Optimal fog services placement in SDN IoT
network using Random Neural Networks and
Cognitive Network Map *

Piotr Fréhlichl[0000_0002_4854_4256] and Erol Gelenbel[0000—0001—9688—2201]

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
Gliwice, Poland
pfrohlich@iitis.pl,
e.gelenbe@imperial.ac.uk

Abstract. Due to a massive increase in the number of IoT devices and
the number of cloud-based services a crucial task arises of optimally
placing (both topologically and resource-wise) services in the network
so that no of the clients will be victimized and all of them will receive
the best possible time of response. Also - there must be a balance not
to instantiate a service on every possible machine - which would take
too many resources. The task which must be solved is an optimization
of parameters such as QoS between service and client, equality of clients
and usage of resources. Using the SDN - which is designed to answer
some of the problems posed in this section such as QoS and knowledge
about the topology of the whole network and newly connected clients -
is a gateway to better-adapted service management. Machine learning
provides less stiff rules to follow and more intelligent behavior of the
manager.

Keywords: Random Neural Network - Reinforcement Learning- Artifi-
cial Intelligence- IoT- SDN- Fog Computing- Cloud Computing

1 Introduction

Currently, a lot of online services are based on cloud or fog management - by
certain calculations 82% of the workload will reside within the cloud by 2020
[17]. Tt poses a serious problem of the management of used resources and the
location on which such service should be optimally placed. This problem seems to
be more and more serious, especially when the number of IoT devices is growing
rapidly (as much as 5.8 Billion IoT endpoints [12] by 2020) and consequently -
the number of queries to servers supporting these devices is growing. It gets more
and more crucial for operators and providers to be able to deploy services in the
best possible place. Users expect efficient service, which means low response time

* This research has been supported by the EC H2020-10T-2016-2017 (H2020-I0T-
2017) Program under Grant Agreement 780139 for the SerloT Research and Inno-
vation Action.

2 P. Frohlich, E.Gelenbe

and fair service, i.e. similar service time regardless of the customer’s location. On
the other hand, for the infrastructure operator, it is important to optimize the
use of computing and network resources - to maximize the number of supported
users (which is associated with the number of launched services) and minimize
the consumed energy. The sage of SDN [4] gives this solution a lot of information
that is otherwise impossible or hard to obtain in regular networks. The fact that
SDN is used speeds up the setup of the required application. What’s more SDN
is often used in Cloud and Fog networks [14,13]. Also Cognitive Network Map
which is fed by Cognitive Packets [8][10] with information about the current
state of the network (e.g. QoS-wise) and stores it within the controller. The
whole network is constantly monitored with the use of real, cognitive packets
using real interfaces to travel through. It provides the Cognitive Network Map
(CNM) with actual measurements of QoS parameters.

Today’s development of information processing technology allows the use of
one of the many heuristic methods of solving optimization problems. Artificial
intelligence systems [16, 11] are particularly promising. In this paper, we decided
to test the usefulness of Random Neural Networks [7, 6] for tasks related to sup-
porting the work of a distributed system operator of Fog-for-IoT type systems.

Using the RNN based algorithm with the RL algorithm [9] for constantly
deciding on optimal placement of a given service provides end-user with stable
QoS parameters and provider with close to optimal resource consumption. The
work is based on the work carried out within the framework of the SerloT project
[5][2], which includes the use of the Fog subsystem for the installation of services
for IoT equipment. The choice of RNN network was also motivated by the use
of the type neural networks in this project[15].

In the following section all submodules and algorithms will be described.
Then the actual solution will be presented, followed by a description of testbed
and experiments. Everything will be concluded in the last section with an em-
phasis on possible improvements.

2 Description of used algorithms and submodules

2.1 Description of Random Neural Network

The topology of the neural network used in the decision process is a fully recur-
rent equivalent of the topology of the real network (see Fig.1.). For every service
that can be deployed such a network is created. Neuron(s) with a potential

P &€ (Pyax — TR, Pyax) (1)
where Py;ax is a maximal potential in the whole neural network and
TR=1- (CPUysep/CPUpAax) (2)

are considered winning neurons. On every forwarder which corresponds to a
winning neuron a service is then instantiated - the process of spawning a service

Optimal fog services placement in SDN using Random Neural Networks 3

B S

Fig. 1. The topology of the real network and the Random Neural Network correspond-
ing to it.

is described in subsection 2.3. Once a decision of a neuron takes place it is
constantly scored based on that decision - reward, R, which a single neuron
receives can be described in the equation below. Every part of this equation
is explained in respective subsections.c, 8, are parameters that represent the
importance of a given part of the equation.

i=C
G(service) = a x S(service) + 8 * Z D(p;) + v * W(service) (3)
=0
1
P 4
R=1 0

Function S (service). This function is a standard deviation estimator (s)
calculated for every client connected to a given service at a given time. This part
of the goal function corresponds to the equality of clients. The higher the value
the bigger the punishment.

Function corresponding to the 3 parameter. This function is an averaged
QoS parameter of every client connected to a given service. QoS parameters
are taken from the Cognitive Network Map which is described in subsection 2.2.
This part of the goal function corresponds with the overall QoS score of the
placement of a given service. Note that C' is a number of clients connected to a
given service.

4 P. Frohlich, E.Gelenbe

Function W(service). This function returns the workload of a given service.
The higher the workload of a single service the higher is the need for instantiating
another service.

As was stated the task of Random Neural Network is to minimize goal func-
tion using the Reinforcement Learning algorithm. Firstly the learning algorithm
will update a given value:

Ty=6+Tj_1+(1—8)*R,0<5<1 (6)

Where § is a responsiveness parameter describing how important historical
values of rewards are. Setting it to a very high value will prevent the neural
network from taking hasty decisions. The R; is calculated as described in (2) so
every time the CNM is updated, new reward R; will be calculated and neurons’
weights will be recalculated as described below. As stated in the [3] RNN’s
learning algorithm works rewarding neurons that were able to produce better
reward value, R;, than the history-aware value T; calculated in (6). Then all
positive weights leading towards that neuron are increased and negative weights
leading from that neuron to the others are also increased. The Reinforcement
Learning algorithm is described in [3,9](7-12).

If Ry >=1T,_1 then for j+#k (7
Vitk, Wiy Wi +R, Wj«W;5+R (8)
If Ry <Ti_1 then for j#k (9)
Vidk, Wi Wit R Wi e Wh+R (10)

After the normalization of weights, preventing weights from constantly increasing
or decreasing, te reevaluation of the potential ¢; takes place as follows:

Jj=N _ +
Zj:l q; * Wji

G = — (11)
P+ I gk W
and r; is known as ’total firing rate’[3]:
j=N
ri= Y W+ W] (12)

J=1

2.2 Description of Cognitive Network Map and Cognitive Packets.

Cognitive Packets mechanism provides a way to gather information regarding
the physical status of the network. Every flow set by the controller in forwarders
is being monitored with a certain frequency, f, by sending a Cognitive Packet
through the given flow. All forwarders then add required information stored
within themselves such as delay, packet loss, etc. Those packets are being sent
to monitor every flow status. Assume network such as described in Fig.2. For

Optimal fog services placement in SDN using Random Neural Networks 5

Topology of real network

FD1
/
30 ms 15 ms

1 q:i qu-{ q__ "|,,J> FDBE ~15ms— FD2 F15ms FD3

\

30 ms 30 ms
\ :

FD5 Fsoms— FD4

Fig. 2. The topology of the real network and the Cognitive Network Map for delay
measurements only.

every flow installed by a controller - e.g. flow leading from the client connected to
the FD 1 to the client connected to the FD 4. Once every defined frequency f a
packet is sent via this flow to monitor its state. Then, after receiving the data, it’s
sent to the controller for further processing. Using data collected by Cognitive
Packets (CP) [8,10] which are collected from real interfaces of a real network
the Cognitive Network Map (Fig.2.) is created. To avoid being dependable on
Cognitive Packets alone in providing data to the Random Neural Network a data
aggregator is introduced to store necessary data.

In the described approach data provided by CP is averaged using the time
frame of T. In time t all packets which arrived in an interval (¢-T, ¢) are taken
into account in creating the CNM, thus giving a solution an insight into the
history. When Cognitive Packets are not reaching the controller (let’s say on
flow assumed previously) in a given time interval (¢-T, t) links which are in the
assumed flow begin to deteriorate at the given rate R - Fig.3.

2.3 Description of the service placement algorithm.

The service placement algorithm can be divided into two stages - the setup stage
and the online stage. They will be covered in respective sections. The algorithm
is working under two assumptions - firstly it starts its work with the stable CNM
map. Secondly that controller knows every client connected to the network at
any given moment. Using indications of the RNN which returns a number of
maximally excited neurons corresponding with a machine on which a service can
be instantiated. Working under the assumption that CNM is stable (meaning
links are being monitored and CNM is an equivalent of the real network state)
the first stage of the algorithm can take place.

6 P. Frohlich, E.Gelenbe

Update links in CNM from CP averaging
—* Received CPin time every packet on those links which
t arrived in (t-T, t) time

Is there link which wasn't
updated for T?

NO

YES

h 4

\Wait for another 2
<

cp

Deteriorate this
link by R

Fig. 3. Diagram showing the CNM creation algorithm.

Setup stage of the algorithm. After creating the RNN for a given service as
described in subsection 2.1 algorithm proceeds with deciding on initial placement
and number of services. Simulation is run, based on CNM data - every possible
neuron is considered a winner and punished or awarded for it I number of times.
After this phase, there are S = {sq, s1, ..., Sn} , N active services running in the
network.

2.4 Online stage of the algorithm.

After the setup stage of the algorithm there are N running services and C con-
nected clients. Every time the CNM is updated the RNN is also updated. If
there are differences between sets S;—1 = {so, $1, ..., Sn }, and St = {s0, S1, .-, Sm }
- winning services and winning neurons had changed, then all services:

Son = St/St-1 (13)
Sors = St-1/5 (14)

are queued for starting and stopping. AfterA time, where A is proportional to 0
that is the number of decisions of the RNN with the same tendency, all of S,,
services will be started and all of S,f; will be stopped.

3 Description of implementation, requirements and
limitations

The use of the SDN made it possible to develop an application in a high-level
language. As a controller ONOS [1] - an open-source solution - was used. It

Optimal fog services placement in SDN using Random Neural Networks 7

provided a base for installing flow rules, routing, topology and host information.
The controller is responsible for making changes in services placement - trans-
parent for every client, store the CNM and RNNs. The whole RNN plugin is
run as a thread inside of the controller.

{5} servic Manager
{8} running seves

Fig. 4. Real topology used to deploy the presented solution.

Services must also be run on machines available for the service spawning - to
know when and what service should be run. Therefore an independent, manage-
ment network (Fig.4., dotted line) must be provided between machines running
services and the controller. Those machines are marked as Service Manager (blue
cog) and are in fact a REST interface daemons needed for communication be-
tween the controller and spawners of new services. Assume that a service must
be instantiated on FD 3.

A REST request is sent to the Service Manager on that device which then
instantiates a real service. From the client’s point of view moving of the service
is not visible due to masking flow rules installed by the controller. A client must
only know an IP address and a port on which service S will be available all the
time (regardless of placement) - rest is taken care of by the controller and the
service manager. Regarding the requirements - a mentioned earlier management
network directly connecting machines for spawning services and the controller
is required. The SDN based switches are required - in this implementation both
hardware SDN switches and Open V Switch based machines were used.

Since one of the assumptions made for the service placement algorithm is
that the controller knows every connected host at all times - multiple clients
connected to a router with the single TP address will be treated as one client
(and will influence the balance of the algorithm). The network must also support
Cognitive Packets - have nodes or clients running Cognitive Packets Managers
all the time.

8 P. Frohlich, E.Gelenbe

4 Description of testbeds and experiments

4.1 Description of testbeds

Testbeds used to conduct experiments can be divided into two groups - virtual-
ized and real. For virtualized testbed setup a mininet environment was used. It
provided required insight into large networks that are hard to create in the real
world and it was easier to use as a performance testing tool. From now on it’ll
be referenced as the virtual testbed. The second testbed consists of real devices.
Both Switch 1 and Switch 2 are providing both links in the abstract topology
and the management network.

Machines marked with red colour are configured as SDN switches, ARM-
based raspberry pi 3B+ devices. Those devices are running OpenVSwitch in
version 2.3.0. Other machines are (despite mentioned switches 1 and 2) regular
desktop PC’s with Ubuntu 18.04 LTS running on them. Machine marked as
SerCon is a machine on which the controller runs. In Fig.5. there is an abstract
topology used during experiments conducted on real devices. This testbed will
be referenced as the real testbed from now on.

I NOL
o) =)

B &
= -

Fig. 5. Abstract topology used during experiments.

Several experiments were done to confirm that the solution is behaving cor-
rectly. To measure that every host connected to the network is treated equally a
standard deviation of time of processing a request of every client was measured.
Average processing time for all clients has been also measured as well as the
average resource consumption. Described experiments were conducted both on
the virtual and the real testbed.

4.2 Description of experiments

In experiments a network consisting of N nodes was created and C' clients were
randomly connected to those nodes. After T' time a network state was captured
and stored. Using the information in the CNM the solution based on the RNN

Optimal fog services placement in SDN using Random Neural Networks 9

was able to provide optimal or suboptimal placements of services. Those ex-
periments were run in the virtual testbed due to the ease of creating networks.
Since packets using this virtual testbed are not transported by the real medium
another set of experiments was needed. On the real testbed, a real value of time
of the response, variation and resource consumption was measured. Note that
all experiments conducted on real testbed were real services running on real
machines. What’s more - all traffic was transported via real medium - what’s
caused white noise.

5 Results

All experiments described in the previous section were conducted as described.
Using both the real and the virtual testbed helped determine that this solution
provides the network with optimal or suboptimal placements of services based
on parameters such as the QoS, the equality of clients and resource usage. It
also provided an insight into larger networks as well as real networks with real
transportation media (carrying and implying a lot of white noise). All charts
(Fig.6., Fig.7., Fig.8.) are charts taken from the real testbed from experiments
carried out on the topology from Fig.5. with C' = 10 and every forwarder ready
to start a service at any time. The used service was a simple TCP based server
which took N parameters and returned M parameters for the client. Both N and
M were randomized but both of them were proportional to the time of response

Resource Use and Average Resource use[%]

0 P
Time [s]

Fig. 6. Plot of use of percentage of used resourced against time.

Next experiments were conducted on the virtual testbed (Fig.9., Fig.10) with
the use of bigger networks. Note that this isn’t simulation - this is a virtualized
solution with real systems, interfaces and services running in one environment
(without the influence of the medium of transportation). All experiments were
run for 100 [s], on topologies sized [5, 10 , 15] forwarders. Placement of the
clients was randomized but clipped to a maximum of 2 connected hosts to one
forwarder. The number of clients is equal to the number of forwarders to assure
a stable condition of the network.

10 P. Frohlich, E.Gelenbe

Variation and average variation
&

W0 &
Time [s]

Fig. 7. The plot of the variation of the response time of every client against time. The
orange line shows average variation through the whole experiment.

1l S
i

o 2

3

Response time and average response time overall [ms]

°

W0 & s 100
Time [s]

Fig. 8. The plot of the averaged response time for every client against time. The orange
line shows average response time through the whole experiments

@ ®)
L\
B B)
: . @
{0}
o] ®
@
.)

Fig. 9. The diagram showing the result of the algorithm. The red cog is a client, the
violet cog is a running service.

Optimal fog services placement in SDN using Random Neural Networks 11

Fig. 10. The diagram showing the result of the algorithm. The red cog is a client, the
violet cog is a running service.

6 Conclusion

The result of experiments that the Random Neural Network is a suitable solution
for the service placement in the network. It provides means for optimization of
required parameters and as a result best possible services for clients. Using the
CNM provided the RNN with a stable source of data on the state of the network
- as a result the service placement algorithm is also aware of a deterioration of the
link quality, new clients and their location, etc. Combining decisions provided
from the RNN and the data from the CNM resulted in a self-aware service
placement algorithm that corresponds to changes in the network providing an
optimal placement of services.

What’s more, experiments concluded that this is a solution that can be used
both in small-grade and large-grade networks. The usage of the SDN provides a
way to mask a service replacement for clients (making it transparent to clients
at any given time).

7 Acknowledgements

The author is grateful for the financial support of the H2020-10T-2016-2017
Program under Grant Agreement 780139 for the SerloT Research and Innovation
Action.

References

1. Home page of onosproject - open source SDN controller. https://onosproject.org
(2020), [Online; Last accessed 13 Mar 2020]

2. Home page of SerloT project. https://seriot-project.eu (2020), [Online; Last ac-
cessed 13 Mar 2020]

3. Basterrech, S., Rubino, G.: A tutorial about random neural networks in supervised
learning. ArXiv abs/1609.04846 (2016)

10.

11.

12.

13.

14.

15.

16.

17.

12 P. Frohlich, E.Gelenbe

4. Bera, S., Misra, S., Vasilakos, A.V.: Software-defined networking for internet of
things: A survey. IEEE Internet of Things Journal 4(6), 1994-2008 (Dec 2017).
https://doi.org/10.1109/J10T.2017.2746186

5. Domanska J., Nowak M., N.S.C.T.: European cybersecurity research and the se-
riot project. Communications in Computer and Information Science 935, 166-173
(2018). https://doi.org/https://doi.org/10.1007/978-3-030-00840-619

Gelenbe, E., Hussain, K.F.: Learning in the multiple class random neural net-
work. IEEE Transactions on Neural Networks 13(6), 1257-1267 (Nov 2002).
https://doi.org/10.1109/TNN.2002.804228

Gelenbe, E., Koubi, V., Pekergin, F..: Dynamical random neural network ap-
proach to the traveling salesman problem. In: Proceedings of IEEE Systems
Man and Cybernetics Conference - SMC. vol. 2, pp. 630635 vol.2 (Oct 1993).
https://doi.org/10.1109/ICSMC.1993.384945

Gelenbe, E., Zhiguang Xu, Seref, E.: Cognitive packet networks. In: Proceedings 11th
International Conference on Tools with Artificial Intelligence. pp. 47-54 (Nov 1999).
https://doi.org/10.1109/TAI.1999.809765

Gelenbe, E.: Learning in the recurrent random neural network. Neural Computation
5, 154-164 (01 1993). https://doi.org/10.1162/nec0.1993.5.1.154

Gelenbe, E.: Cognitive Packet Patent. https://patents.google.com/patent /US6804201B1/en

(2020), [Online; Last accessed 20 Nov 2019]

Gupta, L., Samaka, M., Jain, R., Erbad, A., Bhamare, D., Metz, C.: Colap: A predictive
framework for service function chain placement in a multi-cloud environment. In: 2017
IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC).
pp. 1-9 (Jan 2017). https://doi.org/10.1109/CCWC.2017.7868377

Inc., G.: IoT endpoint number. https://www.gartner.com/en/newsroom/press-
releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io (2020), [On-
line; Last accessed 20 Nov 2019]

Levin, A., Barabash, K., Ben-Itzhak, Y., Guenender, S., Schour, L.: Net-
working architecture for seamless cloud interoperability. In: 2015 IEEE 8th
International Conference on Cloud Computing. pp. 1021-1024 (June 2015).
https://doi.org/10.1109/CLOUD.2015.141

Mambretti, J., Chen, J., Yeh, F.: Next generation clouds, the chameleon cloud
testbed, and software defined networking (sdn). In: 2015 International Conference
on Cloud Computing Research and Innovation (ICCCRI). pp. 73-79 (Oct 2015).
https://doi.org/10.1109/ICCCRI.2015.10

Nowak, M., Nowak, S., Domaniska, J.: Cognitive routing for improvement of iot security
(04 2019). https://doi.org/10.13140/RG.2.2.28667.36648

Ooi, B.Y., Chan, H.Y., Cheah, Y.N.: Dynamic service placement and repli-
cation framework to enhance service availability using team formation al-
gorithm. Journal of Systems and Software 85(9), 2048 - 2062 (2012).
https://doi.org/https://doi.org/10.1016/j.jss.2012.02.010, selected papers from the
2011 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2011)
Radoslav Ch., T.: Cloud Computing Statistics 2020. https://techjury.net/stats-
about/cloud-computing/gref (2020), [Online; Last accessed 20 Nov 2019]

