-
back where quantum information gets lost to the environment
[13–16]. Furthermore, exploration in this realm could lead
to the discovery of new materials and methods that allow
for quantum coherence and entanglement over longer times
and distances [17–19], significantly enhancing computational
power and efficiency [20,21]. This synergy between the study
of quantum phases of matter and quantum computing paves
the way for revolutionary advancements in computing, en-
cryption, and information processing [22].

Along this line, low-dimensional magnetic materials, such
as one- or two-dimensional systems, have garnered signif-
icant attention in the field of quantum computation due to
their unique physical properties [23]. These materials often
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exhibit strong quantum fluctuations and reduced symmetry,
which can lead to exotic magnetic states like quantum spin
liquids and topological order, which are robust for quantum
information processing [24–26]. Of particular interest are
diamond-type chains which can be described using Ising-like
or quantum anisotropic Heisenberg models [27–30] and are
exactly solvable using the decorated transformation method
introduced by Fisher [31]. Experimentally, diamond chains
can describe and capture the magnetic properties of minerals
composed primarily of copper carbonate hydroxide, such as
natural azurite Cu3(CO3)2(OH)2 [32–41]. The copper ions in
azurite can act as magnetic spins that interact with each other
in a way that closely approximates the interactions described
by the Heisenberg diamond chain model [33–41]. This makes
diamond chains a valuable natural testbed for studying the
properties and behaviors of azurite, such as quantum phase
transitions [32,42–45], and magnetization plateaus [46–49].

The rich and complex phase diagram as well as the simplic-
ity and solvability of the diamond Ising-Heisenberg structures
make them strong candidates for synthesising new materials
with tailor-made magnetic properties for quantum compu-
tation [50–54]. Quantum information theory provides the
necessary tools and framework for a succinct analysis of the
potential of diamond chains for applications in quantum tech-
nologies [55]. For the diamond Ising-Heisenberg chain, the
phase diagram has been analyzed through quantum entangle-
ment [48,56–65], and general forms of quantum correlations
quantified via quantum discord [66–69] and quantum Fisher
information [70]. However, an analysis with a more intu-
itive understanding of quantum phenomena, akin to classical
mechanics, while still capturing the intricacies of quantum
behavior is lacking. The Wigner function does just that by
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FIG. 1. The asymmetric tetrahedral Ising-Heisenberg (ATIH) chain as outlined by the Hamiltonian, Eq. (1). Panel (a) shows three unit
cells of the lattice, where white vertices symbolize the sites connected via Ising interactions, whereas black vertices represent those interacting
via Heisenberg interactions, indicated by J for Ising and Jα (α = x, y, z) for Heisenberg connections, respectively. (b) Single unit cell of
the ATIH chain and its effective mapping into an Ising model. Fisher’s decoration-iteration transformation (DIT), changes the Heisenberg
edge within the tetrahedral structure into “decorative” elements [79]. This process essentially replaces the Heisenberg interactions with an
equivalent Ising-type interaction. The modification preserves the effect of the Heisenberg spins on the system’s magnetic behaviors within a
simpler analytical framework. The resulting effective Ising model underlies the core physical phenomena of the original configuration into a
form that is significantly more tractable for examining phase transitions and critical phenomena. Appendix B elaborates on the statistical and
thermodynamics of the ATIH chain, achieved through the DIT method.

enabling the visualization of quantum features like superpo-
sition and entanglement, through its negative part in phase
space, thereby offering a different angle to analyze and under-
stand the properties inherent in quantum many-body systems
[71].

The rapid development of quantum technologies in the
21st Century allowed for the possibility of experimental mea-
surement of the phase space, which pushed for the use of
phase-space techniques for analyzing the critical properties of
quantum many-body systems [72,73]. Recently, it has been
established that the Wigner function is a bonafide measure
of first-, second-, and infinite-order quantum phase transitions
in the Ising and Heisenberg chains [74,75]. In this paper, we
build on these studies and focus on the role of the Wigner
function and its negative part in delimiting the phase dia-
gram of exotic quantum spin chains, i.e., the homogeneous
spin-( 1

2-1
2 ) and inhomogeneous spin-( 1

2 -1) Ising-Heisenberg
chains. The quasi-probability nature of the Wigner function
in phase space, allows us to identify classical and quantum
regimes, offering a unique perspective on quantum states and
their critical properties, which is pivotal for the development
of quantum technologies [76].

The relevance of our study lies in its comparison with
other quantum information tools, notably the concurrence
which is a measure of entanglement and has been instru-
mental in detecting phase boundaries in quantum systems
[77,78]. Our results highlight the advantages and limitations
of using phase-space methods in contrast to the entanglement
concurrence. This comparison is vital in understanding the
most effective approaches for studying quantum many-body
systems, as different methods can yield varying insights into
the critical properties of these systems. Furthermore, we shed
light on the concept of the equal angle slice approximation
in phase space. We show its effectiveness in capturing the
essential features of the phase diagram, particularly for the
homogeneous spin-( 1

2-1
2 ) Ising-Heisenberg chain. Our investi-

gation of the Wigner function’s negativity provides a profound
understanding of the quantum states in these chains. In con-
trast, for the inhomogeneous spin-( 1

2-1) chain, we find that a

more comprehensive approach, involving an integral over the
entire phase space, is necessary. This distinction underscores
the sensitivity of phase-space methods to the homogeneity
of the quantum system under consideration, highlighting the
need for tailored approaches in studying different quantum
systems.

II. THE ASYMMETRIC TETRAHEDRON
ISING-HEISENBERG CHAIN

The diamond chain described via the Ising-Heisenberg
model comprises a combination of Ising spins located at nodes
and interstitial anisotropic Heisenberg spins. The single unit
cell of the chain is sketched in Fig. 1(a). The Hamiltonian
operator is formulated as follows:

H =
N∑

i=1

Hi,i+1

=
N∑

i=1

J
(
Sz

a,i + Sz
b,i

)(
σi + σi+1

)+ Jσiσi+1

+ JxSx
a,iS

x
b,i + JySy

a,iS
y
b,i + JzS

z
a,iS

z
b,i

+ h0

2
(σi + σi+1) + h

(
Sz

a,i + Sz
b,i

)
, (1)

where N is the number of cells, (Sa,i, Sb,i ) are the Heisen-
berg interstitial spins interacting via Jα, α = (x, y, z), and σi’s
are Ising spins interacting via J . The longitudinal external
magnetic field h (h0) operates on Heisenberg (Ising) spins.
The Hamiltonian, Eq. (1), is symmetric under the exchange
of the Ising spins, i.e., σi ↔ σi+1, and Heisenberg spins, that
is Sz

a ↔ Sz
b. Additionally, the asymmetric tetrahedron Ising-

Heisenberg (ATIH) chain, Eq. (1), is invariant under internal
spin symmetry, i.e., H (σi, σi+1) = H (−σi,−σi+1). To this
end, we consider two cases where the Heisenberg spin takes
S = 1

2 and S = 1.
The ATIH chain is an exactly solvable model by mak-

ing use of the decoration-iteration transformation (DIT)
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FIG. 2. Phase diagram for the asymmetric tetrahedral Ising-Heisenberg chain, Eq. (1), for two different spin configurations. Panel (a) shows
the phase diagram for the spin-( 1

2 - 1
2 ) case, utilizing parameters from Eq. (2). The spin alignments are represented by arrows, with up or down

arrows indicating the two possible spin states at the Ising and Heisenberg nodes. Panel (b) illustrates the phase diagram for the spin-( 1
2 -1)

case, using parameters from Eq. (3). Here, up and down arrows denote the Ising nodes, while a combination of up, dot, and down illustrates
the spin-1 configurations on the Heisenberg edges. Magnetic phases are labeled as FM (ferromagnetic), QFO (quantum ferromagnetic), FRI
(ferrimagnetic), and FRU (frustrated ferromagnetism). The FM state is a product state, while the QFO states are entangled and differ due
to the distinct orientation probabilities of spins in the Heisenberg edges. The FRI state emerge from the superposition of ferromagnetic
and antiferromagnetic state, causing a competition in the spin alignment. The FRU states exhibit nonclassical behavior caused by competing
interactions, leading to frustration where classical ordering is absent, suggesting a higher degree of quantum correlation. Appendix A elaborates
on the model’s spectrum and the specific states of each phase for both scenarios.

introduced by Fisher [31]. The DIT or star-triangle trans-
formation involves replacing parts of a lattice model with
simpler, equivalent structures without altering the physical
properties or critical behavior of the system. This is achieved
by “decorating” the lattice with additional sites or interactions
in a way that allows for an exact transformation of the par-
tition function, which describes the statistical properties of
the system [4]. The transformed model is easier to analyze
or solve, allowing to gain insights into the original, more
complex system. For the ATIH chain, the DIT maps it to an
effective Ising chain, as described in Fig. 1(b).

In the following, we restrict our analysis to the case where
Jx = Jy, which reduces the Heisenberg edge to an XXZ type
interaction. Figure 2(a) shows the phase diagram of the ATIH
spin-( 1

2 - 1
2 ) chain under the following new set of parameters:

J = − sin (x), Jz = − sin (y), Jx = 2 cos (y), (2)

which restrict the system in a region with competing interac-
tion parameters, i.e., |J| � 1, |Jz| � 1, and |Jx| � 2, leading
to several ground-state energies. Outside this region there are
no new phases [30].

For the ATIH spin-( 1
2 -1) chain we use the following

parameters:

J = Jz = sin (x), Jx = Jy = 2 sin (y), (3)

to draw the phase diagram represented in Fig. 2(b). This
re-parametrization essentially maps the original interaction
parameters J , Jz, J+, and J− into a new coordinate system
defined by x and y, facilitating a more tractable exploration
of the model’s behavior across different parameter regimes.
The mapping reveals critical points where multiple phases

converge and provides a clearer understanding of the phase
transitions within the ATIH chain [30].

III. FIGURES OF MERIT

We analyze the phase diagram of the ATIH chain, Eq. (1),
using tools from quantum information theory, such as entan-
glement measures and phase-space methods, i.e., the Wigner
function. The density matrix of a single cell ρi,a,b,i+1, com-
prised by two Ising nodes located at sites (i, i + 1) and
two Heisenberg nodes (a, b), described by the ATIH model,
Eq. (1), can be written as

ρi,a,b,i+1 = 1

d

1∑
α,η=0

3∑
β,γ=0

〈
σα

i Sβ
a Sγ

b σ
η

i+1

〉
σα

i ⊗ Sβ
a ⊗ Sγ

b ⊗ σ
η

i+1,

(4)

with d being the dimension of the single cell’s Hilbert
space, σ 0

i denoting the identity matrix and σ 1
i = σ z at site

i (and site i + 1). In the same fashion, S represent the spin
operator with S0 = 1, S1 = Sx, S2 = Sy, and S3 = Sz. For
the homogeneous case, i.e., spin-( 1

2 , 1
2 ), d = 16 and for the

spin-( 1
2 , 1) inhomogeneous chain d = 36. The averages in

the spin-spin correlation functions is taken over the ground
state of the ATIH chain, Eq. (1), and they can be calculated
using the transfer matrix approach outlined in Appendix B.
The detailed expression of the density matrix, Eq. (4), is
provided in Appendix C, from which we can compute vari-
ous information-theoretic quantities, such as the entanglement
measures and the Wigner function.
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A. Lower-bound concurrence

Quantifying the entanglement in quantum systems is a
complex task and remains an active area of research in quan-
tum information science [78]. For bipartite qubit systems,
analytical formulas for measuring the entanglement are well
known, i.e., entanglement of formation, and Wootters con-
currence [80]. However, the situation is delicate for higher
dimensional quantum systems with multi-parties, for which
the single cell of the ATIH chain, Eq. (1), falls into. The
entanglement in this case is estimated through lower bounds.

For an N-partite quantum state ρ, residing in a composite
Hilbert space represented by multiple tensor products of H,
i.e., ρ ∈ H ⊗ H ⊗ ... ⊗ H, a foundational lower bound for
the concurrence has been established [81,82]. It is expressed
as

C(ρ) � τN (ρ) =
√√√√ d

2m(d − 1)

∑
p

∑
αβ

(
Cp

αβ (ρ)
)2

, (5)

where the term m = 2N−1 − 1 denotes the number of biparti-
tions possible within an N-partite system. τN (ρ) encodes this
lower limit for C(ρ), encapsulating the summation over all
bipartite splits indicated by the indices α, β. Here, Cp

αβ (ρ)
measures the entanglement across a partition p, assuming a
uniform dimension d across each segment.

The individual concurrences Cp
αβ are determined through a

widely recognized formula [80]:

Cp
αβ = max (0, λ1 − λ2 − λ3 − λ4), (6)

where λi represents the square roots of the top four eigen-
values, sorted in descending order, of the matrix R = ρ

p
αβρ̃

p
αβ .

The modified state ρ̃
p
αβ is defined as ρ̃

p
αβ = (Sp

αβρ∗Sp
αβ ), where

Sp
αβ = Lα ⊗ Lβ , with Lα and Lβ are the generators of the

special orthogonal group SO(d ).
The peculiarity of the lower bound τN (ρ), Eq. (5), is

its connection with separability. When τN (ρ) = 0, the quan-
tum state ρ is fully separable. Thus, for nonzero values
of τN (ρ) some entanglement is present in the system. The
lower-bound concurrence, Eq. (5), has been useful in several
scenarios, such as studying the statics and dynamics of mul-
tipartite entanglement in qubit and ququart systems [18,19],
identification of quantum resource for quantum teleportation
[83], as well as studying the performance of quantum heat
engines [84].

B. Phase-space techniques

The Wigner function initially served to depict quantum
states in phase space with continuous variables. However, for
discrete systems, numerous methods have been developed to
map these quantum systems onto a phase-space framework
within a discrete-dimensional Hilbert space. In this context,
we adopt the approach proposed by Tilma et al. [85], which
extends the Wigner function’s applicability to arbitrary quan-
tum states. According to this framework, the Wigner function
is formulated using the displacement operator D̂ and the parity

̂ operators as

Wρ̂ (�) =
(

1

π h̄

)n

Tr (ρ̂D̂(�)
̂D̂†(�)), (7)

where D̂(�)
̂D̂†(�) = ̂(�) forms the kernel of this func-
tion, ρ̂ is the density matrix describing the system and �

represents a complete parametrization of the phase space
such that D̂ and 
̂ are defined in terms of coherent
states D̂(�) |0〉 = |�〉 and 
̂ |�〉 = − |�〉. A distribution
Wρ̂ (�) can describe a Wigner function over a phase space
parametrized by a set of �’s, if there exists a kernel ̂(�)
that generates Wρ̂ (�) according to the Weyl rule

Wρ̂ (�) = Tr(ρ̂̂(�)), (8)

and, as stated in Ref. [85], also satisfy the Stratonovich-Weyl
correspondences, which articulate several foundational prop-
erties of the Wigner function. Primarily, they allow for a
bidirectional reconstruction between the density matrix ρ̂ and
its representation Wρ̂ (�) through a precise mathematical map-
ping. This mapping not only facilitates the transition from ρ̂

to Wρ̂ (�) via the trace formula Wρ̂ (�) = Tr(ρ̂̂(�)) but also
enables the reconstruction of ρ̂ from Wρ̂ (�) by integrating
over � with the kernel ̂(�). Another critical aspect of these
correspondences is the reality and normalization to unity of
Wρ̂ , ensuring that it always represents a valid quantum state.
Additionally, the invariance of ρ̂ under global unitary oper-
ations implies a corresponding invariance in Wρ̂ , preserving
the physical characteristics of the quantum state within the
phase space. Last, a distinctive feature of the Wigner function
is its ability to quantify the overlap between two states ρ̂ ′ and
ρ̂ ′′. This is executed through a definite integral over � via∫
�

Wρ̂ ′Wρ̂ ′′d� = Tr(ρ̂ ′ρ̂ ′′) which highlights a unique property
that sets the Wigner function apart in the analysis of quantum
states.

An extension of Eq. (8) to finite-dimensional systems re-
quires the construction of a kernel ̂(�) that reflects the
symmetries of the system at hand. For spin systems, Tilma
et al. [85] argued that their Wigner functions can be gener-
ated via a spin- j representation of SU (2) under the following
kernels:

̂[d](�) = 1

d
[Û (�)
̂[d](Û (�))†], (9)

with


̂[d] = 1d×d − N (d )ζ̂d×d , (10)

where d =2 j + 1 is the dimension of the Hilbert space with j
being the spin number, N (d )=√

d (d + 1)(d − 1)/2, and ζ̂ is

a diagonal matrix with entries
√

2
d (d−1) except the last element

ζ̂d,d = −
√

2(d−1)
d . In this case, the operator Û (�) represents

the SU (2) rotations under three angles θ, ϕ, and φ:

Û (�) = Û (θ, ϕ, φ) = eiĴ3ϕeiĴ2θeiĴ3φ, (11)

where the Ji’s are the generators of the d-dimensional repre-
sentation of SU (2). For a spin- 1

2 , the parity operator Eq. (10)
reduces to 
̂[2] = 12×2 − √

3σ z, and the displacement opera-
tor Û (θ, ϕ, φ)=eiσ zϕeiσ yθeiσ zφ , while for a single spin-1,


̂[3] = 13×3 − 2

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠, (12)
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(a) (b) (c) (d)

FIG. 3. Figures of merit in the single cell spin-( 1
2 - 1

2 ) ATIH model, Eq. (1), under the parameters defined in Eq. (2). (a) The average Wigner
function values, Eq. (8), across the phase space mapping out the complete phase diagram and critical phase boundaries under the equal angle
slice approximation. Distinct Wigner function values characterize different phases, varying from positive to negative as influenced by the
phase-space parameters (θ, ϕ), demonstrating the utility of the Wigner function in identifying phase transitions within the model. (b) The
negativity of the Wigner function, Eq. (16), under the equal angle slice approximation showing its ineffectiveness in this limit in capturing
properly the phase diagram (2a). We assess this properly in (c) by adopting a comprehensive mapping in the entire phase space using Monte
Carlo (MC) integration, which confirms the predominance of the negative values of the Wigner function across the phase space, especially
significant around the phase boundaries, except in the coherence-free FM and FRI phases. (d) Lower-bound concurrence, Eq. (5), splitting the
phase diagram in three parts: unentangled region which describes the FM and FRI phases. Maximally entangled region describing the QFO III
and IV phases, and an intermediate region that identify the FRU III and FRU IV phases.

with the displacement operator Û (�), Eq. (11), being con-
structed from the 3D rotation group generators

Jx =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, Jy =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠,

Jz =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠.

For k-partite quantum systems, the kernel, Eq. (9), extends as

̂[dk ]{(θi, ϕi )} = 1

dk

k⊗
i

̂[d](θi, ϕi ), (13)

which becomes hard to visualize, as the number of angles
{θi, ϕi} scales with the number of subsystems. Therefore, we
work within the equal angle slice approximation, by setting
θi = θ and ϕi = ϕ, which has been argued to capture the
salient properties of quantum states [85]. Therefore, under the
equal angle slice approximation, the total Wigner function of
the ATIH chain, Eq. (1), in a single cell described by the state
ρi,a,b,i+1, Eq. (4), is written as

W
1
2 − 1

2
cell (θ, ϕ) = Tr(ρi,a,b,i+1̂

[16](θ, ϕ)), (14)

̂[16](θ, ϕ) = 1

16
(̂[2](θ, ϕ) ⊗ ̂[2](θ, ϕ) ⊗ ̂[2](θ, ϕ)

⊗ ̂[2](θ, ϕ)),

W
1
2 −1

cell (θ, ϕ) = Tr(ρi,a,b,i+1̂
[36](θ, ϕ)),

̂[36](θ, ϕ) = 1

36
(̂[2](θ, ϕ) ⊗ ̂[3](θ, ϕ)

⊗ ̂[3](θ, ϕ) ⊗ ̂[2](θ, ϕ)). (15)

The Wigner function, Eq. (8), may take negative values due
to its quasi-probability nature. The negativity of the Wigner
function, under the equal angle slice approximation, is defined

as

NW = 1

2

∫
�

(|Wρ (�)| − Wρ (�))d�, (16)

where d� = 1
π

sin(2θ )dθdφ. This negativity has a profound
physical interpretation as it is interpreted as an indicator
of nonclassical behavior, distinguishing quantum phenomena
from their classical counterparts. In the context of quantum
entanglement and quantum correlations, the negativity of the
Wigner function is a valuable tool for detecting and quantify-
ing some entangled states [86,87]. In what follows, Eqs. (5),
(8), and (16) will be our main figures of merit.

IV. RESULTS AND DISCUSSIONS

A. Homogeneous ATIH chain

We begin by examining the phase diagram for the
spin-( 1

2 - 1
2 ) ATIH chain, Eq. (1). In Fig. 3(a), we present the

average value of Wigner function, Eq. (14), across the phase
space spanned by (θ, ϕ) under the equal angle slice approxi-
mation. The Wigner function can effectively capture the entire
phase diagram and all the phase boundaries [cf. Fig. 2(a)].
Furthermore, each phase within the diagram is characterized
by distinct values of the Wigner function, which vary from
positive to negative based on the parameters (x, y). Here, the
equal angle slice approximation is a good simplification for
capturing the salient critical features of the spin-( 1

2 - 1
2 ) ATIH

model, Eq. (1), without the need to explore all the phase space
which is computationally exhaustive.

Approaching the phase boundaries, the Wigner function
tends to maximize either its negative or positive value, de-
pending on the crossing. For instance, the QFO IV-FM
crossing is characterized by high-negativity boundary, while
the FRI-FRU III boundary is highly positive. This behavior
underscores the importance of exploring the Wigner function
on both its negative and positive parts to gain a comprehensive
understanding of the phase diagram of the system.

The negativity of the Wigner function, Eq. (16) is de-
picted in Fig. 3(b) under the equal angle slice approximation.
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The negativity recognize most of the phases with dis-
tinctive values, while missing three phase boundaries, i.e.,
the FRI-FRUIII, the FRUIII-QFOIII, and the FM-QFO III
phase boundaries, which are captured by the positive part
of the Wigner function as shown in Fig. 3(a). Here, the
equal angle slice approximation is not adequate to properly
quantify the negativity of the Wigner function in the sys-
tem as we would expect all the phases of matter, except
the FM and FRI phases, to have negative Wigner functions.
Our expectation comes from the fact that in these phases the
Heisenberg nodes responsible for the “quantum” effects in the
model are described by entangled states [cf. Eqs. (A6)–(A9)],
which are known to have a negative Wigner function [88].
We confirm this in panel Fig. 3(c) where we drop the equal
angle slice and compute the negativity of the Wigner function,
Eq. (16), over the entire phase space spanned by the angles
{θ1, ϕ1; θ2, ϕ2; θ3, ϕ3; θ4, ϕ4}. We see that the Wigner func-
tion is negative over the entire phase diagram except in the
coherence-free phases, i.e., the FM and FRI phases. Further-
more, the phase boundaries are more pronounced, including
the x=π continuous phase transition line, by a maximum
amount of negativity. Computing the Wigner function over
an eight-dimensional phase space is intractable. Therefore,
to generate the data in Fig. 3(c) we used statistical approx-
imations via Monte Carlo integration to estimate the values
of integrals based on random sampling [89]. The method is
particularly useful for dealing with high-dimensional integrals
where traditional numerical integration methods become in-
efficient or infeasible [90]. The method involves generating
random points in the domain of the integral and then estimat-
ing the integral based on the average value of the function at
these points [91].

The effectiveness of Monte Carlo integration increases
with the number of dimensions, making it highly suitable
for integrals in spaces with dimensions as high as eight or
more. This suitability arises because, unlike many determinis-
tic methods, the convergence rate of Monte Carlo integration
does not directly depend on the number of dimensions; it de-
pends only on the number of samples, converging with a rate
of 1/

√
N , where N =2 × 105 is the number of random sam-

ples. This makes it particularly powerful for tackling complex,
high-dimensional problems where the geometry or volume of
the integration region is complicated [92].

To assess the versatility of the Wigner function approach,
we discuss it in light of the lower-bound concurrence, Eq. (5),
shown in Fig. 3(d). This entanglement measure characterizes
the phase diagram in Fig. 2(a) into a entangled and unen-
tangled region. Accordingly, the lower-bound concurrence,
Eq. (5), splits the phase diagram into three regions: one with
zero entanglement, which describes the FM and FRI phases,
another with maximum value describing the QFOIII and
QFOIV phases, and an intermediate region describing FRUIII

and FRUIV. However, unlike the Wigner function that assign
a distinctive value for each phase of matter, the lower-bound
concurrence, Eq. (5), fails to distinguish between phases of
matter in a given entangled (unentangled) region. This shows
the utility of the Wigner function approach compared to the
lower-bound concurrence.

At a closer inspection of Figs. 3(c) and 3(d), we see that
the negativity of the Wigner function, Eq. (16), follows a

pattern similar to the lower-bound concurrence, Eq. (5), but on
a different scale. However, while the negativity of the Wigner
function remains consistent across all entangled phases, the
lower-bound concurrence provides a finer distinction, dif-
ferentiating between maximally entangled QFO states and
entangled FRU states. This limitation in the negativity of the
Wigner function stems from the Monte Carlo approximation,
which computes average values of the integrals and could
potentially introduce bias. The reported results support the
connection between the entanglement and the presence of
negativity in the Wigner function, laying a solid foundation for
further exploration of how negativity in phase space correlates
with entanglement.

B. Inhomogeneous ATIH chain

We shift our focus to the inhomogeneous spin-( 1
2 -1) chain.

Similar with the homogeneous case, we employ the equal
angle slice approximation to explore the phase diagram of
the system [cf. Fig. 2(b)]. Interestingly, this approximation
is limited in this case as shown in Fig. 4(a), where the
Wigner function fails to accurately describe the critical prop-
erties of the system. The equal angle slice method, like any
approximation, sacrifices precision for computational ease.
For inhomogeneous quantum systems, this can lead to is-
sues including loss of information in nonuniform areas of
the phase space, rendering the results dependent on the cho-
sen slices. Consequently, the approximation does not capture
the complete features and detailed structure of the Wigner
function.

Given these limitations, we abandon the equal angle
slice and instead compute the average Wigner function
across the entire phase space spanned by the angles
{θ1, ϕ1; θ2, ϕ2; θ3, ϕ3; θ4, ϕ4} as illustrated in Fig. 4(b). This
approach provides a more accurate representation of the
system’s phase diagram. It distinctly highlights the phase
boundaries, particularly those delineating regions of positive
and negative Wigner function, such as between QFO II-QFO
III. However, the x = π phase boundary is less visible due
to its positioning between the FRU and QFO phases, which
are characterized by a predominantly high positive Wigner
function, complicating its detection.

Figures 4(b) and 4(d) highlight the negative regions of
the Wigner function across the entire phase space using
the Monte Carlo approximation for computing integrals and
the lower-bound concurrence, respectively, for the spin-( 1

2 -1)
ATIH model. Negative values are localized in phases of mat-
ter where the Heisenberg nodes correspond to Bell states,
specifically the QFO I and QFO II states [see Eqs. (A38)
and (A39)], which exhibit high entanglement as shown in
Fig. 4(d). However, the negativity of the Wigner function
fail to distinguish between the FRU and QFO III phases,
which involve generalized-Bell states [see Eqs. (A43) and
(A40)] and are also entangled according to Fig. 4(d). This
suggests that the lack of negative regions in the Wigner
function does not necessarily indicate an absence of entan-
glement in those areas of phase space. These results call for
a profound analysis of Wigner negativity and entanglement
in high-dimensional states. The role of Wigner negativ-
ity in quantum systems remains a vibrant open question,
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(a) (b) (c) (d)

FIG. 4. Figures of merit in the single cell spin-( 1
2 -1) ATIH model, Eq. (1), under the parameters defined in Eq. (3). (a) Average of the

Wigner function, Eq. (8), under the equal slice approximation showing its limitation in revealing the phase diagram in Fig. 2(b) for the
system, which is due to the bias introduced by the approximation and the information loss in nonuniform regions of phase space. (b) The
average Wigner function, Eq. (8), across the entire phase space, providing a clearer description of phase boundaries, particularly between
regions of positive and negative Wigner function values. (c), (d) Negativity of the Wigner function, Eq. (16), calculated via Monte Carlo
integration and the lower-bound concurrence, Eq. (5), respectively. Negative values cluster in phases where Heisenberg nodes align with
highly entangled Bell states, such as the QFO I and QFO II states. In contrast, the FRU and QFO III phases, associated with generalized-
Bell states, show no such negativity despite also being entangled. This suggests that the absence of negativity does not imply the lack of
entanglement.

particularly in exploring its potential to measure entanglement
and other quantum informational resources. The measurement
and practical utilization of Wigner negativity can have impli-
cations for quantum computing and quantum communication
protocols.

V. CONCLUSION

We have analyzed the phase diagrams of spin-( 1
2 - 1

2 )
and spin-( 1

2 -1) Ising-Heisenberg chains through the lens of
the Wigner function. Our results have illuminated the dis-
tinct roles played by the negative and positive parts of the
Wigner function in revealing the complex phase structures
and boundaries of these chains. The comparative analysis with
entanglement concurrence has not only validated our findings
but also highlighted the strengths and limitations of each ap-
proach in revealing the phase diagram of the systems.

The versatility of the equal angle slice approximation
in the homogeneous spin-( 1

2 - 1
2 ) chain, as opposed to the

necessity of a full phase-space integration for the inhomo-
geneous spin-( 1

2 -1) chain, underlines the crucial influence of
the quantum system homogeneity on phase-space analysis.
These insights pave the way for more nuanced approaches
to studying quantum systems, particularly in understanding
the interplay between system properties and the choice of
phase-space methods.

Our results lay the foundation for the inspection of a
profound relationship between the negativity of the Wigner
function and entanglement in quantum many-body systems.
This investigation aims to unravel the underlying properties
of quantum matter, with a specific focus on how entangle-
ment arise in various quantum phases and its manifestation
in phase space. By bridging the gap between Wigner func-
tion negativity and quantum entanglement, we aspire to
develop a more comprehensive framework for detecting and
characterizing the properties of quantum matter. This en-
deavor will not only enrich our understanding of quantum
phase transitions but also contribute significantly to the
broader field of quantum physics, potentially influencing the

development of quantum computing and information process-
ing technologies.
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APPENDIX A: SPECTRUM OF THE ATIH CHAIN

We report here the ground-state properties of the ATIH
model for the homogeneous S = 1

2 and inhomogeneous
S = 1.

1. Homogeneous ATIH chain

To study the phase diagram of the ATIH chain we di-
agonalize the Hamiltonian, Eq. (1). The introduction of the
notations J+ = Jx + Jy and J− = Jx − Jy enables us to recast
the Hamiltonian as

Hi,i+1 = diag(ε1
+, ε2

+, ε2
−, ε1

−), (A1)

where diag() represent the diagonal elements of the Hamilto-
nian, Eq. (1), with the eigenvalues:

ε1
±(σi, σi+1) = γ + Jz

4
± 1

4

√
16α2 + J2−, (A2)

ε2
±(σi, σi+1) = γ − Jz

4
± 1

4
J+, (A3)

with

γ ≡ γ (σi, σi+1) = Jσiσi+1 + h0

2
(σi + σi+1), (A4)

α ≡ α(σi, σi+1) = J (σi + σi+1) + h. (A5)
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The corresponding eigenstates in terms of standard basis
| + +〉, | + −〉, | − +〉, | − −〉 are given, respectively, by

|φ1〉 = 1√
1 + e2

1

(e1 |++〉 + |−−〉), (A6)

|φ2〉 = 1√
2

(|+−〉 + |−+〉), (A7)

|φ3〉 = 1√
2

(− |+−〉 + |−+〉), (A8)

|φ4〉 = 1√
1 + e2

2

(e2 |++〉 + |−−〉), (A9)

with

e1 ≡ e1(σi, σi+1) =
√

16α2 + J2− + 4α

J−
, (A10)

e2 ≡ e2(σi, σi+1) =
−
√

16α2 + J2− + 4α

J−
. (A11)

The phase diagram of ATIH spin-( 1
2 - 1

2 ) displays a rich variety
of quantum states and phase transitions due to the complex in-
terplay of the Ising and Heisenberg interactions. Four distinct
quantum phases of matter are identified: quantum ferromag-
netic (QFO), frustrated ferromagnetic (FRU), ferromagnetic
(FM), and ferrimagnetic (FRI). Their corresponding quantum
state are given by

|QFOI〉 =
N∏

k=1

|+, φ1(+,+)〉k, (A12)

|QFOII〉 =
N∏

k=1

|+, φ4(+,+)〉k, (A13)

|QFOIII〉 =
N∏

k=1

|+, φ2〉k, (A14)

|QFOIV〉 =
N∏

k=1

|+, φ3〉k, (A15)

|FRUI〉 =
N/2∏
k=1

|+, φ1(+,−),−, φ1(+,−)〉k, (A16)

|FRUII〉 =
N/2∏
k=1

|+, φ1(+,−),−, φ1(+,−)〉k, (A17)

|FRUIII〉 =
N/2∏
k=1

|+, φ4,−, φ4〉k, (A18)

|FRUIV〉 =
N/2∏
k=1

|+, φ3,−, φ3〉k, (A19)

where the product is carried over all sites. The first element in
the product corresponds to the Ising edge which can take only
two possible values ±1, while the second element represents
the Heisenberg edge. The quantum ferromagnetic phases are
categorized into four types (QFO I–IV), each characterized by
unique ground-state vector products over all lattice sites, and
they differ primarily in the orientation probabilities of spins in
the Heisenberg edges, which are determined by the functions

e1 and e2, Eq. (A11). These functions highlight the quan-
tum nature of the ferromagnetic state by indicating that up
and down orientations have distinct probabilities. Meanwhile,
the Frustrated Ferromagnetic states (FRU I–IV) demonstrate
nondegenerate characteristics with spin frustration present,
indicative of the competition between different interactions
within the lattice.

The FM and FRI states are defined by the magnetizations
of the Ising and Heisenberg edges. In the FM state, spins are
aligned in the same direction, leading to a uniform magnetic
moment, whereas in the FRI state, there is an alternating
pattern of spins which results in a net magnetization that is
less than the saturation magnetization. These phases emerge
from the interactions that promote parallel and anti-parallel
spin alignments, respectively, illustrating the diverse mag-
netic behaviors that can arise from the interplay of Ising and
Heisenberg interactions in low-dimensional quantum systems.

2. Inhomogeneous ATIH chain

We consider the Heisenberg edge with S = 1 in the ATIH
model, Eq. (1). Accordingly, the diagonalized Hamiltonian
can be written as

Hi,i+1 = diag(ε1
+, ε2

+, ε3
+, ε4

+, ε5, ε4
−, ε3

−, ε2
−, ε1

−), (A20)

with the following eigenvalues:

ε1
±(σi, σi+1) = ± 2α + γ + Jz, (A21)

ε2
±(σi, σi+1) = ±α + γ + 1

2
J+, (A22)

ε3
±(σi, σi+1) = ±α + γ − 1

2
J+, (A23)

ε4
±(σi, σi+1) = γ − 1

2
Jz ± 1

2

√(
J2

z + J2+
)
, (A24)

ε5(σi, σi+1) = γ − Jz. (A25)

The corresponding eigenstates in the computational basis
|−1,−1〉, |−1, 0〉, |−1, 1〉, |0,−1〉, |0, 0〉, |0, 1〉, |1,−1〉,
|1, 0〉, |1, 1〉 are given by

|ϕ1
+〉 = |1, 1〉, (A26)

|ϕ1
−〉 = | − 1,−1〉, (A27)

|ϕ2
+〉 = 1√

2
(|1, 0〉 + |0, 1〉), (A28)

|ϕ2
−〉 = 1√

2
(|0,−1〉 + | − 1, 0〉), (A29)

|ϕ3
+〉 = 1√

2
(−|1, 0〉 + |0, 1〉), (A30)

|ϕ3
−〉 = 1√

2
(−|0,−1〉 + | − 1, 0〉), (A31)

|ϕ4
+〉 = 1√

2 + f 2
1

(|1,−1〉 + | − 1, 1〉 + f1|0, 0〉), (A32)

|ϕ4
−〉 = 1√

2 + f 2
2

(|1,−1〉 + | − 1, 1〉 + f2|0, 0〉), (A33)
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|ϕ5〉 = 1√
2

(−|1,−1〉 + | − 1, 1〉), (A34)

where

f1 = Jz +√
J2

z + 8J2
x

2Jx
, f2 = Jz −√

J2
z + 8J2

x

2Jx
. (A35)

Accordingly, the phase diagram of the ATIH spin-( 1
2 -1) chain,

Eq. (1), is characterized by a series of distinct phases: ferro-
magnetic (FM), ferrimagnetic (FRI), quantum ferromagnetic
(QFO), and frustrated (FRU) states, as well as quantum ferri-
magnetic (QFI) states. described as follows:

|FM〉 =
N∏

k=1

|+, ϕ1
+〉k, (A36)

|FRI〉 =
N∏

k=1

|−, ϕ1
+〉k, (A37)

|QFOI〉 =
N∏

k=1

|+, ϕ2
+〉k, (A38)

|QFOII〉 =
N∏

k=1

|+, ϕ3
+〉k, (A39)

|QFOIII〉 =
N∏

k=1

|+, ϕ4
−〉k, (A40)

|QFII〉 =
N∏

k=1

|−, ϕ2
+〉k, (A41)

|QFIII〉 =
N∏

k=1

|−, ϕ3
+〉k, (A42)

|FRU〉 =
N/2∏
k=1

|+, ϕ4
−,−ϕ4

−〉k, (A43)

where the product is carried over all the sites. The first ele-
ment in the product corresponds to the Ising edge which can
take only two possible values ±1, while the second element
represents the Heisenberg edge.

The FM state exhibits uniform spin alignment, resulting
in maximal magnetization across the chain. Conversely, the
FRI state has alternating spin alignment between the Ising
spins and the Heisenberg chains, leading to a reduced net
magnetization compared to the FM state. The quantum ferro-
magnetic phases are divided into three types (QFO I–III) and
are distinguished by their spin configurations and magnetiza-
tion behaviors, which are functions of the Heisenberg edge’s
interaction parameters. These QFO states showcase the quan-
tum effects inherent in the Heisenberg interaction, where spins
are entangled, yielding nonclassical magnetic properties.

Quantum ferrimagnetic states (QFI I and II) emerge when
the system displays magnetic order that is intermediate be-
tween the FM and FRI states, characterized by nonintegral
values of the total magnetization per unit cell. This indicates
a tough balance between ferromagnetic and antiferromag-
netic interactions. The FRU state represents a magnetically
disordered phase where the spins are subject to geomet-
ric frustration, preventing them from settling into a regular
pattern. This state is particularly notable in systems with

competing interactions where the geometric arrangement of
the spins precludes simultaneous minimization of all interac-
tion energies, leading to a degeneracy of ground states and a
lack of long-range magnetic order.

APPENDIX B: THE ATIH CHAIN THERMODYNAMICS

The thermodynamic properties of the ATIH chain are ex-
amined using the DIT, which is a method initially developed
by Fisher [31]. The DIT allows the complex ATIH chain to be
mapped into an effective Ising chain (cf. Fig. 1) described by
the Hamiltonian

Heff = Jeffσiσi+1 + heff(σi + σi+1), (B1)

thereby enabling a simplification of the partition function
which can be written as a function of the Boltzmann weights
w̃(σi, σi+1) as

Z =
∑
{σi}

N∏
i=1

w̃(σi, σi+1), (B2)

where w̃(σi, σi+1) = feffe−βHeff essentially captures the inter-
actions between the Ising spins and the decorated Heisenberg
spins, as well as the external magnetic field’s effects on the
system. The parameters feff, Jeff, and heff are given by

f 2
eff = w

(
1

2
,
−1

2

)√
w

(
1

2
,

1

2

)
w

(−1

2
,
−1

2

)
, (B3)

Jeff = 4

β
ln

[
w
(

1
2 , 1

2

)
w
(−1

2 ,− 1
2

)
(
w
(

1
2 ,− 1

2

))2

]
, (B4)

heff = 1

2β
ln

[
w
(

1
2 , 1

2

)
w
(−1

2 , −1
2

)
]
. (B5)

The explicit formula for w(σi, σi+1) is

w(σi, σi+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2e−β(γ+ 1
4 Jz ) cosh

(
β

4

√
16α2 + J2

)
+2e−β(γ− 1

4 Jz ) cosh
(

β

4 J+), for S = 1
2 ,

e−βγ
(

eβJz + 2e
β

2 Jz cosh
(

β

2

√
J2

z + 2J2+
))

+4 cosh
(

β

2 J+
)

cosh(βα)

+2e−βJz cosh(2α), for S = 1.

(B6)

The correlation functions at the Ising and Heisenberg sites
follow immediately [4]. The magnetization at the Ising site
can be written as

〈σ z〉 = 1

2

w
(

1
2 , 1

2

)− w
(− 1

2 ,− 1
2

)∣∣w( 1
2 , 1

2

)− w
(− 1

2 ,− 1
2

)∣∣ 1√
1 + 4w̄2

0

, (B7)

with w̄0 = w( 1
2 ,− 1

2 )

|w( 1
2 , 1

2 )−w(− 1
2 ,− 1

2 )| , while the spin-spin correlation

function between the Ising nodes is

〈σiσi+r〉 = 〈σ z〉 +
(

w̄0

B

)2(
λ−
λ+

)r

. (B8)

Here, r denotes the distance between the sites i and j = i + r.

B =
√

(w( 1
2 , 1

2 ) − w( −1
2 ,− 1

2 ))2 + 4w( 1
2 ,− 1

2 )
2

and
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Correlation function of the ATIH chain in the spin-( 1
2 - 1

2 ) case. (a) Single-site magnetization 〈σi〉. (b) Two-site Ising correlation
function 〈σ z

i σ
z
i+1〉. (c) Single-site magnetization 〈Sz

a〉. (d) Two-site Heisenberg correlation function 〈Sx
aSx

b〉. (e) Two-site Heisenberg correlation
function 〈Sz

aSz
b〉. (f) Two-site Heisenberg correlation function 〈Sz

aσ
z
i 〉.

λ± = 1
2 [w( 1

2 , 1
2 ) + w(− 1

2 ,− 1
2 ) ± B]. At the Heisenberg

nodes, the spin correlation function are computed through
derivatives of the free energy F = − 1

β
log(λ+) as

〈Sz〉 = ∂F
∂h

, (B9)

where h is the external magnetic field acting on the Heisenberg
nodes. The spin-spin correlations function between the (a, b)
nodes follow as〈

Sν
a,iS

ν ′
b,i

〉 =
{

∂F
∂Jν

if ν = ν ′, with ν = {x, y, z},
0 if ν �= ν ′,

(B10)

where Jν, ν = {x, y, z} denotes the coupling strengths between
the Heisenberg nodes in the “ν ′′ direction. Finally, the Ising-
Heisenberg spin correlation function〈

Sz
a,iσ j

〉 = q0〈σ j〉 + q0,1〈σiσ j〉 + 〈σi+1σ j〉 + q1,1〈σiσi+1σ j〉,
(B11)

with

q0 = − 1

2β

∂

∂h
ln feff, q1,0 = 1

2

∂heff

∂h
, q1,1 = 1

8

∂Jeff

∂h
.

(B12)

The one-body and two-body correlation functions are given by
Eqs. (B7) and (B8), while the three-body correlation function
is written as 〈σiσi+1σ j〉 = 〈σi〉3 + 〈σi〉(1 − 〈σi〉2)(e(i− j)/ξ +
e−1/ξ (1 + e( j−i)/ξ )). ξ is the correlation length of the standard
Ising chain given by [93]

ξ = log

(
λ+
λ−

)
. (B13)

Figures 5 and 6 show the correlation functions of the ATIH
chain, Eq. (1), for the spin-( 1

2 - 1
2 ) and spin-( 1

2 -1) case, with
respect to the set of parameters (x, y) Eqs. (2) and (3),
respectively.

APPENDIX C: DENSITY MATRIX

The full expression of the density matrix is written as follows:

ρi,a,b,i+1 = 1

d

[
1d×d + 〈

σ z
i

〉
σ z ⊗ 1 ⊗ 1 ⊗ 1 + 〈

σ z
i+1

〉
1 ⊗ 1 ⊗ 1 ⊗ σ z + 〈

Sz
a

〉
1 ⊗ Sz ⊗ 1 ⊗ 1 + 〈

Sz
b

〉
1 ⊗ 1 ⊗ Sz ⊗ 1

+ 〈
σ z

i σ z
i+1

〉
σ z ⊗ 1 ⊗ 1 ⊗ σ z + 〈

Sz
aSz

b

〉
1 ⊗ Sz ⊗ Sz ⊗ 1 + 〈

Sx
aSx

b

〉
(1 ⊗ Sx ⊗ Sx ⊗ 1 + 1 ⊗ Sy ⊗ Sy ⊗ 1)

+ 〈
Sz

aσ
z
i+1

〉
(1 ⊗ 1 ⊗ Sz ⊗ σ z + 1 ⊗ Sz ⊗ 1 ⊗ σ z ) + 〈

σ z
i Sz

b

〉 (
σ z ⊗ Sz ⊗ 1 ⊗ 1 + σ z ⊗ 1 ⊗ Sz ⊗ 1

)
014120-10
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Correlation function of the ATIH chain in the spin-( 1
2 -1) case. (a) Single-site magnetization 〈σi〉. (b) Two-site Ising correlation

function 〈σ z
i σ z

i+1〉. (c) Single-site magnetization 〈Sz
a〉. (d) Two-site Heisenberg correlation function 〈Sx

aSx
b〉. (e) Two-site Heisenberg correlation

function 〈Sz
aSz

b〉. (f) Two-site Heisenberg correlation function 〈Sz
aσ

z
i 〉.

+ 〈
Sx

aSx
b

〉〈
σ z

i+1

〉
(1 ⊗ Sx ⊗ Sx ⊗ σ z + 1 ⊗ Sy ⊗ Sy ⊗ σ z ) + 〈

Sz
aSz

b

〉〈
σ z

i+1

〉
1 ⊗ Sz ⊗ Sz ⊗ σ z

+ 〈
Sx

aSx
b

〉〈
σ z

i

〉
(σ z ⊗ Sx ⊗ Sx ⊗ 1 + σ z ⊗ Sy ⊗ Sy ⊗ 1) + 〈

Sz
aSz

b

〉〈
σ z

i

〉
σ z ⊗ Sz ⊗ Sz ⊗ 1

+ 〈
σ z

i σ z
i+1

〉〈
Sz

a

〉
(σ z ⊗ Sz ⊗ 1 ⊗ σ z + σ z ⊗ 1 ⊗ Sz ⊗ σ z )

+ 〈
σ z

i σ z
i+1

〉〈
Sx

aSx
b

〉
(σ z ⊗ Sx ⊗ Sx ⊗ σ z + σ z ⊗ Sy ⊗ Sy ⊗ σ z ) + 〈

σ z
i σ z

i+1

〉〈
Sz

aSz
b

〉
σ z ⊗ Sz ⊗ Sz ⊗ σ z

]
. (C1)

For the homogeneous case, i.e., spin-( 1
2 , 1

2 ), d = 16, and for the inhomogeneous case, i.e., spin-( 1
2 , 1), d = 36. The averages

in the spin-spin correlation functions are taken over the ground state of the ATIH chain and can be calculated using the transfer
matrix approach outlined in Appendix B. Specifically, the correlation functions 〈σiσi+1〉, 〈SaSb〉, and mixed correlations 〈Saσi〉
from Appendix B are directly used in constructing the density matrix.

The Wigner function for the system follows by

W ˆρi,a,b,i+1 (�) = Tr(ρi,a,b,i+1̂(�)), (C2)

where for the single cell spin-( 1
2 , 1

2 ) Ising-Heisenberg chain, we use the kernel:

̂[16](�) = 1
16 (̂[2](�) ⊗ ̂[2](�) ⊗ ̂[2](�) ⊗ ̂[2](�)), (C3)

with

̂[2](�) = 1
2 [Û (�)
̂[2](Û (�))†],


̂[2] = 1 −
√

3σ z,

Û (�) = eiσ zϕeiσ yθeiσ zφ,
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and for the spin-( 1
2 , 1) case, the kernel is

̂[36](�) = 1

36
(̂[2](�) ⊗ ̂[3](�) ⊗ ̂[3](�) ⊗ ̂[2](�)),


̂[3] = 13×3 − 2

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠,

Û (�) = eiJzϕeiJyθeiJzφ,

with

Jx =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, Jy =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠, Jz =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠.
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