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We devise a deterministic algorithm to efficiently sample high-quality solutions of certain spin-glass systems
that encode hard optimization problems. We employ tensor networks to represent the Gibbs distribution of all
possible configurations. Using approximate tensor-network contractions, we are able to efficiently map the low-
energy spectrum of some quasi-two-dimensional Hamiltonians. We exploit the local nature of the problems to
compute spin-glass droplets geometries, which provides a new form of compression of the low-energy spectrum.
It naturally extends to sampling, which otherwise, for exact contraction, is #P-complete. In particular, for one of
the hardest known problem-classes devised on chimera graphs known as deceptive cluster loops and for up to
2048 spins, we find on the order of 1010 degenerate ground states in a single run of our algorithm, computing
better solutions than have been reported on some hard instances. Our gradient-free approach could provide new
insight into the structure of disordered spin-glass complexes, with ramifications both for machine learning and
noisy intermediate-scale quantum devices.
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I. INTRODUCTION

One of the most fundamental challenges for developing
sufficiently advanced technologies is our ability to solve hard
discrete optimization problems. These combinatorial prob-
lems have numerous applications across scientific disciplines
and industries, in particular, machine learning and operations
research. In the worst-case scenario, these problems require
searching over an exponentially large space of possible con-
figurations [1].

A general probabilistic, physics-inspired heuristics to sam-
ple the solution space of such problems is given by Markov
chain Monte Carlo (MCMC) that relies on local thermal
fluctuations enforced by Metropolis-Hastings updates [2,3].
This class includes simulated annealing [4] and parallel
tempering (PT) algorithms [5,6]. More advanced techniques
combine specific probabilistic cluster-update strategies over a
backbone algorithm from the MCMC family. Those include
Swendsen-Wang-Wolf cluster updates [7,8], Hodayer moves
[9], or Hamze-Freitas-Selbey algorithm [10–12]. However,
these approaches either break down for frustrated systems [8],
or percolate above two-dimensions [9], or assume random
treelike subgraphs [10–12] that are not necessarily related
to the actual structure of the low-energy excitations of the
underlying problem.
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Another class of probabilistic physics-based approaches
relies on quantum fluctuations to induce cluster updates.
Those include adiabatic quantum computation [13,14], dis-
sipative quantum tunneling [15], or coherent many-body
delocalization effects [16]. However, the potential com-
putational power of such quantum processors is yet not
well understood for noisy intermediate-scale quantum de-
vices [17,18], as they could suffer from decoherence
effects, finite control precision, or sparse connectivity
graphs.

Correlations induce geometry in the state space. One of the
key questions that lead to our work was whether it is possi-
ble to capture the underlying geometry of the combinatorial
optimization problem with tensor networks [19–25]. Indeed,
tensor networks receive the most attention in the context of
weakly entangled quantum many-body states [26] where they
provide efficient and tractable decomposition allowing for
successful digital simulations. For classical systems, among
others, tensor-network contractions can be applied to compute
the exact solution of specific optimization problems such as
counting [27,28]. An exact contraction of a generic tensor net-
work is, however, a #P-complete [29,30] task. In this article,
we demonstrate a deterministic heuristic algorithm to sys-
tematically learn the low-energy spectrum of low-dimensional
spin-glass complexes employing approximate tensor network
contractions. In particular, we combine the latter with a branch
and bound search strategy, where efficient utilization of the
locality of interaction allows for a compressed description of
the low-energy manifold based on a hierarchical structure of
spin-glass droplets (excitations).
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FIG. 1. Droplet revealing branch and bound strategy. (a) A tree search to find the most probable spin configurations for the Ising model
(1). At each depth of the tree, up to M most probable configurations (marked green) are stored—here, we show M = 3 for clarity. Marginal
probabilities of the first k spins, p(s1, s2, . . . , sk ), are calculated by approximate contraction of PEPS tensor network, see Fig. 2. (b) Ising
model with local interactions. Conditional probability for spins in the region X (blue), conditioned on the given configuration in the region X
(green), depends only on the values of spins at the border ∂X . It is used in panel (c) to merge partial configurations with the same spins at an
instantaneous border ∂X (between spins which were, and were not, considered at a given level of the tree search), and reveal the structure of
the spin-glass droplets. Here, black arrows depict the most probable path revealing the ground state, and other colors illustrate local low-energy
excitations. In panels (d–g) we show an example of a single instance defined on square lattice 50 × 50 with random, uniformly distributed
Ji j ∈ [−1, 1] (and weak local field Jii ∈ [−0.1, 0.1]). A configuration with the lowest energy is in panel (d) [black dots represent si = +1]. In
panel (e), we mark all clusters of spins flipping of which increases energy by <0.05. Disconnected—on the interactions graph—droplets can
be flipped independently (we distinguish overlapping ones with different colors: blue and red). In panel (f), we show a single, particularly large
droplet connecting the ground state with a distant low-energy basin of attraction. Finally, in panel (g), we show a glimpse of the hierarchical
structure of droplets: In red, green and black (distinguishing overlapping ones), we plot some clusters of spins which can be flipped following
the flipping of the blue one in panel (f) [the latter is marked in panel (g) in light blue].

Motivated by the topology of near-term quantum annealers,
we consider the Ising Hamiltonian [31],

H (s) =
∑

〈i, j〉∈E
Ji jsis j +

N∑

i=1

Jiisi, (1)

where the couplings Ji j ∈ R are the input parameters of
a given problem instance, with N variables taking values
si = ±1. Here, we assume that the edges E form a quasi-
two-dimensional structure, allowing us to try in that context
established tensor-network contractions strategies. In partic-
ular, we focus on the chimera graph, see Fig. 2(d), which is
being realized in some quantum annealing processors [32].

In this work, we represent the probability distribution
p(s) ∼ exp[−βH (s)] as tensor network equivalent to pro-
jected entangled pair states (PEPS) [33,34]. Approximately
contracting the network allows one to efficiently calculate the
probability of any configuration, including the marginal ones:

p(s1, s2, . . . , sk ) ∼ tr
[
P(s1,s2,...,sk )e

−βH (s)
]
, (2)

with P(s1,s2,...,sk ) being a projector onto the subspace with a
given configuration (s1, s2, . . . , sk ). Such approximate tensor-
network contraction can be understood in entirely classical
terms as an efficient method to construct and manipulate
low-rank matrices to approximate the evaluation of partition
function or marginal probabilities. In this context, message
passing or belief propagation algorithms [35,36] can be un-
derstood as some form of tensor network contractions that are
exact over trees.

In the rest of the article, we first discuss, in Sec. II, the
branch and bound search that we use. We comment on the
construction of the tensor network for the classical Boltzmann

distribution, in particular, for chimera graph, and its efficient
contraction for conditional probabilities in Sec. III, and collect
exemplary results and benchmarks of our approach in Sec. IV,
followed by concluding remarks in Sec. V. We provide addi-
tional details regarding the generation of one of the problem
classes we use, the evidence on the conditioning of tensor
network contraction, and its preconditioning in the Appendix.

II. DROPLET REVEALING BRANCH AND BOUND
SEARCH

To extract the low-energy states from among exponen-
tially many spin configurations, we employ branch and bound
strategy, see Fig. 1. In particular, kth level of a binary tree
in Fig. 1(a) contains partial states (s1, s2, . . . , sk ) together
with their corresponding marginal probabilities. We explore
the tree structure layer by layer, keeping at most M partial
configurations at a given step. To that end, at each depth, we
branch M current configurations into 2M new ones, taking
into account one more spin (or 2lM, if we consider a group
of l new spins in one step). We then keep only those with the
largest marginal probabilities,

p(s1, s2, . . . , sk, sk+1) = p(s1, s2, . . . , sk )

× pcond(sk+1|s1, s2, . . . , sk ),
(3)

with the last term being the conditional probability. A useful
strategy to determine M (making it step-dependent), is intro-
ducing a probability fluctuation cutoff δP. In that case, we
keep all the configurations among the considered ones, whose
marginal probability divided by the maximal probability is
larger than δP.
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FIG. 2. Tensor network formalism to solve classical optimization problems on chimera-like graphs. (a, b) A mapping explaining how
PEPS tensors are assigned to groups of l spins forming chimera-like graph. Each tensor has four virtual and one physical bond of sizes
D = dmin(m,n) and dl , respectively. Here, d = 2 while m is the number of spins in one group interacting with n of those in the neighboring
group. For the chimera graph drawn in panel (d), n = m = 4, where we indicate the interactions between the groups of l = 8 spins with blue
and green lines, while interactions within each group with black lines. Adding more complicated interaction pattern shown with thin blue
lines in panel (b) would not change D, see the main text. (c) The resulting tensor network allows one to represent the probability distribution
p(s) ∼ exp[−βH (s)] for the entire graph. (e) The conditional probabilities pcond(sc|sX ) are obtained by projecting the physical degrees of
freedom in the region X to given configuration sX , and tracing out the remaining ones (marked with red dots). Black dots represent tensors
completing the decomposition from adjacent spins in X (see text), which amounts to selecting the sign of additional, effective local fields
acting on spins in blue tensors. Next, the approximate MPO-MPS scheme is invoked to collapse the network in a bottom-top fashion until only
two rows remain. Finally, in panel (f), the remaining tensors can be exactly contracted to retrieve the desired conditional probabilities.

More importantly, it is possible to leverage the locality of
the problem, at the same time revealing the underlying geome-
tries of the low-energy manifold. Indeed, for a configuration
sX in the region X = (1, 2, . . . , k), the conditional probability
in Eq. (3) depends only on the subconfiguration on the border
∂X , that consist of all spins in X directly interacting with
the region X = (k + 1, k + 2, . . . , N ). This idea is depicted in
Fig. 1(b), using a square lattice as an example. Consequently,
if two different configurations s1

X and s2
X coincide on the

border ∂X , we can merge them in the tree search as depicted in
Fig. 1(c). This is evident from the chain rule in Eq. (3), and the
fact that p(sX |s1

X ) = p(sX |s1
∂X ) = p(sX |s2

∂X ) = p(sX |s2
X ). We

seek for such configurations at each level of the tree search
after branching and before discarding the improbable ones. On
the one hand, this allows one to avoid repeating the calculation
of the same conditional probabilities in Eq. (2), using only one
branch (out of M) per a unique boundary configuration.

On the other hand, the more probable configuration of
the two merged ones can be considered as the main branch.
The other one, with larger or equal internal energy, defines
a low-energy local excitation above the main branch, i.e., a
spin-glass droplet. This excitation is naturally captured by the
difference in spin orientations between s1

X and s2
X . Subsequent

merges result in a complicated structure consisting of both
independent and nested excitations, as pictorially depicted
in Fig. 1(c). We keep track of only those up to some total
excitation energy above the ground state.

Namely, to encode the low-energy spectrum, we associate a
hierarchical structure (a tree) of droplet excitations above each
branch in the branch and bound search. Such construction is

not unique, which in our case has to do with the order of
exploring the network, how the information about indepen-
dent droplets is encoded, and how it is combined when the
branches are merged. We discuss here two strategies that we
employed in this work.

We explore the effective two-dimensional (2D) network
[see, e.g., Figs. 1(b) and 2(c), 2(d)] row after row, which
sets a linear order for considered groups of spins, which is
equivalent to the top-to-bottom order in the tree in Figs. 1(a)
and 1(c). In the first approach, we use this order to decide
which droplets can be flipped independently. Let us assume
that we are merging two spin configurations, s1

X and s2
X —and

s1
X is becoming the main branch. The new excitation is defined

by the spins where the two configurations differ, e = s1
X ⊕ s2

X
(with ⊕ referring to xor). Each e has a beginning (the first
node where the configurations differ) and an end (node where
merging is happening) in the above-mentioned linear order. In
the first approach, two excitations, e1 and e2, are considered
independent if the end of e1 appears before the beginning of
e2 (or the other way around). During merging of s2

X with s1
X , e

is added to the list of excitations of s1
X . All the excitations of

s2
X independent of e are discarded, as they should already be

appearing as excitations of s1
X . All excitations which are not

independent (together with their subexcitations) are stored as
subexcitations of e. Employing such a procedure during the
whole branch and bound strategy results in a structure similar
to Fig. 1(c). Finally, we can recover any low-energy configu-
ration via backtracking – they correspond to all the possible
paths which lead from the last node back to the root. This
procedure provides a one-to-one mapping of the low-energy
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spectrum of the problem of interest. Provided, of course,
that all the low-energy states were properly identified during
the search (contractions of the tensor network were precise
enough, the number of branches M was large enough, etc.).

In the second approach, excitations e1 and e2 are con-
sidered independent if no spin in e1 is connected (via some
nonzero Ji j) with some spin in e2. During merging of s1

X and
s2

X , we discard the excitation e if it is not singly connected on
the graph of Ji j’s. Otherwise, it is added to the list of excita-
tions of s1

X . Excitations of s2
X which are not independent of e

are added as its subexcitations. In that case, for instances with
discreet Ji j and degenerate spectrum, adding in this procedure
a small random noise to Ji j (lifting degeneracies) allows to
resolve some possible ambiguities—as a droplet which is not
singly connected is going to have larger energy than each of
its singly connected parts. Finally, the low-energy spectrum
is recovered by considering all sets of droplets (together with
subdroplets of flipped droplets) that can be flipped indepen-
dently. This strategy, however, does not correctly solve all
possible ambiguities when two partial configurations with
many layers of hierarchical excitation structure are merged.
Consequently, it is not giving a full one-to-one mapping of
the low-energy spectrum.

Other strategies are possible, and we leave exploring
them as future work. At the same time, in both discussed
approaches, one may introduce a threshold and discard small-
size excitations e that flip too few spins, below some cutoff.
Introducing such a threshold allows one to get compact
course-grained information about the low-energy spectrum of
the instance of interest.

It is worth stressing that the droplets that we found here are
consistent with the droplet picture for the Edwards-Anderson
model of spin-glasses [37,38]. In particular, in Figs. 1(d)–1(g)
we show an example of a single random instance defined on a
square lattice with nearest-neighbor interactions. Therein, we
show a snapshot of an identified hierarchy of droplets, i.e.,
groups of spins flipping of which switches between particular
low-energy configurations.

By iterating such a branch and bound procedure down to
the last site, we produce a candidate for the ground state,
structure of low-energy states build on top of it, as well as the
largest marginal probability that was discarded in the process,
pd . In principle, this could allow one to verify if the ground
state indeed has been found. As pd bounds probabilities of
all configurations which have been discarded, the maximal
calculated probability (corresponding to the state with the
lowest energy) being greater than pd would be a sufficient
condition for such verification—assuming we had an oracle
to precisely calculate the partition functions. In practice, as we
employ approximate tensor network contractions, this remains
heuristic evidence.

III. PEPS TENSOR NETWORK FOR CONDITIONAL
PROBABILITIES

To execute the outlined algorithm one needs to effectively
calculate conditional probabilities pcond(sk+1|s1, s2, . . . , sk )
(more generally, probabilities for a group of l spins sc) to
employ the chain rule in Eq. (3). The idea is to simultaneously
encapsulate all of them by a two-dimensional PEPS tensor

network. Finding an approximate PEPS representation of the
ground state or the thermal state of a 2D quantum system is
a challenging problem and typically requires iterative varia-
tional optimization; see, e.g., Refs. [21,39–41]. However, for
a classical spin system such as in Eq. (1), the construction of
a thermal state is exact and identical to that of its partition
function [33,34].

Indeed, consider two sites, say i and j, connected by an
edge with Ji j . A natural decomposition which one can explore
reads,

e−βJi j sis j =
∑

γ=±1

Bsi
γ C

sj
γ , (4)

with Bsi
γ = δsiγ , and C

sj
γ = e−βJi jγ s j (δkl is the Kronecker

delta). These tensors serve as basic building blocks for all our
constructions. Albeit not unique, Eq. (4) has the advantage
of containing only nonnegative terms increasing numerical
stability. Even this property, however, does not ensure unique-
ness, and we further explore this in the preconditioning
procedure, as described in the Appendix.

Here, we focus on the chimera graph depicted in Fig. 2(d).
The building block of this graph consists of a group of l = 8
spins. Only 4 spins in a given cluster interact with those in the
neighboring cluster. We explore such a grouping of spins, and
with each group of 8 spins, we associate a tensor

Asc
lrud = e−βH (sc )Bsl

c
l Csr

c
r Bsu

c
u Csd

c
d . (5)

Here, sc collects the spins in the considered cluster and
sl

c, sr
c, . . . are the subsets of those spins which are interacting

with the neighboring clusters to, respectively, left, right, etc.
The interactions with the cluster to the left are encoded as
Bsl

c
l = ∏4

k=1 Bs
lk
c

lk
, where l = (l1, l2, l3, l4) collects the virtual

indices [γ in Eq. (4)] for respective decompositions. The same
holds for the remaining directions. As a result, each PEPS ten-
sor has now one physical index si of size 28 and 4 virtual ones:
l, r, u, d – each of size D = 24. Finally, H (sc) is the inner
energy of the group—where the sum in Eq. (1) is limited to the
subgraph formed by spins sc. Finally, combining all the ten-
sors leads to a representation of the probability distribution as

exp[−βH (s)] ∼
∑

{k}

∏

ci

A
sci

ki , (6)

where ci numerates all the clusters, and the sum (or effectively
tensor contractions) is performed over all the repeated virtual
indices connecting the neighboring clusters, see Figs. 2(a)
and 2(c). In practice, for calculation of the partition function
or marginal probabilities one first traces out physical degrees
of freedom s.

The above construction is sufficient to build the PEPS rep-
resentation of the chimera graph. However, it is worth noticing
at this point that one can introduce a substantially more com-
plicated interaction pattern between neighboring clusters. For
example, in Fig. 2(b), we show an example where each of 4
qubits couples not to one of its neighbors (as in the chimera
geometry), but to all of them (depicted as transparent blue
lines). One can still capture this pattern without enlarging the
bond dimension D. Indeed, suppose that site i talks to more
than one of its nearest neighbors, say j and k. Then there is
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only one bond that goes through this interaction, i.e.,

e−βJi j sis j−βJiksisk =
∑

γ=±1

Bsi
γ

(
C

sj
γ Csk

γ

)
. (7)

The same argument applies when there are 4 sites involved.
With this strategy, one can easily encode a variety of quasi-
two-dimensional graphs. In particular, m-spins to n-spins
interaction between neighboring clusters can be captured by
a PEPS with the bond dimension D = 2min(m,n). Interactions
at a longer range, e.g., between the next-nearest clusters, are
also possible to construct. To that end, as a building block of
PEPS tensors, one can use the matrix product operator (MPO)
decomposition [see Eqs. (A5) and (A6) in the Appendix] that
generalizes the two-site decomposition in Eq. (4) to several
sites. Such MPO’s can overlap, increasing the bond dimen-
sion of the resulting PEPS—multiplying bond dimensions of
MPOs building the network.

Finally, we can focus on the calculation of conditional
probabilities pcond(sc|sX ) in Eq. (3). To that end, we first
project on a given configuration sX in the region X =
(1, 2, . . . , k), and trace out all the remaining degrees of free-
dom apart from sc. This results in the network in Fig. 2(e),
where the black dots represent tensors B or C, completing the
decomposition in Eq. (4), projected on desired configuration
(limited to the spins directly interacting with sk, sk+1, . . . , sN

in the lower half of the network). Now, the conditional proba-
bilities follow from collapsing that network, see Figs. 2(e) and
2(f).

While the tensor network representation in Fig. 2(e) is
exact, extracting information from it is still a #P task. Al-
though there are approximate contraction schemes one can
utilize [24], it is not obvious a priori how well they will
perform in practice, particularly for disordered systems con-
sidered here. In this article, we employ a matrix product state
(MPS)–matrix product operator (MPO)-based approach [19].
The idea is depicted in Figs. 2(e) and 2(f). Essentially, the first
row of the grid shown in Fig. 2(e) can be treated as a vector in
high-dimensional virtual space, which has a natural underly-
ing tensor structure of MPS. Adding another row (viewed as
MPO) enlarges this MPS representation. Therefore, to prevent
its exponential growth when yet other rows are added, trunca-
tion of the bond dimension is necessary. It results in a series
of boundary MPSs with limited bond dimensions χ [there is
only one in Fig. 2(f), marked green, approximating two rows
of blue tensors in Fig. 2(e)]. They are found sequentially by
minimizing their distance from the enlarged previous ones.
This distance quantifies an error of a single truncation (see
Appendix). Finally, the network in Fig. 2(f) can be contracted
(numerically) exactly, resulting in the sought-after conditional
probability.

The outlined algorithm is deterministic, with the running
time scaling polynomially with the control parameters. The
numerical cost of the preprocessing step, where the boundary
MPSs are calculated, scales as O(ND4χ3 + ND4dl ). Those
are related to the truncation of boundary MPS and tracing
PEPS tensors, respectively. Here χ is the maximal bond di-
mension of boundary MPS, D are the virtual bond dimensions
of the PEPS tensor, and dl denotes its physical dimension;
see Fig. 2. The leading cost of calculating probabilities in the

branch and bound search scales as O(NMχ2D2 + NMD2dl ).
We should stress, nonetheless, that even in the ideal case of
an oracle giving exact probabilities, certifying that the ground
state has been found may require M scaling exponentially with
N . At the same time, for ill-conditioned MPO, the error of the
previous truncation can, in the worst-case, grow exponentially
during the procedure. Additionally, increasing the control pa-
rameter χ to obtain better accuracy may require more than
the standard double numerical precision (used in this work),
making thereof a limiting factor of the numerical simulations.

IV. RESULTS AND BENCHMARKS

Apart from instances with coupling drawn from indepen-
dent distributions [as the one in Figs. 1(d)–1(g)], we have
tested our algorithm with sets of instances that were specif-
ically designed to be hard for classical heuristic approaches
based on local updates. In particular, we have used new
droplet instances (see Appendix), which have many embedded
skewed droplets/clusters with a power-law distribution over
various sizes up to a length-scale of O(N ). It makes them
hard for probabilistic heuristic algorithms that rely on local
updates. In Fig. 3, we show the results for a single instance
consisting of a full set of low-energy states. While larger β

allows to “zoom in” on low-energy states better, it also renders
the tensor network contraction numerically ill-conditioned.
Thus, one cannot provide tight bounds on the possible errors
of calculated probabilities. Nevertheless, the method that we
present here can provide empirical guarantees by verifying
the consistency of the results obtained for different β’s and
different ordering of contractions, see Appendix. For interme-
diate β = 3, setting the time limit per instance at half-an-hour
(running on a single core and performing contraction from all
four directions), we can find the ground states (i.e., the lowest
energies ever identified by us) for all 100 test instances. We
provide times-to-solutions for some other reference solvers
in Table I, where we focus on time to different approxima-
tion ratios (defined as the ratio between the excitation energy
above the ground-state energy and the total width of the
whole energy spectrum). For reference, the excitation energy
dH = 1 corresponds to the approximation ratio � 1.5 × 10−4

for N = 2048 in Fig. 3.
We have also tested the algorithm on the set of deceptive

cluster loops [42] with parameter λ = 7, for which they are
expected to be the hardest for classical heuristics. We recov-
ered the reference the lowest energies, found with the help of
other algorithms [42], in ∼97% cases. In the remaining ∼3%
we were able to identify a state with better (lower) energy
than the provided referenced ones. Those instances offer a
challenging test for our approach as they exhibit a humongous
ground-state degeneracy. We find its median to be ∼1014 for
N = 2048.

Finally, we benchmark our algorithm with regard to per-
forming a fair sampling. To that end, we focus on instances
with integer couplings and count the identified ground-state
degeneracy. We follow Ref. [43], which studied fair-sampling
properties of PT and PT+ICM (isoenergetic cluster moves
[44]; related to Houdayer’s moves [9]) algorithms, while
using instances with random, uniformly distributed Ji j ∈
{±1,±2,±4}, including for the chimera graph geometry of
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TABLE I. Comparison of times to solutions for selected solvers. We provide the median time from 100 droplet instances. The time for
our approach is for a single run using a single-core with β = 3, bond dimension χ = 16 and relative probability cutoff δP = 10−3; parameters
that are fully sufficient to reach the ground state within this metric. The times for PT algorithms are based on the number of MC sweeps, with
0.00005s per MC sweep for N = 512 and 0.00011s for N = 1152 (running on a single-core on the same machine). For probabilistic solvers,
we estimate time to 99% probability of success. Adaptive PT is for optimized hyper-parameters, including an adaptive profile of temperatures
with 12 replicas. For geometric PT, we have 25 temperatures distributed geometrically between β = 0.001 and 10. For quantum annealing,
we run the experiments on a DWave 2000Q machine. Due to some inactive qubits in the machine, we have dropped them from the instances
– again using the approach of this paper to find the reference ground-state solutions for modified instances. For each instance, we run 2500
repetitions (1000 for N = 512), optimizing over annealing times 5, 20, and 200 μs. No overheads over pure annealing time are included.
Time-out indicates that we have not been able to find a single solution of the desired quality within our experiment, i.e., reaching a solution
within a given approximation ratio.

Method Approx. ratio N = 512 N = 1152 N = 2048

This article g.s. 30s 150s 450s
PT (adaptive) g.s. 800s — —
PT (geometric) 0.01 0.53s 4.16s —
PT (geometric) 0.005 2.51s 56.4s —
PT (geometric) 0.001 158.4s Timed-out —
PT (geometric) 0.0001 897.6s Timed-out —
DWave 2000Q6 0.01 0.003s 0.006s 0.02s
DWave 2000Q6 0.005 0.2s Timed-out Timed-out
DWave 2000Q6 0.001 Timed-out Timed-out Timed-out

FIG. 3. Low-energy spectrum of the Ising Hamiltonian defined
on the chimera topology. In (a), we show ∼107 different low-energy
solutions for a hard structured problem of N = 2048 variables—all
of which were found in one run of the algorithm. We plot their
Hamming distance from the ground state (i.e., the number of spins
where the two configurations differ) in panel (b). It indicates that
our method can sample solutions differing by ∼O(N ) spins. In panel
(c), we show the corresponding probabilities for numerically least
stable large β’s. In this case, we can see full consistency between the
probabilities obtained from the contraction of the PEPS network and
the Boltzmann weights calculated from configurations energies. Fi-
nally, in panel (d), we plot the probability of the ground state p1 that
we found together with the largest discarded probability pd . Here,
with increasing β, we were able to guarantee pd < p1, indicating
that the ground state was not missed. Nevertheless, the same full
low-energy spectrum is recovered for all values of β in panel (a).
Instances were defined with discreet Ji j with dJ = 1

75 , which results
in visible discreetness of energies found. We focused here on one
having many distinct local minima in panel (b) and used M = 214.

up to N = 1152 spins. We present our results for such in-
stances in Fig. 4. Assuming that the ground state is found
(we increase our confidence in that by running CPLEX solver
[45] for all instances, which have not reported any energies
better than those found by our method), our approach di-
rectly counts the identified ground-state configurations. As
such, strictly speaking, we provide a lower bound on the
ground-state degeneracy. Utilizing the merging strategy out-
lined in Sec. II allows to greatly enhance the efficiency of the

FIG. 4. Counting the ground-state degeneracy. Here, we con-
sider the instances on the chimera graph drawn from a uniformly
distributed with Ji j ∈ {±1, ±2, ±4} (without local fields, i.e., with
Jii = 0). The same class of instances has been considered in the
context of fair sampling of PT and PT+ICM algorithms in Ref. [43].
We show the histogram of degeneracies found by our approach,
where we can go beyond N = 1152 studied in Ref. [43].
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process—indeed, counting is performed here with no addi-
tional cost comparing to the identification of a ground-state
configuration. For smaller system sizes, our results seems to
be consistent with the ones in Ref. [43] for the same distri-
bution of couplings. (We note that for N = 1152 we observe
some ground-state degeneracies approaching 108, while only
the numbers below 106 have been previously reported.)

V. CONCLUSIONS

In summary, we demonstrated how tensor networks rep-
resentation of spin-glass problems could lead to a profound
insight into their low-energy landscape. We performed ap-
proximate tensor contraction using an iterative MPS-MPO
construction. One could explore alternative tensor contrac-
tion schemes based on renormalization group techniques [24].
Also, the droplet finding algorithm introduced here can be
combined with Monte Carlo techniques to introduce nontrivial
nonlocal moves. We mainly focused on problems on chimera
graphs that are currently being realized in quantum annealers
[46]. It remains to be seen, however, how well our approach
will perform for the next generations of quantum annealers
that utilize graph known as pegazus, which will have a higher
degree of connectivity [47]. Answering that question could
strongly influence future hardware directions of quantum an-
nealing.

Note added. Recently, related work appeared where a
closely related tensor-networks–based sampling strategy has
been combined with the Metropolis-Hastings Markov chain
acceptance rule to improve the stability of sampling from the
thermal distribution [48].
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APPENDIX

In this Appendix, we first describe the procedure for gener-
ating droplet instances—one of the instance classes we used to
test our approach. Second, we discuss a complementary algo-
rithm employing decomposition of the probability distribution
as a matrix product state. It can be used to test—and at the
same time better appreciate the performance of—the approach
introduced in the main text. Third, we provide additional

information regarding the contraction of the PEPS tensor
network representing probability distribution for a quasi-two-
dimensional lattice. General discussion of errors, as well as
a heuristic (gauge) preconditioning that we use, are also in-
cluded.

1. Generation of structured droplet instances
on chimera graphs

We explored structured instances on the chimera graph
(D-Wave quantum machine). The construction of these in-
stances at the high level can be understood with the following
generator:

(1) Local fields: Draw Jii coefficients randomly from a
probability density function (PDF) (e.g., flat or Gaussian)
centered at zero with small standard deviation, e.g., 0.1.

(2) Background random spin glass: Draw nonclustered
Jr

i j from another PDF centered at zero with max |Jr
i j | > kr ×

max |Jii|, where kr is a constant factor around 5–10 such that
they are much stronger that local fields.

(3) Generate a power-law distribution of cluster sizes with
p(nedges) = n−γ

edges, where nedges is the number of edges forming
a cluster, and an exponent γ is such that 1 � γ � 3.

(4) Generating structured droplets: Plant the seed of a
droplet by drawing a random edge on the graph representing
the problem instance and grow randomly connected clusters
with size given by probability distribution p(nedges) over the
graph topology of background random spin-glass system.
Now for each edge in the cluster attribute a random Jc

i j from
a different PDF such that max |Jc

i j | > kc × max |Jr
i j | where kc

is a constant factor between 2 and 10. In other words, we
boost certain connected edges from the background spin glass
generated by first two steps by a factor kc. The size of each
connected cluster is given by p(nedges) and their shapes is
completely random.

(5) Repeat the last step until a desired number of clusters
are generated. The procedure needs to stop before the clusters
percolate (in our instances only 5–10% of overall background
edges contribute to clusters).

This construction leads to instances that typically have
many embedded droplets with a power-law distribution over
various sizes up to length-scale of O(N ). These instances are
generally hard to solve for probabilistic heuristic algorithms,
such as simulated annealing, that rely on local updates that
are inefficient for flipping the underlying clusters. Moreover,
the droplets typically have fractal geometry and thus are hard
to be characterized by known cluster finding algorithms. The
instances employed in this work had Ji j ∈ [−5, 5] with the
discrete step dJ = 1

75 . We include them in the public reposi-
tory in Ref. [49].

2. Matrix-product-states–based approach

The PEPS tensor network discussed in the main text in-
corporates a quasi-two-dimensional structure of chimeralike
graphs. It is crucial when dealing with large problems where
N ∼ 103. However, any system, in particular 2D, can be con-
sidered as a 1D chain. One can explore this further to build
another representation for the probability distribution in Eq.
(2) of the main text. A different algorithm can then be devised
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to benchmark against the PEPS approach for smaller sys-
tems, N ∼ 102. This method is based on matrix product states
(MPS) and their properties [19,20,50]. Closely related, matrix
product states representations were considered in the context
of (nonequilibrium) classical stochastic processes [51,52],
counting [53], or more recently machine learning [54,55]. We
also use it to briefly introduce the main techniques of the MPS
toolbox, which are used in the main text to contract the PEPS
network via the boundary-MPS approach.

a. Basic concepts

Searching the probability rather than energy space is
closely related to the paradigm of quantum computation. To
better understand why that is the case, we transform the
classical Ising Hamiltonian as defined in Eq. (1) of the main
text onto its quantum counterpart, H = H (σ̂z ). Now, σ̂z =
(σ̂ z

1 , . . . , σ̂ z
N ) denote Pauli operators acting on a local space

R2. Obliviously, any classical solution (s1, . . . , sN ) translates
naturally onto an eigenstate of H and vice verse.

From a mathematical viewpoint, the Hamiltonian H does
not simplify the original problem. It does, nonetheless, points
to a possible strategy that could be utilized by classical com-
puters to find m � dN lowest energy states. According to the
Gibbs distribution, ρ ∼ exp(−βH), these states are also the
most probable ones at a given temperature 1/β. Therefore,
one could prepare a quantum system in a superposition of all
possible configurations, |s〉 = |s1, s2, . . . sN 〉, that is to say,

|ρ〉 ∼
∑

s

e−βH/2|s〉. (A1)

One could then perform a measurement, which for all intents
and purposes is treated here as a black box [56]. As assured by
the laws of quantum mechanics, the low-energy states would
be the most probable outcomes of such an experiment. There
are two paradigms involved in this scenario. First, one has to
do with how all possible combinations are stored efficiently
via a quantum superposition. Second is the information ex-
traction via a suitable measurement that ultimately leads to
the desired outcome.

Similarly, the algorithm of the main text has two essen-
tial steps. First, we encode the probability distribution of all
classical configurations as the PEPS tensor network. As we
argued, the latter network provides a natural representation for
such distribution. The extensive use of contraction techniques
enables one to approximately calculate any marginal proba-
bility. Note, as the network collapses, the information spreads
across the entire system. It results in a highly nontrivial update
that other heuristic methods lack. Next, we extract the desired
number of states with the largest probability amplitudes. In
this analogy, instead of performing a quantum measurement,
we search a probability tree, see Fig. 1 in the main text (which,
however, allows us to additionally obtain compressed infor-
mation about the structure of the low-energy excitations when
we utilize locality of interactions).

Another approach, which can be naturally tested, is to
approximately represented state |ρ〉 as a MPS,

|ρ〉 ≈
∑

s

Ms1 Ms2 · · · MsN |s〉. (A2)

Here each Msn is a matrix, maximally of size χ × χ , where the
bond dimension χ controls the quality of such approximation.

To obtained the desired MPS, we begin with the Hadamard
state

∑
s |s〉, i.e., an equal weight combination of all pos-

sible classical states, that has a trivial MPS representation
Msn=+1 = Msn=−1 = 1 with bond dimension χ = 1. The MPS
approximation in Eq. (A2) can be obtained by sequentially
applying both the two-site gates,

Gi, j = exp(−τJi jσ
z
i σ z

j ), (A3)

acting on the edge (i, j), and one-site gates e−τJiiσ
z
i . In the

context of MPS it is convenient to simultaneously consider
action of all gates sharing a common site i, i.e.,

F = Gi, j1 Gi, j2 ...Gi, jL . (A4)

One may represent it as MPO with bond dimension 2. Namely,

F =
∑

s,s′
W sis′

iW si+1s′
i+1 · · ·W sjL s′

jL |s〉〈s′|, (A5)

where for simplicity we assume that i < j1 < . . . < jL. For
the classical partition function, all W ’s are diagonal in phys-
ical indices W sms′

m = W smsmδsm,s′
m
. We then have W sisi

γ = Bsi
γ at

site i, and W smsm
γ γ ′ = Csm

γ δγ γ ′ for m = i + 1, i + 2, . . . , jN . The
basic building blocks read

Bsi
γ = δsiγ ,

C
sj
γ = e−τγ Ji j s j , (A6)

with the virtual index taking values γ = ±1. Finally, one-site
gate e−τJiiσ

z
i acts trivially at site i. Thus, it can be easily in-

corporated into Eq. (A4) by rescaling Bsi
γ by such factor. Note

that with such construction, all coefficients appearing in MPO
are nonnegative, which substantially improves the procedure’s
numerical stability.

b. Truncation

Whenever a gate acts on a state, the following network
update takes place:

M̃si
(γ γ̄ )(ρρ̄ ) =

∑

s′
i

W sis′
i

γ ρ Ms′
i

γ̄ ρ̄ . (A7)

This is depicted in Fig. 5. Here, a MPO is being absorbed into
a MPS at the cost of increasing bond dimension (here by a
factor of D = 2). Therefore, a consecutive application of all
gates would result in an exponentially large bond dimensions.
Hence, the need for a truncation scheme. The latter is usually
the predominant source of errors [19,20].

Fortunately, such truncation can be managed systemati-
cally by looking for a MPS with the smaller (truncated) bond
dimension χ . It is found by maximizing its overlap with
the original one [19]. That is to say, one maximizes |〈ũ|u〉|
between normalized states |u〉 and |ũ〉 = F |u〉 as depicted
in Fig. 5. It is the standard variational approach, see, e.g.,
the Ref. [20], which we employ in this article. The general
problem of finding optimal MPS matrices M specifying state
|u〉 is highly nonlinear. For that reason, one proceeds site
by site, finding an optimal M for one site while keeping the
rest of them fixed. This procedure is repeated while sweeping
the chain back and forth until convergence. In practice, this
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FIG. 5. MPO-MPS scheme. First, a MPO representing a gate
F = Gi,i+1Gi,i+2 . . . Gi, j [Eqs. (A3)–(A6)] is applied to appropriate
sites of state |u〉; see Eq. (A7). This results in increase of the bond
dimension, here by a factor of D = 2 (the bond dimension of MPO).
Consequently, a truncation scheme is employed to approximate MPS
to maintain its bond dimension at a manageable size.

algorithm requires a good starting point to avoid getting
trapped in some local extrema.

One could also take advantage of the truncation based on
singular value decomposition (SVD). Therein, the Schmidt
decomposition is performed between two parts of the chain,
left and right,

|ũ〉 =
∑

k

sk|ũL
k 〉|ũR

k 〉. (A8)

The truncation at a given link is then performed by keeping
only χ largest Schmidt values sk , which is optimal from the
point of view of a single bond. The error associated with
discarding those Schmidt values is ε =

√∑
k=χ+1,... s2

k . The
truncation is performed sequentially on all bonds. In this ar-
ticle, we use the SVD-based truncation scheme as an initial
condition for the variational procedure. The overlap (fidelity)
between the original MPS and the truncated one gives the
error associated with the truncation.

Other truncation schemes are also possible. It is worth
mentioning that MPO tensors defined in Eqs. (A5) and (A6)
would render the MPS tensors M nonnegative (assuming no
truncation or canonization). This feature may be desirable,
both theoretically and numerically, when working with the
probability distribution for a classical system [51]. We should
note, however, that the truncation procedure outlined above
does not preserve this property. The negative numbers do
appear, e.g., in the vectors spanning Schmidt basis. Alter-
natively, one could use decomposition based on nonnegative
matrix factorization. Such an idea was explored, e.g., in the
context of simulations of nonequilibrium 1D classical systems
with MPS [52]. Nevertheless, the results of that work suggest
that SVD-based approach provides better numerical accuracy
and stability.

As a final note, we would like to stress that it is essential
to gradually simulate imaginary time evolution reaching β/2,
by using the gates with smaller τ = dβ, see Ref. [57] for

FIG. 6. Comparison between MPS- and PEPS-based approaches.
Top panels show the low-energy spectrum for small chimera graphs
with N = 32 in panel (a), and N = 128 in panel (b). Bottom panels
depict the corresponding probabilities for N = 32 in panel (c) and
N = 128 in panel (d). While the MPS-based approach is still capable
of finding the ground-state configurations for small systems, the
PEPS-based approach reveals its superiority. Here, we used β = 5
and the MPS bond dimension χ = 128. All instances are drawn from
discreet distribution of Ji j with dJ = 1

32 resulting in discreet values
of energies.

examples. Even though all gates formally commute, this is
not necessarily the case for numerical simulations with finite
precision. For large τ , all gates become ill-conditioned as they
approach projectors. That, in practice, may trap the state in
Eq. (A2) at a local minimum.

c. Results

Having an approximation of the state in Eq. (A2) en-
ables one to calculate any conditional probability. Indeed,
p(s1, s2, . . . , sk ) ≈ 〈ρ|P(s1,s2,...,sk )|ρ〉, where |ρ〉 is normalized
and P(s1,s2,...,sk ) is an operator projecting on a given configu-
ration. Calculations of expectation values (or sampling [58])
of a given MPS can be executed efficiently and exactly [20].
Therefore, after preparing the state |ρ〉, we can execute the
branch and bound search strategy introduced in the main text.

The results for chimera graphs of sizes N = 32 and N =
128 are shown in Fig. 6, where we compare them with the
PEPS-based approach of the main text. For a very small
system size, N = 32, it is also possible to make a compar-
ison to exhaustive search (brute-force) of low-energy states.
In this case, the three are in perfect agreement with each
other. For N = 128 the MPS-based approach is still able to
localize a large set of low-energy states, yet not all of them.
As the system size grows, the 1D ansatz loses the capability
to capture the physics of the quasi-two-dimensional structure
faithfully. It is visible in the disparity between the probabil-
ities calculated with MPS and PEPS-based approaches. The
latter overlap very well with the Boltzmann factors calculated
from energies. The PEPS-based approach can satisfy such a
self-consistency check also for large system sizes (N ∼ 103),
as shown in Fig. 3(c) of the main text. The above results
provide a perfect setting to appreciate the performance of a

025308-9



MAREK M. RAMS et al. PHYSICAL REVIEW E 104, 025308 (2021)

FIG. 7. Calculation of the partition function using boundary
MPSs. The overlap O between normalized MPSs marked as |u〉 and
|v〉 reflects on numerical stability of the problem.

PEPS-based approach from the main text in the case of quasi-
two-dimensional (chimera in the presented case) graphs.

Nevertheless, the MPS-based approach discussed above is
not limited, at least at the construction level, to the graph’s
specific geometry. It is natural to expect that it would excel
for a quasi-one-dimensional structure, still allowing for oc-
casional interactions across the chain spanning the problem.
We further test the excellent performance of such an approach
against exact brute-force search for random fully connected
problems up to N = 50 in Ref. [57].

3. Efficient calculation of probabilities

A contraction of the PEPS tensor network is necessary to
extract information regarding the marginal and conditional
probabilities. In this article, we use a boundary-MPS–based
approach for that purpose [19,59]. In particular, the techniques
briefly described above in the context of the MPS-based algo-
rithm can be directly applied here. Indeed, after tracing (or
projecting) out physical degrees of freedom, a PEPS tensor
[see Eq. (2) in the main text] can be reinterpreted as an MPO,
i.e.,

Aud
lr =

∑

si

Asi
lrud . (A9)

Therefore, the MPO-MPS contraction scheme (A7) can be
applied to collapse the PEPS tensor network, layer by layer,
starting from the bottom up (or from the top down, etc.). This
is exactly how we proceed in this article; see the transition
between Figs. 2(e) and 2(f). As a preprocessing step, we begin
with the initial preparation of boundary MPSs representing
two, three, etc., rows of PEPS tensors. One such boundary
MPS, corresponding to two rows, is marked as green in
Fig. 2(e). For instance, to obtain the partition function, one
then calculates the overlap of the boundary MPSs represent-
ing respectively the top and bottom part of the network, as
depicted in Fig. 7.

The leading numerical cost is related to the truncation of
the boundary MPS. In the approach we employ, it scales as
O(ND4χ3). That is, the leading cost of obtaining the Schmidt
decomposition in Eq. (A8) for the enlarged MPS tensors of
size χD × D × χD. To that end, for each site, one needs
to calculate the QR (or SVD) decomposition of χD2 × χD
matrix at a cost O(χ3D4). A less accurate initial guess for
a subsequent variational optimization may be found at a
lower numerical cost [20]. The tensor contractions needed for
variational optimization are similar to calculating the MPS-

MPO-MPS expectation value. In our case this is executed at
a cost O[N (D2χ3 + D4χ2)]. Finally, tracing out the spin de-
grees of freedom of PEPS tensors is done at a cost O(ND4dl ).

Subsequently, to calculate the marginal conditional proba-
bilities,

(A10)
one focuses on a given configuration, s1, . . . , sk−1, spanning
the upper half of the lattice. Above, the black dots represent
tensors B or C completing the decomposition in Eq. (4),
projected on this configuration. This procedure allows one
to calculate all the probabilities invoked while executing the
branch and bound strategy from the main text—where we
explore the lattice row after row. The leading numerical cost
of contracting such a network is O[NM(χ2D2 + D2dl )], as-
suming here that χ > D. Note that partial contractions can
be cached for efficiency when calculating probabilities of
consecutive sites along a row.

4. Conditioning and compact representation

The feasibility of the outlined approach hinges heavily
on the existence of a faithful representation of boundary
MPSs with a small enough bound dimension. The latter
can be assured by quickly decaying Schmidt spectrum; see
Eq. (A8). When only χ largest Schmidt values are kept, the
error can be quantified with discarded Schmidt values. A
typical Schmidt spectrum, shown in Fig. 8(a), was calculated
in the middle of boundary MPS. The latter captures all but
the last layer of PEPS for a single instance (correspond-
ing to Fig. 2 in the main text). As is evident, the Schmidt
spectrum is vanishing rapidly, indicating that a compact rep-
resentation indeed exists. Importantly, increasing the value
of β causes the Schmidt spectrum to vanish more rapidly—
the point which we are going to elaborate on a bit more
shortly.

However, the partition function in Fig. 7, or, more impor-
tantly, probabilities in Eq. (A10), are effectively calculated as
an overlap between two MPSs that represent lower and upper
parts of the network. For the sake of clarity, we focus on the
overlap between two normalized vectors (MPSs), shown in
Fig. 7. The boundary MPS |u〉 approximates the exact one,
|u〉 + |εu〉, with an error εu = ||εu||2 given by 2-norm. Hence,
the overlap error can be bounded by εO = |〈εu|v〉| � εu. It
illustrates that when the overlap O is decreasing, one would
desire εu to be sufficiently smaller to maintain the relative
error under control. As a result, the overlap O provides a
direct indication of the problem’s conditioning. Note that this
discussion directly extends to unnormalized marginal proba-
bilities in Eq. (A10), which sum up to O (perhaps calculated
for a subsystem).

One can naturally expect O to vanish exponentially with
the linear system size L, as an overlap of two vectors in large
space of dimension ∼DL. Indeed, in Fig. 8(b) we show a
typical overlap per site, O1/L, as a function of β. The data
for different N (which translates to L), obtained for droplet
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FIG. 8. Schmidt values and overlaps of boundary MPS. In panel
(a), we show the decay of the Schmidt values for boundary MPS
representing all but the last layer of the network, cf. Fig. 7, split in
the middle. Results for chimera graph with N = 2048, corresponding
to Fig. 3 of the main text. The spectrum is quickly decaying with
growing β. (b) The respective overlap per site O1/L , cf. Fig. 7. It is
decaying with growing β indicating ill-conditioning of the problem.
The collapse of curves for different linear system sizes L points out
that O is vanishing exponentially with L. The plot shows a median of
100 droplet instances with the error bars corresponding to 1-sigma
of the distribution. L is defined here as the length of boundary MPS
used to contract the network. Results were obtained after employing
the preconditioning procedure outlined in the text.

instances, indeed coincide. Moreover, the calculated points
vanish quickly with β, indicating a possible need for greater
accuracy.

It clearly illustrates the tradeoff when choosing the control
parameters for the algorithm. On the one hand, larger β are
preferable, as they allow one to “zoom in” on the low-energy
spectrum. On the other hand, this inevitably leads to problem
conditioning. Indeed, if too large β is used, then the probabil-
ities cannot be calculated with the desired precision. While
the efficient boundary MPSs exist, it may require increas-
ing numerical precision to capture sufficiently small Schmidt
values—similarly as was observed for simulation of stochas-
tic processes using MPS [52,60]. Nevertheless, the standard
64-bit numerical precision used in this work seems to be
enough to emulate the problem sizes available on the current
quantum annealers (at least for problems classes considered
here).

In practice, one should start with small enough values of
β. Nevertheless, what is small may depend on a particular
instance or instance set if they are not random but gener-
ated according to some heuristics. Subsequently, β can be
increased as long as it allows to obtain self-consistent results.

FIG. 9. Preconditioning of PEPS tensors. (a) The overlap be-
tween two boundary MPSs, resulting in the partition function, is
calculated up to contraction of a single bound. This gives matrix T .
We use balancing of T to find gauge transformation for the PEPS
network. We observe that it often leads to increased overlap. This
is shown in panel (b) where we compare the overlap per site with
preconditioning, O, and with no preconditioning, Onp. We present
median of 100 instances shown in Fig. 8.

5. Preconditioning of boundary MPS

We can use the insight from the previous section to set up
a preconditioning procedure for the PEPS network. Its tensors
are defined up to a local gauge transformation, which reflects
on nonuniqueness of the decomposition in Eq. (4) or Eq. (A6).
The idea is to insert a resolution of identity, XX −1, on each
virtual bound to increase the overlap between the boundary
MPSs, cf. Fig. 9.

In principle, finding appropriate X ’s and X −1’s is hard.
Moreover, it is easy to introduce numerical instabilities with
careless choices. For that reason, we limit ourselves to di-
agonal X ’s with positive elements on the diagonal, with
inverse having the same properties. Consequently, after ap-
plying gauge tensors, the PEPS tensors remain composed of
nonnegative elements, which typically is a good choice to
retain the numerical stability.

To find the preconditioning, we focus on one link at a time
and proceed as follows. We contract all the other links form-
ing an overlap, as depicted in Fig. 9. The remaining object,
marked as T in that figure, can be regarded as a matrix, the
trace of which gives the overlap. However, the off-diagonal
elements of T are usually large in comparison to the diagonal
ones, which also reflect on the conditioning of the contraction.

We observe that good results are often obtained by ap-
plying heuristic procedure based on a balancing scaling
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FIG. 10. Conditioning of one layer of MPO. (a) MPO (blue) can
be viewed as a series of local gates ĝ acting on a boundary MPS
(green). In panel (b), we show condition number of ĝ—viewed as
a matrix. It is growing quickly with increasing β, indicating that
larger β should make contraction of PEPS network less reliable. We
plot the median value with the error bars indicating 1-sigma of the
distribution. Data for droplet instances.

transformation [61], T = XT ′X −1, as usually implemented in
numerical libraries. The aim of this procedure is to balance
the 1-norm of rows and columns of the matrix. It is a standard
preconditioning procedure invoked when numerically finding
eigenvalues and eigenvectors. The far-fetched idea is that in
the ideal case when the overlap is 1, T would be symmet-
ric. Such X has the desired property of being diagonal and
positively defined, which preserves the nonnegativity of PEPS
tensors obtained with the building blocks in Eq. (A6). Other
possible strategies to find gauges exist, e.g., trying to directly
maximize the overlap O, which we do not explore here.

We find the scaling transformations for a smaller value of
β, for which the overlap and conditioning are better. These
gauge transformations are then applied to the virtual indices
of PEPS tensors for larger, target β, for which all the prob-
abilities are calculated. We typically employ preconditioning
procedures at β/4 and β/2 and find that this often increases
the method’s stability. The added numerical cost is the same
as for calculating the preprocessing step where the boundary

MPSs are found. We show the overlaps resulting from such
preconditioning for droplet instances in Fig. 8(b). We note,
however, that different heuristic preconditioning procedures
might prove effective for different classes of instances, which
we leave for a later contribution.

6. Conditioning of MPOs

The error related to a single truncation of boundary MPS
is well controlled and quantified by the overlap between MPS
before and after truncation, as discussed in previous sections.
We should note, however, that the PEPS network itself is
typically ill-conditioned. As such, the relative error resulting
from previous truncations, or finite numerical precision, can
be effectively amplified (or reduced) by the application of
consecutive layers of MPO. This is depicted in Fig. 10(a),
where the green boundary MPS |u〉 is an approximation of
the exact one |ũ〉 + |εu〉. Acting with an MPO on that MPS
can be viewed as a series of local gates. They can be divided,
e.g., into G1 and G2 as depicted in the figure.

We plot the condition number of such a single gate, marked
as ĝ and treated as a matrix, in Fig. 10(b). The condition
number, i.e., the ratio between the largest and smallest sin-
gular values of the matrix, gives a bound on how much the
relative error may grow in the worst-case scenario. As can be
seen in the figure, the condition number is growing quickly
with increasing β, which is in agreement with our previous
argument that the large β renders contraction of the network
more difficult.

Consecutive application of local gates may, in the worst-
case, result in an error growing exponentially with the system
size. Nevertheless, all the evidence from extensive numer-
ical simulations suggests that such worst-case is often not
happening in practice. It is in accordance with a general ob-
servation that truncation of the PEPS tensor network usually
can produce reliable results beyond what is suggested by the
worst-case bounds, see, e.g., Ref. [22,30].

Furthermore, we can speculate that a better understanding
of truncation errors, their potential locality, and their relation
with the frustration of the problem could allow one to obtain
much tighter bounds on the error propagation. Note that if the
errors are local (along the boundary MPS), then the worst-case
bounds related to local gates ĝ would add up and not multiply.
This could then formally help to certify the solution, at least
for sufficiently small problems.
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