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Three phases of quantum annealing: Fast, slow, and very slow
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Currently, existing quantum annealers have proven themselves as viable technology for the first practical
applications in the noisy-intermediate-scale-quantum era. However, to fully exploit their capabilities, a compre-
hensive characterization of their finite-time excitations is instrumental. To this end, we develop a phase diagram
for driven Ising chains, from which the scaling behavior of the excess work can be read off as a function of
process duration and system size. “Fast” processes are well described by the Kibble-Zurek mechanism; “slow”
process are governed by effective Landau-Zener dynamics; and “very slow” processes can be approximated with
adiabatic perturbation theory.
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I. INTRODUCTION

It has been four decades since Feynman first proposed
to harness genuine quantum properties to build better, more
powerful computers [1,2]. However, only now do we finally
appear to be standing at the beginning of the quantum in-
formation age [3], which is evidenced by national as well as
international quantum initiatives [4–7] and the first demon-
strations of verifiable quantum advantage [8,9]. Yet it may
take a little while longer before the first practically useful and
fault-tolerant quantum computers become widely available
[10]. In the meanwhile, so-called noisy intermediate-scale
quantum (NISQ) may already be useful for special applica-
tions [11].

For instance, it was shown only very recently that already
current generations of the D-Wave machine can handle com-
plex, realistic problems in quantum simulation [12–14] and
in classical optimization [15], such as conflict management
in existing railway networks [16], although quantum advan-
tage has not been reached yet in this context. As a quantum
annealer, solving problems with the D-Wave machine relies
on adiabatic quantum computing [17], at least in an ideal
situation. However, like all real systems, the D-Wave machine
is subject to noise [18,19]. And if this system is ever going
to be implemented as a computer for real-life applications,
complete characterization is instrumental. To this end, the
scaling properties of the nonadiabatic excitations have been
thoroughly investigated [20,21]. Despite significant deviations
from the expected behavior (due to environmental noise), the
D-Wave chip seems to, indeed, implement a quantum Ising
model in the transverse field [21].

However, even the ideal case of an isolated, driven quan-
tum Ising model is far from trivial to fully analyze. Typically,
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the dynamics has to be solved numerically [22], and approxi-
mate, less computationally intensive approaches appear to be
highly desirable. It has been well established that for “fast”
(but not too fast) processes the dynamics is well described
by the Kibble-Zurek mechanism [22–24], whereas for “slow”
(but not too slow) driving the Landau-Zener formula becomes
applicable [25].

In the present work, we give a comprehensive character-
ization of the dynamical properties of the driven quantum
Ising chain in the transverse field. To this end, we show that
for “very slow” processes the Landau-Zener formula becomes
inapplicable, and rather, adiabatic perturbation theory (APT)
[26] properly describes the dynamics. Moreover, we make the
distinction between fast, slow and very slow regimes rigorous
by determining the crossover points between the three differ-
ent regimes. As a main result, we obtain a dynamic phase
diagram (in contrast to the usual equilibrium phase diagrams)
for the predicted dynamical properties as a function of the
number of Ising spins and the duration of the driving.

The present analysis seeks to be as self-contained as pos-
sible. Thus, we briefly outline adiabatic perturbation theory
in Sec. II, before we work through a pedagogical example,
namely, the Landau-Zener model in Sec. III. A complete anal-
ysis of the time-dependent quantum Ising model is discussed
in Sec. IV, whose experimental consequences for the D-Wave
machine are elaborated in Sec. V. The analysis is concluded
in Sec. VI.

II. PRELIMINARIES

We start by establishing notions and notations, with a brief
review of adiabatic perturbation theory.

Quantum excess work. In the present analysis, we focus
on ideal quantum annealing and thus consider only iso-
lated quantum systems. We write the Hamiltonian as H (λ) =∑

n E (λ)|n(λ)〉〈n(λ)|, where λ is a time-dependent, external
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control parameter λ = λ(t ), which is varied for a duration
τ = t f − ti such that λ(ti ) = λi to λ(t f ) = λ f .

As usual in quantum annealing, we assume that ini-
tially, the system is prepared in its ground state |ψ (ti)〉 =
|g(λi )〉, and the dynamics is given by the Schrödinger equa-
tion i|ψ̇ (t )〉 = H (λ)|ψ (t )〉, where we set h̄ = 1 and the dot
denotes the derivative with respect to time.

For such scenarios [27,28], the excess work is defined as
total variation of the average energy minus the difference in
initial and final ground-state energies. Hence, we can write

Wex =
∑
n �=g

pn[En(λ f ) − Eg(λ f )], (1)

where pn is the unitary transition probability, pn =
|〈n(λ f )|ψg(t f )〉|2. Further, |ψg(t f )〉 is the initial ground state
|g(λi )〉, evolved under the time-dependent Schrödinger equa-
tion.

In the following, we will analyze the scaling properties of
the excess work Wex for systems that cross a quantum critical
point (QCP). For such scenarios it has been demonstrated
that Wex fully characterizes the phase transition [29–32] and
that it even exhibits Kibble-Zurek scaling [22]. However, for
general systems, fully analyzing the dynamical properties is a
computationally hard problem, which is why sudden quenches
are often considered [29–32]. In contrast, here we develop
approximate methods that allow us to determine Wex for any
duration of the process τ (relevant to quantum annealing),
namely, fast, slow, and very slow.

Adiabatic perturbation theory. To complement existing, ap-
proximate methods, we employ adiabatic perturbation theory
[26,33,34]. This approach provides corrections to the adia-
batic solution in powers of 1/τ . Hence, APT is a perturbation
theory for very slow processes.

For our purposes, that is, for systems initially prepared in
the ground state, we can write

|ψg(t )〉 = exp[iφg(t )]
∞∑

p=0

∣∣ψ (p)
g (t )

〉
, (2)

where ∣∣ψ (p)
g (t )

〉 =
∑

m

C(p)
m (t ) |m(λ)〉 (3)

is the pth-order correction written in the basis of instantaneous
eigenstates of H (λ). As always,

φn(t ) = −
∫ t

ti

En(λ(t ′))dt ′ + i
∫ t

ti

〈n(λ(t ′))|ṅ(λ(t ′))〉dt ′. (4)

From Eqs. (2)–(4) the transition probability pn can be com-
puted to arbitrary order.

The coefficients C(p)
m (t ), for p > 0, can be systematically

calculated. For example, the expression for p = 1 and m �= g
reads

C(1)
m (t ) = i

(
Mmg(t )

Emg(λ)
− Mmg(ti )

Emg(λi )
exp[iφmg(t )]

)
, (5)

where Emn(λ) = Em(λ) − En(λ), φmn(t ) = φm(t ) − φn(t ), and
Mmn(t ) is given by

Mmn(t ) = 〈m(λ)|ṅ(λ)〉 = −λ̇(t )
〈m(λ)|∂λH (λ)|n(λ)〉

Emn(λ)
, (6)

where the second equality is valid only for m �= n.

In the following, we will consider only driving protocols
with fixed λi and λ f . Therefore, λ̇ ∝ τ−1, which determines
the magnitude of C(1)

m (t ) in Eq. (5). Similarly, C(2)
m (t ) contains

λ̈ and λ̇2, both of which are proportional to τ−2, with analo-
gous notation for higher orders. Hence, for τ → ∞, all terms
but the first in Eq. (2) vanish, and we recover the adiabatic
limit.

The range of validity of APT is governed by [33]∣∣∣∣Mmn(t )

Emn(λ)

∣∣∣∣ 	 1, (7)

which is not met when Emn(λ) is small in comparison to λ̇(t ) at
any point of the process. Thus, we would expect a breakdown
of the approximation for processes that rapidly cross a QCP.

III. GENERALIZED LANDAU-ZENER MODEL

To demonstrate the utility of APT and where it fits in com-
parison to other approximate techniques, we treat a simple,
pedagogical example first—the Landau-Zener (LZ) model
[35–38] for arbitrary driving. Namely,

HLZ(λ) = �λσ z + Jσ x, (8)

where � and J are positive constants and σ z and σ x are
Pauli matrices. Note that the avoided crossing is the simplest
representation of a QCP, and the LZ model even exhibits a
scaling reminiscent of the Kibble-Zurek mechanism [39].

Defining the eigenstates of σ z as σ z| ↓z〉 = −| ↓z〉 and
σ z| ↑z〉 = | ↑z〉, the energy eigenstates become

| − (λ)〉 = cos θ (λ)| ↓z〉 − sin θ (λ)| ↑z〉,
| + (λ)〉 = sin θ (λ)| ↓z〉 + cos θ (λ)| ↑z〉, (9)

where

θ (λ) = 1
2 arctan (J/�λ), (10)

and the eigenvalues are

E±(λ) = ±E (λ) = ±
√

�2λ2 + J2. (11)

Note that g = −1 corresponds to the ground state.
The gap 2E (λ) between eigenstates has a minimum for

λ = 0, where it is equal to 2J . Figure 1 depicts the avoided
crossing of the energy levels for λ f = 1/2 = −λi and for
� � J . The dashed red lines represent the eigenvalues of the
operator �λσ z. Observe that, at the end points of the pro-
cess, the eigenstates of σ z and H (λ) coincide approximately
(apart from irrelevant change of signs). However, there is a
switch halfway through the process: at the beginning, we have
| ↓z〉 ≈ | + (λi )〉, while at the end, | ↓z〉 ≈ | − (λ f )〉.

The solution of Schrödinger’s equation can be expressed as
a linear combination of the eigenstates of σ z,

|ψ (t )〉 = u(t )| ↑z〉 + v(t )| ↓z〉, (12)

and we obtain

i u̇(t ) = �λ(t )u(t ) + Jv(t ),

i v̇(t ) = Ju(t ) − �λ(t )v(t ).
(13)

It is interesting to point out that, in the original treatment
of the LZ model [35–38], only linear protocols of infinite
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FIG. 1. Eigenenergies (blue solid lines) of the Landau-Zener
model (11) for � � J together with eigenvalues (red dashed lines)
of �λσ z.

duration were considered,

λ(t ) = t, −∞ < t < ∞. (14)

In this case, Eqs. (13) can be solved analytically [36,40].
However, the exact solution is written as sums of parabolic-
cylinder functions with complex parameters and arguments,
which make extracting their behavior computationally inten-
sive. Moreover, in the present work, we are interested in
processes of finite duration τ that keep the initial and final
values of λ fixed, no matter the value of τ .

In any case, Wex (1) can be expressed as

Wex(τ ) = 2E (λ f )p+(τ ), (15)

where the transition probability from the initial ground state
to | + (λ f )〉 now reads p+ = |〈+(λ f )|ψ−(t f )〉|2.

For the sake of simplicity, we will continue the analysis
with a linear protocol,

λ(t ) = t

τ
, −τ

2
� t � τ

2
. (16)

It is worth emphasizing that, in contrast to the original LZ
model [35–38], our protocol (16) obeys λ̇(t ) → 0 as τ → ∞,
whereas in the original treatment the rate λ̇(t ) was held con-
stant.

Thus, there is no immediate reason to believe that the
Landau-Zener formula (LZF) is applicable. Expressed in our
notation, the LZF reads

pLZ
+ (τ ) = exp (−π J2τ/�). (17)

Nevertheless, we will see that for specific values of J , �, and
τ , Eq. (17) approximates the exact dynamics remarkably well.

On the other hand, the transition probability can also be
computed from APT. We have, from Eqs. (3) and (5) and the
definition of p+,

pAPT
+ (τ ) = 1

16

(
�

J2τ

)2∣∣∣∣ J3

E3(λ f )
− J3 exp[−2iφ(τ )]

E3(λi )

∣∣∣∣2

. (18)

As before, φ is the dynamic phase, which we can write as
φ(τ ) = −τ

∫ λ f

λi
E (λ)dλ. Note that the dynamic phase governs

the overall oscillatory behavior, which we will “average out”
in the following analysis. Finally, APT is expected to apply
if condition (7) is met throughout the entire process. In the
present case, this translates to J2τ/� � 1.

In Fig. 2 we compare the LZF (17) with the result for
APT (18) and the numerically exact solution (from standard
fourth-order Runge-Kutta). On the x axis, we have J2τ/�,
which allows us to unambiguously identify the range of va-
lidity of the approximate methods. For ease of representation,
the prediction from APT is “phase averaged” to remove the
dynamical oscillations alluded to above. Note that this fact is
depicted in Fig. 2(b) for a small interval in τ .

For J2τ/� < 1, we observe striking agreement between
the LZF formula (17) and the exact solution. This fact was
elucidated in Ref. [40]. In that work, the authors considered
finite-time driving of the LZ Hamiltonian (8), such that the
initial and final eigenvalues diverge in the limit τ → ∞. Our
present situation can be mapped exactly to the dynamics con-
sidered in Ref. [40], provided

J2τ

�
+

(
�

2J

)2 J2τ

�
� 1. (19)

Equation (19) consists of two independently positive terms.
Hence, only one of the terms needs to be large for Eq. (19) to
hold. In our case, we have J2τ/� � 1 for APT to apply. In
the opposite limit, i.e., if J2τ/� is small, Eq. (19) is governed
by �/J � 1. In this limit, Ref. [40] demonstrated that (at least
in leading order) the LZF is, in fact, a good approximation of
the exact solution. Further analysis of the validity of the LZF
in finite time, including a nonanalytic APT approach, is given
in Ref. [41].

We can conclude that, for slow enough processes, the range
of validity of the LZF formula (17) crosses over to APT (18).
The crossover point τc is determined by

pLZ
+ (τc) = pAPT

+ (τc), (20)

with a τ -independent phase φ. The exact solution of Eq. (20)
can be written as a function of Lambert’s function W−1 [42].
For �/J � 1, the asymptotic expression for τc becomes

J2

�
τc = 2

π

{
ln

[
4

π

(
�

2J

)3]
+ ln ln

[
4

π

(
�

2J

)3]}

+ O

{[
ln

(
�

2J

)]−1}
. (21)

Thus, we find that the crossover time diverges logarithmically
with �/J and, in the limit �/J → ∞, the crossover never
occurs. Indeed, the limit �/J → ∞ (which essentially makes
the smallest gap E (0) → 0) takes us to the original LZ model
[35–38], and it implies the validity of the LZF for any value
of τ . For any finite value �/J , we can expect a transition to
power-law decay for large enough τ .

IV. TRANSVERSE-FIELD ISING CHAIN

Having demonstrated the application of APT to the sim-
plest model, we now turn to the transverse-field Ising (TI)
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FIG. 2. Excess work (15) as a function of process duration for �/J = 10. Black dots represent the numerical solution, the red dashed
line is computed from the LZF (17), and the blue dash-dotted line is computed from APT (18). (a) The LZF-APT crossover, where the line
corresponding to APT is phase averaged. (b) Zoom of a τ range where APT is valid, with oscillations included. (c) Zoom of a τ range where
LZF fails, as per Eq. (19).

chain [43], a one-dimensional chain of N spins. This system
possesses a QCP in the thermodynamic limit N → ∞, where
the gap between the ground and first excited states vanishes.
Its Hamiltonian is

HTI(λ) = −1

2

(
J

N∑
j=1

σ z
j σ

z
j+1 + �(λ)

N∑
j=1

σ x
j

)
, (22)

where the first sum represents the spin-spin interaction with
coupling strength J and the second sum represents the interac-
tion of each spin to the external magnetic field �(λ), rewritten
for later convenience as

�(λ) = J + �λ. (23)

We assume periodic boundary conditions on the spins, σ z
N+1 =

σ z
1 .

The Hamiltonian (22) can be diagonalized exactly [25]. For
even N and exploiting Jordan-Wigner, Fourier, and, finally,
Bogoliubov transforms, we have [25]

HTI(λ) =
∑

k

εk (λ)[γ †
k (λ)γk (λ) − 1/2], (24)

where γ
†
k (λ) and γk (λ) are creation and annihilation operators

of fermions with dispersion

εk (λ) =
√

[�(λ) − J cos(ka)]2 + J2 sin2(ka). (25)

The allowed values of k are given by

kn = (2n + 1) π

Na
, (26)

where n is an integer between −N/2 and N/2 − 1. In the
thermodynamic limit, k is a continuous variable ranging from
−π/a to π/a, and sums can be replaced by integrals,

∑
k →

N/2π
∫ π

−π
d (ka).

Equation (24) describes free fermions with momentum k
and energy εk (λ). Since the system is translationally invariant,
total momentum must be conserved, and fermions can be cre-
ated or destroyed only in pairs of opposite momenta k and −k.
Therefore, if we start with the ground state (with no fermions),
we restrict ourselves to only half of the momentum values. In
the limit, N → ∞, the lowest momentum k0 = π/Na → 0,

and its energy vanishes when � = J (or λ = 0), which signi-
fies the QCP.

The ground state of the Ising chain can be expressed as

|g(λ)〉 =
∏
k>0

[cos θk (λ) − sin θk (λ)c†
kc†

−k]|vac〉, (27)

where ck ≡ cos θkγk − sin θkγ
†
−k , ck|vac〉 ≡ 0 and

θk (λ) = 1

2
arctan

(
J sin(ka)

�(λ) − J cos(ka)

)
. (28)

Moreover, in complete analogy to the LZ model, a solution

|ψ (t )〉 =
∏
k>0

[uk (t ) − vk (t )c†
kc†

−k]|vac〉 (29)

of the time-dependent Schrödinger equation can be deter-
mined from [25]

i u̇k (t ) = −[�(λ) − J cos(ka)]uk (t ) − J sin(ka)vk (t ),

i v̇k (t ) = −J sin(ka)uk (t ) + [�(λ) − J cos(ka)]vk (t ). (30)

Comparing Eqs. (13) and (30), we notice that the dynamics
of the LZ and the TI model are formally identical if we
identify

J ⇒ Jk = J sin(ka),

λ ⇒ λk = λ + J

�
[1 − cos(ka)]. (31)

Therefore, the transverse-field Ising chain can be understood
as N/2 generalized LZ models, where each two-level sys-
tem corresponds to a (positive) value of k. Consequently,
when crossing the QCP, the sublevels that have �/Jk � 1 go
through an avoided crossing, as illustrated in Fig. 3.

As before, we now compute the excess work (1). We have

Wex(τ ) =
∑
k>0

2εk (λ f )pk (τ ), (32)

where

pk (τ ) = | sin θk (λ f )uk (t f ) − cos θk (λ f )vk (t f )|2 (33)

is the probability of creating a pair of fermions with opposite
momenta k and −k during the evolution. Again, for simplicity,
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FIG. 3. Eigenenergies of the Ising chain in the transverse field
(25) as a function of λ for N = 50, where the lowest sublevel is
given by k0 = π/Na and the highest is given by kN/2−1. Observe
the avoided crossing around the critical point λ = 0 for the lowest-
energy sublevels.

we consider the linear protocol,

λ(t ) = t

τ
, −τ

2
� t � τ

2
. (34)

The corresponding LZF (17) becomes

pLZ
k (τ ) = exp[−πJ2 sin2(ka)τ/�], (35)

where we exploited Eq. (31). Note that this is valid for only
the lowest-energy sublevels, which exhibit avoided crossings.
For these levels and in the limit J2τ/� � 1, we can employ
small argument approximations in Eqs. (25) and (35). Thus,
for N � 1 the excess work (32) becomes

Wex(τ ) = N

π

∫ ∞

0

√
(� f − J )2 + J� f (ka)2

× exp[−πJ2(ka)2τ/�]d (ka),

(36)

where � f = �(λ f ) is the final value of the external field.
Equation (36) can be solved exactly in terms of hypergeomet-
ric functions.

In the limit J2τ/� � 1 an approximate expression reads

W KZM
ex (τ ) = N�|λ f |

2π

√
�

J2τ
. (37)

The superscript KZM denotes the Kibble-Zurek mechanism
[23,25,44]. It has been shown that when crossing the QCP,
arguments from the KZM [22,45] allow expressing the excess
work in terms of the average number of excitations nex,

W KZM
ex (τ ) = 2�|λ f |nex. (38)

Equation (37) is valid if Eq. (35) holds for the lowest
sublevels and for J2τ/� � 1. However, as τ increases, we
reach a point J2τ

�
( π

N )2 ∼ 1 where pk (35) is so highly peaked
at k0 that no other sublevel contributes to the sum in Eq. (32).
In other words, Eq. (35) holds only for k0, and pk = 0 for any
other sublevel. In this case, Eq. (32) becomes

W LZF
ex (τ ) = 2�|λ f | exp

[
−π

( π

N

)2 J2

�
τ

]
. (39)

Thus, we expect a crossover from the power-law decay of
Eq. (37) to the exponential decay of Eq. (39).

Finally, for even larger process duration τ we enter the
range of validity of APT; namely, when J2τ

�
( π

N )2 � 1, APT
must hold. In this case, mirroring Eq. (18),

pAPT
k (τ ) = 1

16

(
�

J2
k τ

)2∣∣∣∣ J3
k

ε3
k (λ f )

− J3
k exp[−2iφk (τ )]

ε3
k (λi)

∣∣∣∣2

,

(40)
where again φk (τ ) = −τ

∫ λ f

λi
εk (λ)dλ.

In this limit, the excess work (36) reads

W APT
ex (τ ) =

∑
k>0

2εk (λ f )pAPT
k (τ ). (41)

As for the LZ model, the dynamical phase φk (τ ) leads to a
rapidly oscillating quantity. However, for long spin chains,
N � 1, these oscillations average out, and we can write

W APT
ex (τ ) = NJ

16π

(
�

J2τ

)2

f

(
�

J

)
, (42)

where

f

(
�

J

)
= J5

∫ π

0
sin2(ka)

(
1

ε5
k (λ f )

+ εk (λ f )

ε6
k (λi )

)
d (ka) (43)

is a unitless function that depends only on �/J and that can
be written as sums of elliptic integrals.

In Fig. 4 we compare Eqs. (37), (39), and (42), with the
numerically exact solution for N = 100 and �/J = 1. As for
the LZ model, we notice a distinct crossover from the LZF
(39) to APT (42). In complete analogy to the LZ model, we
also find the dynamical oscillations, depicted in Fig. 4(b).

On the x axis, we have chosen π2

N2
J2

�
τ , as this makes it easy

to identify the adiabatic regime. For long chains, N � 1, the
prefactor multiplying τ becomes very small, and hence, APT
is applicable only for very slow processes.

The main difference between the LZ model and the TI
chain comes from the size of the systems: the TI chain
presents a power-law decay for Wex for π2

N2
J2

�
τ < 1, predicted

by the KZM for J2τ/� � 1. For even smaller values of τ , it is
known that this τ−1/2 scale breaks down because LZF ceases
to be valid. This can be seen in Fig. 4(c). Note, however, that
the value of τ where this breakdown happens decreases with
increasing N . This is because a larger N makes the avoided
crossing more pronounced, and as N → ∞, the LZF is valid
for any value τ , as noted in the last paragraph of Sec. III.

The condition J2τ/� � 1 for the validity of Eq. (37) is
sometimes understood as a condition of adiabaticity since it
requires large enough τ . We emphasize, however, that neither
KZM (37) nor LZF (39) is adiabatic in the strict sense. Rather,
the excess work exhibits two crossovers [see Fig. 4(a)]: from
KZM (Wex ∼ τ−1/2) to LZF [Wex ∼ exp (−ατ )] and from
LZF to APT (Wex ∼ τ−2). These crossovers have been iden-
tified and discussed many times before for the TI chain
[20,25,34] and other systems [46–52].

The main contribution of our detailed analysis is the quan-
tification of the crossover points. The KZM-LZF crossover
time τ1 and LZF-APT crossover time τ2 can be estimated in
complete analogy to that discussed above. For KZM-LZF, we
equate Eqs. (37) and (39). Solving for τ1 results in a complex
value since the two curves never intersect [see Fig. 4(a)]. For
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FIG. 4. Excess work (32) as a function of process duration for N = 100 and �/J = 1. Black dots represent the numerics, the green solid
line represents Eq. (37), the red dashed line represents Eq. (39), and the blue dash-dotted line represents Eqs. (42) and (41). (a) The two
crossovers, KZM-LZF and LZF-APT. (b) Zoom of a τ range where APT is valid, with oscillations included. (c) Zoom of a τ range where
KZM fails.

the real part, we obtain

π2

N2

J2

�
τ1 = − 1

2π
Re

{
W−1

(
−π

8

)}
≈ 0.152, (44)

where W−1 is again Lambert’s function [42]. Consequently,
the location of the KZM-LZF crossover is independent of N
in Fig. 4.

For LZF-APT, we equate Eqs. (39) and (42). We obtain, for
τ2 in the limit of N � 1,

π2

N2

J2

�
τ2 = 2

π

(
ln

{
4

π

[
J

4�
f

(
�

J

)]−1/2[N

π

]3/2}

+ ln ln

{
4

π

[
J

4�
f

(
�

J

)]−1/2[N

π

]3/2})
+ O[(ln N )−1], (45)

Equation (45) is similar in form to Eq. (21). For N → ∞,
the crossover time diverges, which is the same as saying that
the crossover never happens. This is consistent with the fact
that, when the gap vanishes, no evolution can be adiabatic
and, therefore, APT always fails. However, for any finite N ,
adiabaticity and power-law scaling τ−2 can always be attained
for large enough τ .

Linear-response theory. We conclude this section by high-
lighting that the τ−2 scaling, derived from APT, can also
be obtained using a linear-response theory (LRT) approach
[53]. In this framework, the excess work is expressed as (see
Appendix B for more details)

W LRT
ex (τ ) = �2

∫ t f

ti

∫ t

ti

�0(t − t ′)λ̇(t )λ̇(t ′)dtdt ′, (46)

where the relaxation function �0(t ) is obtained from the re-
sponse function �0(t ),

�0(t ) = −i〈[∂�H (0), ∂�H (t )]〉, (47)

using the relation �0(t ) = −d�0(t )/dt [53] (the symbol [·, ·]
denotes the commutator). We remark that the time evolution
in Eq. (47) is obtained from the solutions of Heisenberg’s
equations with the initial Hamiltonian.

Using the transformations of Ref. [25] mentioned in
Sec. IV, we can show that [54]

�0(t ) =
∑
k>0

J2

ε3
k (λi)

sin2 (ka) cos [2εk (λi )t]. (48)

Therefore, the excess work is

W LRT
ex (τ ) = J2

τ 2

(
�

2

)2 ∑
k>0

1 − cos [2εk (λi)τ ]

ε5
k (λi )

sin (ka), (49)

which scales like τ−2 for large switching times. Figure 5
compares the numerical results with those of LRT, where we
have again suppressed the dynamical oscillations for ease of
presentation. We notice that LRT provides the correct scale,
although with a small shift from the exact values, which
speaks to the validity of LRT for the specific values of � and
J used [54]. Despite the reasonable performance of LRT for
large τ , APT is better fitted to calculate the crossover time
from LZF, and it is easier to generalize in the case of nonlinear,
two-parameter protocols, which are frequently encountered in
realistic settings (see the next section).

V. QUANTUM ANNEALING

In the previous section, we discussed how to determine the
crossover times in the TI chain. While these can be dismissed

FIG. 5. Excess work (32) as a function of process duration for
N = 100 and �/J = 1. Black dots represent the numerics, and the
dark yellow line represents the result from LRT (49).
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FIG. 6. D-Wave annealing processor specification. (a) Sparse
Chimera graph (denoted as C2), consisting of a 2 × 2 grid of clusters
(i.e., unit cells) of eight qubits each. The maximum number of qubits
for this topology is N = 2048 (C16), whereas the number of all
connections between them is 6000 	 N2. (b) A typical annealing
schedule, where T denotes the time to complete one annealing cycle.

for large systems, recent developments in the manipulation
of small quantum systems make the crossovers achievable.
For instance, the D-Wave 2000Q (and later) quantum anneal-
ers [20] realize the following time-dependent transverse-field
Ising Hamiltonian:

H(t )/(2π h̄) = −A(t )H0 − B(t )HIsing, t ∈ [0, T ], (50)

where its classical part HIsing is defined on a particular graph
G = (V, E ), specified by its edges and vertices [see Fig. 6(a),
where the Chimera graph C2 is shown], as

HIsing :=
∑

〈i, j〉∈E
Ji jσ

z
i σ z

j +
∑
i∈V

hiσ
z
i , (51)

whereas the “free” part reads

H0 =
∑
i∈V

σ x
i . (52)

The programmable annealing time T varies from microsec-
onds (∼2 μs) to milliseconds (∼2000 μs) depending on the
specific schedule, which can also vary between devices [20].
A typical annealing schedule is shown in Fig. 6(b). During
the experiment, A(t ) changes from A(0) � 0 (i.e., all spins
point in the x direction) to A(T ) ≈ 0, whereas B(t ) is varied
from B(0) ≈ 0 to B(T ) � 0 (i.e., H(T ) ∼ HIsing). Defining
a one-dimensional path on the graph G, putting hi = 0 and
Ji j = 0 for all spins not in that path, we can realize the TI
model with two time-dependent parameters.

Therefore, the D-Wave setup supports a considerable range
of number of spins N (up to |V| ∼ 5000 with |E | ∼ 40 000 for
the Pegasus topology [55]) and process durations τ to test the
crossover times of Eqs. (44) and (45). The excess work of the
annealing protocol is then calculated from the final energy,
which can be read directly from the D-Wave solver.

Figure 7 is a corresponding “phase” diagram of the TI
chain. If the pair (N, τ ) lies in the green region (KZM), the
excess work behaves as τ−1/2. If it lies in the red region (LZF),
the excess work decays exponentially with τ . And if it lies in
the blue region (APT), the excess work scales like τ−2.

Thus, our theoretical prediction can be experimentally ver-
ified on the D-Wave machine. Equations (44) and (45) can be

FIG. 7. Phase diagram of scaling behaviors when crossing the
QCP of the TI chain with realistic D-Wave parameters, as demon-
strated in Fig. 6(b). The values of τ and N can be tuned in a given
realization of the process. The solid curves represent the crossover
points between KZM, LZF, and APT.

generalized for the case of two time-dependent parameters.
The number of spins would have to be kept low to have
feasible times greater than τ1 of Eq. (44) and τ2 of Eq. (45),
but not so low that the lowest-energy sublevel does not go
through an avoided crossing. Once N is decided, diagrams like
that in Fig. 7 would then provide the τ range to explore on D-
Wave. For example, with 500 spins the KZM-LZF crossover
would be around 10 μs, and the LZF-APT crossover would be
around 103 μs.

Finally, we remark that, while we offered here an analysis
of the implications for D-Wave, the discussed phenomena
should be verifiable in any quantum simulator that can im-
plement the TI chain, as long as it can emulate the adiabatic
process itself (see Ref. [56] for an exception). It also should
be noted that in any realistic quantum annealer one will
have to contend with effects of environmental noise. For
instance, Ref. [14] reported for similar-sized chains and in
the weak-coupling regime a coherence time of 10−1 μs, after
which excitations from the environment are significant and
the dynamics can no longer be considered unitary. Thus, the
coherence time is much shorter than the driving times at which
we predict the crossovers. However, powerful quantum-error-
correcting schemes exist [57–62], even if some of them are
still out of reach for currently available hardware. For an
experimental exploration of the here-predicted crossover be-
havior the implementation of viable error-correction schemes
may be necessary to be able to cleanly distinguish between
diabatic excitations and thermal noise.

VI. CONCLUDING REMARKS

It has been argued [10] that all viable architectures for
quantum computing will necessitate the implementation of
quantum-error-correcting codes [17]. For quantum annealers
this poses special challenges, as they experience two fun-
damentally different sources of error [63,64]: environmental
noise and nonadiabatic excitations. Whereas effective algo-
rithms to mitigate the effects of environmental noise already
exist [57–59,65], circumventing the consequences of finite-
time driving is a much harder task. In principle, so-called
shortcuts to adiabaticity [66–72] may hold the solution, but
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typically, the required control fields are highly complex and
nonlocal.

Thus, a comprehensive characterization of the finite-time
excitations is instrumental if the “outcome” of a compu-
tation on a quantum annealer is to be trusted. For the
one-dimensional Ising chain in the transverse field, this is
exactly what we have achieved in Fig. 7. We verified and
quantified earlier findings that indicated crossovers from a
regime of the Kibble-Zurek mechanism to effective Landau-
Zener dynamics to a third regime fully described by adiabatic
perturbation theory. This allowed us to unambiguously deter-
mine the crossover points, that is, the driving times τ , for
which the scaling properties of the excess work fundamen-
tally change. Thus, we expect our results to be directly and
immediately applicable in the characterization of all present
and future quantum annealers.
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APPENDIX A: STOPPING AT THE QCP

In the above analysis, we focused on driving protocols that
are symmetric with respect to the quantum critical point. In
this Appendix, we briefly outline the ramifications of stopping
right at the QCP. To this end, we consider the protocol

λ(t ) = t

τ
, −τ � t � 0. (A1)

Landau-Zener model. As before, we first analyze the LZ
model with Hamiltonian (8). Curiously, these situations are
more involved, as there is no simple formula for the transi-
tion probability. Rather, we have a “half” LZ formula (HLZ),
which is given by a rather complicated expression [73],

pHLZ
+ (τ ) = 1 − sinh (π J2τ/2�)

π J2τ/�
exp (−π J2τ/4�)

×
∣∣∣∣∣�

(
1+ i

4

J2τ

�

)
+ eiπ/4

2

√
J2τ

�
�

(
1

2
+ i

4

J2τ

�

)∣∣∣∣∣
2

.

(A2)

Here � represents the gamma function.
Equation (A2) holds for an infinite-time protocol with

a nonzero derivative [73], and thus, it also applies to our
protocol (A1) for �/J � 1 and ( �

2J )2 J2τ
�

� 1. However, in
contrast to the symmetric case, the HLZ includes the APT
limit, obeying p+ ∼ τ−2 for J2τ/� � 1.

From the point of view of APT, the calculations for the
excess work (1) are the same as the case of crossing the λ =
0 point. The transition probability is still given by Eq. (18),
but with different λi and λ f . In Fig. 8 we compare Wex (15)
with p+ calculated in three ways: with HLZ, with APT, and
with numerical evolution. Figure 8(a) demonstrates very good
agreement of HLZ with the numerics for the entire range of
the plot while also showing that it agrees with APT for large
enough τ . The oscillations present in APT still exist, but they
are tamer and, in this specific example, invisible. In Fig. 8(b)
we highlight that HLZ does, indeed, fail for small enough τ .
Finally, since HLZ and APT agree, there is no crossover.

Ising chain in the transverse field. Now, we turn our at-
tention to the TI chain (24), using the same protocol (A1).
We begin with the prediction from KZM. To this end, we
employ Eq. (32) with λ f = 0 and pk (τ ) given by Eq. (A2)
with the substitutions from Eq. (31). This is valid only for
the lowest-energy sublevels, which obey �/Jk � 1. Again,
approximating sums by integrals, applying small argument
approximations in the trigonometric functions, extending the
upper integral limit to infinity, and defining a new variable of
integration x =

√
J2τ/� ka, Eq. (32) becomes

W KZM
ex (τ ) = KNJ

π

�

J2τ
, (A3)

where

K ≡
∫ ∞

0
x

[
1 − exp

(
−π

4
x2

) sinh
(

π
2 x2

)
πx2

×
∣∣∣∣�(

1 + i

4
x2

)
+ exp (iπ/4)

2
x�

(
1

2
+ i

4
x2

)∣∣∣∣2
]

dx

(A4)

is an integral that can be computed numerically.
Note that, when stopping at the QCP, KZM dictates Wex ∼

τ−1, which is different from the KZM result when crossing the
QCP [22,45]. In particular, W KZM

ex (τ ) (A3) is not proportional
to the average number of excitations nex, which scales like
τ−1/2 for the present τ range.

On the other hand, the calculations from APT once again
follow the expressions of crossing the QCP. The excitation
probability is given by Eq. (40), with λi = −1 and λ f = 0, in
accordance with Eq. (A1). Note, however, that the first term
inside the absolute value diverges for k = 0. This means that
for N � 1 the excess work is dominated by the lowest-energy
sublevel, and we have

W APT
ex (τ ) = NJ

8π

(N

π

)2(
�

J2τ

)2

. (A5)

In Fig. 9 we show the resulting Wex from KZM (A3) and
from APT (A5), together with the numerically exact results.
Observe in Fig. 9(a) that for N = 100, the situation is similar
to what we have discussed above: APT matches the numer-
ical findings for π2

N2
J2τ
�

� 1, while KZM gives the correct

behavior for π2

N2
J2τ
�

	 1. The agreement between Eq. (A3) and
numerics becomes even more convincing for larger systems,
as demonstrated in Fig. 9(b).

In conclusion, we find a KZM-APT crossover when stop-
ping at the QCP. The crossover time τc can be estimated from
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FIG. 8. Excess work (15) as a function of process duration for �/J = 10 and for Eq. (A1). Black dots represent the numerics, the red
dashed line represents the excess work calculated with the HLZ (A2), and the blue dash-dotted line represents the excess work calculated from
APT (18). (a) The agreement between HLZ and APT for large enough τ . (b) Zoom of a τ range where HLZ fails.

Eqs. (A3) and (A5), and we obtain

π2

N2

J2

�
τc = 1

8K
≈ 1.049, (A6)

which is again independent of N .

APPENDIX B: EXCESS WORK FROM LRT

Finally, we briefly outline how to obtain the excess work
(1) from linear-response theory. To this end, consider a quan-
tum system that is in contact with a heat bath of temperature
β ≡ (kBT )−1, where kB is Boltzmann’s constant. As before,
during a switching time τ , the external parameter is changed
from λi to λi + δλ. The average work performed on the system
during this process is [74]

W ≡
∫ t f

ti

∂λH (t )λ̇(t )dt . (B1)

The generalized force ∂λH is calculated from the trace

∂λH (t ) = tr{ρ(t )∂λH}, (B2)

where ρ(t ) is a nonequilibrium density matrix evolved under
the von Neumann–Liouville equation. The external parameter

can be expressed as

λ(t ) = λ0 + h(t )δλ, (B3)

where the protocol h(t ) must satisfy the following boundary
conditions:

h(ti ) = 0, h(t f ) = 1. (B4)

Linear-response theory aims to express average quantities
to first order in the perturbation parameter δλ/λ0 considering
how this perturbation affects the observable to be averaged
and the nonequilibrium state ρ(t ). In our case, we assume
that the parameter does not change considerably during the
process, i.e., |h(t )δλ/λ0| 	 1 for all t ∈ [ti, t f ]. Thus, the
generalized force can be expressed as [53]

∂λH (t ) = 〈∂λH〉0 + δλ
〈
∂2
λH

〉
0h(t )

− δλ

∫ t

ti

�0(t − t ′)h(t ′)dt ′, (B5)

where 〈·〉0 is the average over the initial canonical ensemble.
The quantity �0(t ) is the so-called response function [53],
which can be conveniently expressed as the derivative of the
relaxation function �0(t ),

�0(t ) = −�̇0(t ). (B6)

FIG. 9. Excess work (32) as a function of process duration for �/J = 1 and for Eq. (A1). Black dots represent the numerics, the green
solid line represents Eq. (A3), and the blue dash-dotted line represents the excess work calculated from APT (A5). (a) The crossover from
KZM to APT for N = 100. (b) The KZM prediction compared to numerics for N = 1000.
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The generalized force, written in terms of the relaxation
function, reads

∂λH (t ) = 〈∂λH〉0 − δλ�̃0h(t ) + δλ

∫ t

ti

�0(t − t ′)ḣ(t ′)dt ′,

(B7)

where �̃0 ≡ �0(0) − 〈∂2
λλH〉0. Finally, combining Eqs. (B1)

and (B7), the average work becomes

W LRT = δλ〈∂λH〉0 − δλ2

2
�̃0

+ δλ2
∫ t f

ti

∫ t

ti

�0(t − t ′)ḣ(t ′)ḣ(t )dt ′dt . (B8)

It can be shown that the first two terms of Eq. (B8) [those
independent of the protocol h(t )] give exactly the quasistatic
work, i.e., the work performed if the process were quasistatic,
when δλ/λ0 	 1 [75]. Thus, we define

W LRT
ex = δλ2

∫ t f

ti

∫ t

ti

�0(t − t ′)ḣ(t ′)ḣ(t )dt ′dt (B9)

as the LRT expression for the excess work. This is the expres-
sion used in Eq. (49).
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