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Abstract—The need to adaptively manage computer systems
and networks so as to offer good Quality of Service (QoS) and
Quality of Experience (QoE), with secure operation at relatively
low levels of energy cnsumption is challenged by their sheer com-
plexity and the wide variability of the workloads. A possible way
forward is through self-awareness, whereby self-measurement
and self-observation, together with on-line control mechansims
which operate adaptively to attain the required performance
and QoE. We survey the premises for these ideas coming from
Cognitive Science and Active Networks, and review recent work
on self-aware computer systems and networks, including those
that propose the use of Software Defined Networks as a means to
implement these concepts. Then we provide some examples from
the literature on self-aware systems to illustrate the performance
gains that they can provide. Finally we detail an example system
and its working algorithms to allow the reader to understand how
such a system may be implemented. Measurements showing how
it can react rapidly to changing network conditions regarding
Quality of Service (QoS) and security are also presented. Some
conclusions and suggestions for further work are also presented.

Index Terms—Self-Aware Networks, Artificial Intelligence,
Random Neural Networks, Software Defined Networks, Quality
of Experience, Quality of Service, Cognitive Packet Network,
Reinforcement Learning

I. INTRODUCTION

In the last few years, the telecommunications industry
has woken to the potential use of artificial intelligence and
machine learning to automate and simplify network design,
management, and operations. Thus many organisations in the
telecommunications industry have announced programs that
aim at introducing machine learning into the next generation of
packet and mobile networks. Recently, an industry publication
[1] stated that “Advances in artificial intelligence are pushing
.. an economically feasible Self-Driving NetworkTM ... that’s
programmed to .. carry out your intentions ... eliminates
the complex programming and management tasks ... self-
configure, monitor, manage, correct, defend ...with very little
human intervention ... predict performance issues ... eliminate
burdensome operational tasks and free ... IT staff ... costs will
drop. Security, reliability, and resiliency will improve ... speed
of business will accelerate.”

Indeed, in the same line, a recent industry blog post [2]
asks the rhetorical question “So how does AI help? It starts at
the top, with codifying .. the intent of the network operator ...
in human language or through a more traditional interface ...
translated into network and security policies ... It is often espe-
cially important to use machine reasoning ... domain-specific

knowledge about networking to ... realize the desired intent in
the given network context ... with a deep understanding of the
network infrastructure ... automates the policies ... optimizing
for performance, reliability, and security.”

In [3] mobile radio access networks (RAN), especially for
5G, are discussed and it is suggested that AI can streamline
RANs for Massive Multiple-Input-Mutiple-Output optimisa-
tion with Reinforcement Learning (RL) [4] so that each
cell self-adapts to changing scenarios and traffic, increasing
throughput by 20% and optimising speed for users that have
low throughput.

Back in the 1990s, the research community had developed
similar ideas [5]–[7] that have now met the technologies that
allow their practical implementation. Thus this paper reviews
the advances made since those early days, in support of the
current vision to use data analytics and machine learning to
automate network operations through Self-Aware Networks.

A. The Premise from Cognitive Science and Philosophy

Self-awareness has been studied by cognitive scientists
[8] who have discussed “conscious attention” as having two
aspects: one being directed “toward the self”, while the other
is directed “toward the environment”. This early conceptu-
alisation also emphasizes the importance of “discrepancies”
between the internal model and the external reality. Dis-
crepancies alert us on the differences between what we had
thought about (from the internal model) and the reality we
observe. Thus, discrepancies can be exploited via some form
of RL because “the person will experience either negative
or positive affect depending on whether attention is directed
toward a negative or a positive discrepancy”. This takes us
back to René Descartes’ [9] rationalism and his well-known
affirmation that “I think therefore I am”, since thought leads
to self-representation to the ability to link the internal model
to external cues and events and improve the internal model.

On the other hand, similar insight into the notion of ”self-
awareness” can be gained through an interesting article [10]
from 1999, that defines the intentionality of an agent which
may be “cued”, i.e. triggered for instance by some sensory
event or observation, or via a “detached” internal represen-
tation that models the world within which the agent exists.
Links between the cued and detached representations are then
based on experience. These links serve as a basis for action,
and for the refinement of the internal or detached model. The
paper argues about the importance of both the internal and
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detached representation, that may include a self-model of the
agent, which allows the agent to determine its capacity to have
intentions and be able to act on these intentions. Both of these
works [8], [10] provide insight into the way in which many
“self-aware” computer networks and computer systems have
been designed, with an internal model that is updated and
corrected using observations based on measurement, and RL
to make corrections in the internal model and take decisions.

Self-awareness is also often discussed through the develop-
ment of young animals and children [11], [12] who go through
of self-awareness that change with age. Another area that is
often studied relates to anomalies in self-awareness. Examples
include the commonly known “self-denial” which is viewed
as a psychological protection mechanism whereby individuals
refuse to acknowledge a weakness or an illness, and anosog-
nosia [13] where a neurological disorder (i.e. malfunctioning
of brain neural networks) can cause an individual’s lack of
awareness or denial of a well identified physical incapacity
or illness. Other work has considered the relation between
internal representation of self-awareness and the capacity to
take action [14].

B. Self-Aware Networks and Quality of Experience

In the context of packet networks self-awareness should
include the ability of a network to pursue objectives or goal
functions. It should be able to observe itself – via data from
measurements that the network collects – and “criticize” its
own behaviour, so as to meet the objectives that have been set
for it, and improve its behaviour based on these observations.
The network’s primary goal should be to convey traffic flows
from source to destination nodes, and to retrieve and convey
content to its users. However, this cannot be done without
consideration for the Quality of Experience (QoE) [15] of its
“users”, which are not just the end users that convey traffic or
download content through the network, but also the network’s
human operators, and the people in charge of troubleshooting
the network.

At the speed with which the network operates forwarding
GBytes of data with hundreds of thousands of simultaneous
users, the analysis of QoE does not mean that we can poll
users about their satisfaction with the network [16] in real-
time, though some of that may happen at a slower pace by
sampling some users. However, early work has successfully
linked network bandwidth and perceived video quality, with
the traffic characteristics and network QoS [17].

At the high-end, one may monitor the end-users’ emotions
as they use the network [18] to evaluate QoE, though the same
emotions may be related to the content they receive rather than
the network’s own performance. However substantial work
has been conducted on linking the quality of the sound that
the network users may be hearing through their connections,
to the QoS that is directly measured [19], [20]. A related
strain of work has linked the perceived quality of video
that is downloaded by the users to the usual traffic QoS
measurements, such as packet loss and delay [21].

Another major element that enters into QoE, from the per-
spective of the network operator as a “user”, is the network’s

energy consumption, because energy may represent close to
70% of a network’s operating costs [22], [23]. Thus the
minimization of energy consumption [24], [25] needs to be
included in the “goal” or objective of a self-aware network.
Its measurement and evaluation is a key issue [26], [27] and
it should also include the Cloud support that is indispensable
for modern communication networks [28].

Resilience [29] and security [30] are also key issues for
the network operator, who is the “user” that needs to assure
the seamless non-stop operation of the system. Poor resilience
and security are also directly felt by the end user. Thus
substantial research has been conducted in this area [31],
while network software must be protected with appropriate
recovery techniques [32]. While the actions of the environment
on a network arise mainly from the legitimate “good” users,
“malicious” users can launch attacks or infiltrations which can
have dramatic effects on the QoS perceived by end users. Thus
cybersecurity remains one of the core aspects of self-aware
network management, with the help of appropriate attack
detection and mitigation techniques [33], [34].

Thus in the sequel, when we express a Self-Aware Net-
work’s Goal or Objective function, we will include both QoS,
Security and Energy, to handle the different issues related to
QoE in a holistic manner.

C. Content of this Paper
In the next section we will consider the design of self-aware

networks, and discuss the first systematic attempt to incorpo-
rate intelligence in networks, known as Active Networks, which
have provided many of the ideas that are still being pursued
today.

Next, we will examine how self-aware networks can be built
thanks to the rising technology of software defined networks
(SDN), and how machine learning techniques such as RL
can help implant self-awareness into such systems. This will
lead to some detailed examples that will also quantitatively
illustrate how they may be used in network overlay routing to
reduce end-to-end packet delays in the global Internet, or to
reduce the average execution time of jobs that are allocated to
edge or fog clusters, and in the Cloud.

Then we will go further into how SDN can incorporate
self-awareness using the Cognitive Packet protocol based on
Smart Packets that gather measurements and information in
the network and using a RL based decision engine to modify
the paths of flows dynamically to achieve better QoS.

This discussion will lead directly to a detailed presentation
of the working example of a networked system whose aim
is to provide quality of service and energy aware network
connectivity with active protection from network attacks. A
test-bed that embodies these concepts will be detailed, together
with several measurements that illustrate its ability to react
rapidly to quality of sevice degradation and to security alarms.

The paper ends with some conclusions and suggestions for
further research.

II. RELATED WORK

The first mention of a “self-aware network” appears in 2003
[35], [36], while reference to an overlay network’s “lower level
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network awareness” appears in [37], and context-awareness in
wireless ad-hoc networks is proposed in [38]. Other work has
discussed “bodily self-awareness” with regard to humans and
machines [14]. Self-aware services that can detect anomalies
in Internet-based services are presented in [39], and web-aware
tools are proposed in [40].

Yet the earlier concepts of Cognitive Radio (CR) [41] and
Cognitive Packet Networks (CPN) from 1999 [7], also describe
networks which are self-aware. Indeed, in CR [42], [43] the
network’s packet forwarders (in this case radio transmitters)
directly sense the communication channel to enhance their
awareness of the conditions under which they are communi-
cating, before they transmit or forward packets. Their purpose
is to optimize both the utilization of the channels, and the
performance or QoS of the users’ communications by reducing
possible interference between distinct communications.

The work in [44] describes CPN [45] where “intelligent
capabilities for routing and flow control are concentrated in
the ... Cognitive Packets (which) route themselves. They are
assigned goals ... and pursue these goals adaptively ... learn
from their own observations about the network and from
the experience of other packets with whom they exchange
information via mailboxes”. The analogy between a network
path and a sequence of “letters” in the genetic code was also
exploited in [46] to choose the best paths in CPN with a
genetic algorithm that uses QoS as the fitness function.

Even earlier, the ALOHA network [47], was a pioneering
initiative in self-aware “multiple access” networks to connect
terminal consoles to computer servers via space satellite based
communications. Ideas from ALOHA were rapidly incorpo-
rated into the widely used local area network Ethernet [48],
and also used in the first fiber-optics random access network
Xantos [49], as well as the well known space-satellite based
network Inmarsat for boats and ships [50].

ALOHA could be “slotted” so that time was synchronised
throughout the network and all participants transmitted at the
beginning of a slot, so that they could not be aware of each
other prior to the transmission, but they could optimize the
network’s collisions by tracking the length of the silent periods
to estimate the network’s traffic rate [51], [52]. ALOHA
could also be “unslotted” and operated in continuous time.
In the latter case the “carrier sense multiple access” (CSMA-
CD) protocol [53] required the different users to sense the
channel before transmitting, and refrain from transmitting if
they “heard” that there were other ongoing transmissions on
the channel, so as to minimize the probability of interference
and collisions with other users [54].

A. Active Intelligent Networks

In the mid 1990’s, the traditional role of IP networks that
had emerged as the main follow-up to wired telecommunica-
tions, were being seriously challenged. Indeed, Internet Proto-
col (IP) networks were limited to transporting data passively
and opaquely between systems, without taking advantage of
the possibilities offered by the knowledge acquired about users
and their requirements, and about the data content of packets.
The capabilties offered by technological imrpovements that

had increased the computational power of routers were not
beeing exploited, and the routers’ role was limited to managing
packet headers and to signalling functions needed to manage
connections.

This tradition was broken by the novel concept of Active
Networking (AN) [6], [55] to perform useful tasks in a
network to improve the end users’ quality of service (QoS) and
the network’s performance, using software that is adaptively
activated in the network. Examples include compressing high
throughput packet flows (such as video) with knowledge of the
data content, grouping the routing of multiple flows that carry
identical media content into multicast trees to save network
bandwidth and reducing end-to-end delay, using knowledge
about a group of users in video-conferencing to optimize net-
work topologies and minimize delay, or tactivating enhanced
security and attack detection at nodes when they carry sensitive
traffic.

AN places active “capsules” into IP packets that are either
programs that can be run by routers, or data that activates
or instantiates a program that is already resident at a node.
It was suggested [56] that AN could enhance security by
activating packet filters dynamically to authentify traffic flows.
Capsules could also be used dynamically activate data caches
in the network nodes. One major application of AN that
was proposed was to deploy and update IP networks based
on policies and specific network conditions [57], [58]. The
worldwide interest it generated resulted in a global network
Planetlab network of servers that survives to today [59].

While AN initially encountered much enthusiasm, the idea
did not fully survive and certain aspects were progressively
incorporated into other technologies and research areas. AN
had presented several difficulties, including the need to revisit
the computing power and storage space available at network
nodes, especially in those years when computing power was
significantly lower than today.. The unlimited capabilities of
AN implied that the corresponding routers could find them-
selves overloaded with tasks, turning themselves into network
servers with a role going way beyond routing, so that research
had to be conducted into the design of more powerful network
routers and corresponding test-beds [60], [61]. In additon, AN
could potentially create processing overload in the network
nodes, that came in addition to the load caused by the traffic
itself, despite the fact that active routers could also interoperate
with legacy routers, which transparently forward datagrams in
the traditional manner [62].

Another major issue concerned security [63]. Indeed, the
fact that AN proposed to use packets to inject programs into
the network, with these programs being possibly specific to
various users, could create tremendous security risks. Thus,
each entering “caplet” would have to be monitored, either with
regard to its provenance, with some form of admission control,
or would have to be verified with some form of deep packet
inspection. Both of these functions are not available in the
Internet Protocol (IP), so that AN required a comprehensive
review of IP. Thus AN was raising even more questions
regarding the means to mitgate the threats that it itself created,
even though it could offer certain security services [64].

However many good ideas that AN developed have been
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incorporated into current research. For instance, the Cognitive
or Smart Packets in CPN [65] do not carry code but do
carry data to instantiate programs that are already resident in
the network nodes. The idea about caching data or creating
services in routers or nodes has also been incorporated in
many systems, and Fog and Edge computing carry some of
the functions that were initially proposed for AN routers [66].

1) Self-Aware Networks that use SDN: The rise of Sofware
Defined Networks (SDN) [67], [68] has provided a practical
opportunity to experiment with networks that have some of the
features that were suggested by AN. SDN can operate across
various technologies incuding fiber-optic networks [69], and a
combination of WiFi and wired connections [70].

In [71] an SDN controller incorporates machine learning
based decisions for routing so as to optimize Quality of Service
(QoS), and tested to dynamically route flows between two
fixed end servers in a small network with regard to its reactions
to sudden changes of delay between nodes. A similar approach
whose objective is to minimize energy was reported in [25].
However, the measurements show that a SDN controller oper-
ating with the CPN algorithm [65] switches paths rapidly and
allows the test-bed to reach its new performance level, within a
few percent of the optimum end-to-end delay, in a few seconds.
Such transients can be long in terms of the characteristic time
constants of networks which operate at the millisecond level
[72], and they should be studied further to determine their
impact on the overall system optimization and the system’s
reaction delays.

There are several differences between the results in [71],
[73] which implement a RL based SDN controller and mea-
sure its performance, and the interesting work in [74] which
presents numerical results concerning a RL algorithm’s in-
ternal numerical values but not the system’s resulting perfor-
mance. Also [74] discusses a hierarchical structure, but then
shows internal numerical values for the algorithm within a
single controller so that the behaviour of the system as a
whole is not evaluated. The “single tree” in [71] can be used
for one instance of a sub-tree in [74]. From an algorithmic
perspective, in [74] only QoS is considered (and not security
or energy), and it uses Markov decision processes with a soft-
max decision rule, while in [73] a Goal Function is used and
direct system measurements are carried out on a test-bed.

The research in [75] suggests the use of RL for load
balancing in an IP network that is used to control the Smart
Grid. It proposes to use an SDN controller for the network with
two classes of data packets: those that carry monitoring traffic
for the Smart Grid, and those that carry control commands
which have a higher priority. A policy iteration approach
based on Markov decision processes is proposed for the
RL algorithm. The authors present discrete event simulations
with Poisson traffic for a three node network to show the
improvements that can be obtained regarding the network’s
QoS. Thus while the work in the present paper presents an
actual network implementation on a multiple node test-bed
with real traffic and experimental results both for QoS and
security, the presentation in [75] covers QoS only, and it is
illustrated with a discrete event simulation of three network
nodes with idealised Poisson traffic.

In [76], [77], an approach that combines SDN using CPN
[65] is proposed, and outlines a hierarchical vision of SDN
similar to [74], without the algorithmic aspects and results
of the present paper. In [78] a steady-state analysis of the
radio transport layer for 5G is presented, based on prior
mathematical work on signal to noise plus interference ratio
calculations. A SDN configuration is then suggested to support
base stations in order to maximize steady-tate throughput at the
radio level. This work differs from the problem we deal in this
paper which mainly fouses on an experimental investigation
of wired networks and their dynamic real-time operation.

III. EXAMPLES OF SELF-AWARE SYSTEMS AND
NETWORKS

The global Internet and the resulting possibility to create
large scale services with the help of the web, encouraged early
work [79] on the design of systems that could dynamically
monitor and improve QoS experienced by services for a
large number of users, and examples were developed in web
services for managing map data [40] and in detecting QoS and
other anomalies in Internet services [39]. The latter example
illustrates the inconsistency discussed earlier between what is
expected based on an internal model, and the observations
obtained from attention that is directed toward reality [8].
Early work [37] also focused on building network middleware
without changes in the existing Internet substrate.

Another strain of work that has given impetus to the use of
self-awareness in networks for various purposes, is the field of
“adhoc networks” [80], [81] based on wireless nodes that are
geographically distributed, yet relatively close to each other,
and which dynamically create temporary links and network
graph topologies with other nodes [38], [82]. Here the nodes
are often battery powered and mobile [83]. Since their energy
consumption is of concern, if one wishes to maximize the
failsafe operation of the network links [84], and neural network
based methods were implemented and tested to create self-
aware methods to dynamically manage routes and maximize
the energy life-time of the network [44].

A. Self-Aware SMART Overlay Routing

In this section we review results that were obtained when
self-aware QoS oriented routing using RL was used with
network overlays [85], motivated by the fact that many mea-
surements have shown that the Internet Protocol (IP) typically
yields sub-optimal network paths for QoS metrics [86].

The idea of overlay networks that use software installed
in servers, or in machines that are connected to routers, so
as to take routing decisions that supersede the ones taken by
the routers themselves, has been around for some time [31].
One simple approach is to capture the packets coming from
a given router, and then forward them to an IP address via
the IP protocol that is not the “natural” next hop of the given
packet, had it stayed within the given router. This decision
can be taken based on prior knowledge that the modified next
hop can provide better QoS for the packet towards the final
destination. Various proposals and experiments are available in
the literature regarding this idea [87], [88]. A simple approach
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Overlay Node

Underlay IP Network

Fig. 1. Schematic Representatin of an Overlay Network.

would be to exploit “next hops” that are known to offer
some QoS guarantee based on admission control schemes that
were popular in earlier generation networks [89]. However the
approach taken here is based on self-awareness and on-line
measurement.

Routing overlays have a long history, and have also been
suggested to improve the reliability and resilience of the
network in case of path outages or network attacks. However
they have the main advantage of overriding those routes
that are selected by IP and route traffic based on the QoS
considerations of the applications that are generating and
utilising the network connections. Potentially, many different
applications may use overlays differently with different QoS
considerations. The Resilient Overlay Network (RON) [31]
was the first such overlay for wide-area networks that demon-
strated this advantage. However RON had the disadvantage of
having to monitor O(M2) connections for M overlay nodes,
and is thus was limited by the amount of overhead it imposed
on each overlay node.

The SMART (Self-MAnaging Routing) overlay overcomes
this difficulty for an M node overlay network by limiting to 4
or another relatively small number of overlay neighbour nodes
that a single overlay node can use as a next hop. Because of the
use of self-awareness gained through the use of SPs and the
RL algorithm described previously, SMART has demonstrated
substantial improvements over IP in terms of both delay and
throughput, while being very scalable.

The software overlay used by SMART is shown in Figure
2, where we show various neighbouring overlay nodes that
are communicating with each other. The Transmission Agent
intercepts packets entering the node and forwards them to the
Proxy to be forwarded according to the SMART algorithm.
The Reception Agent receives packets from the Proxy, and if
they are to be received locally, they are forwarded to the local
application. Otherwise, the Proxy forwards them one more hop
according to the SMART algorithm. The Proxy generates SPs
that are used to monitor the network paths, and forwards them,
as well as other passing SPs towards the relevant neighbouring
node Proxy. The Proxy also operates the RNN [90] based RL
algorithm, with the data that is brought by the SPs.

Self-Aware Machine Learning Based Overlay: SMART
The Proxy

1. Monitors the quality of the 
Internet paths by sending Smart 
(SP) probe packets to other 
proxies

2. It Routes the incoming Packets
towards the destination using RL
limited to a limited number of 
other Overlay Nodes  

The Transmission & Reception Agent

1. The Transmission Agent 
intercepts the packets of the 
application and forwards them to 
the local Proxy 

2. The Reception Agent receives 
Packets from Proxy and delivers 
some of them to the local 
application

Fig. 2. The software architecture of the SMART overlay node.

SMART Latency Minimization

Experiment with 20 Overlay Nodes

 IP route SMART 
Melbourne/Gibraltar  390.0 274.6 
Narita/Santiago 406.7 253.8 
Moscow/Dublin 179.9 81.7 
Honk Kong/Calgary 267.1 130.7 
Singapore/Paris 322.3 154.1 
Tokyo/Haifa 322.6 180.8 
 Average Round Trip Time in milliseconds 

for some Source-Destination Pairs

Fig. 3. Average Round-Trip Delay measured during a one week experiment
that compared the use of the IP protocol with SMART for several intercon-
tinentally distributed overlay nodes. The data shows a distinct reduction of
delay when SMART is used.

SMART’s data driven intercontinental packet routing
scheme regularly over time, say every two minutes, collects
round-trip delay data between each overlay node and the
other nodes to which it forwards packets. Each overlay node
updates the RL agorithm’s state, and then updates the state of
corresponding RNN [91] whose number of neurons is limited
to the number of allowable neighbouring overlay nodes. When
it needs to send a packet to a given destination, the PROXY
computes the activation probabilities of the corresponing RNN,
and selects the next neighbouring overlay node to be used by
the packet based on the neuron with highest probability, as
described in Section III-C.

Experiments that were run by installing 20 overlay nodes
in a large network offered by the NLNOG Ring test-bed
[92] are reported in [85]. Measurement results obtained with
a fairly long one week experiment are shown in Figure 3,
and they exhibit a substantial reduction of round-trip packet
delay as compared to the IP protocol, showing the advantage
of a measurement based self-aware scheme over a standard
commonly used approach. More results related to these exper-
iments can be found in [85] where results are also reported
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using overlays on the Amazon Cloud [93]. They all confirm
the superiority of the self-aware approach for improving both
delay and throughput in the network.

B. Self-Aware Scheduling of Tasks in the Cloud
Static algorithms for task allocation [94], [95] have long

been preferred due to their low overhead and simplicity.
However, they are only suitable for stable environments, and
cannot easily adapt to dynamic changes in the Cloud [96].
Dynamic algorithms [97], which can sometimes be quite
complex, use the applications’ characteristics prior to, and
at, run-time, but often result in overheads that also cause
performance degradations. Thus, typically dynamic adaptive
schemes are evaluated through simulations [98] rather than in
practical experiments. An example of such a fairly complex,
nature inspired task assignment and load balancing algorithm
can be found in [99]. Complex scheduling schemes that also
use multiple hosts or servers, must often be avoided because
of the synchronisation issues that can result in significant
slowdowns [100].

Thus in this section, we turn to the exploration of how self-
awareness can be applied to the design of adaptive schemes
that exploit on-line measurement and take decisions with low
computational overhead to assign tasks to Cloud services
[101], [102].

The experimental results that are reviewed in this are based
on the work in [103], [104] that develops a self-aware Task
Allocation Platform (TAP), implemened asa portable Linux
based system that dynamically allocates user tasks to available
servers, exploiting online performance measurements of task
and system performance. TAP attempts to meet the workload’s
Service Level Agreements (SLA), and it can support both
static and dynamic allocation and load balancing schemes
[105]. It collects measurements to provide performance re-
ports, and exploits these measurement results to take adaptive
decisions.

TAP is used to allocate tasks to a collection of host servers,
some of which may be distant from the others and remotely
accesible through the Internet, while others may be collectively
accessible as a Cloud server, as shown in Figure 4. It runs on
a host server, and embeds measurement agents into each host
server that it uses, either in a Cloud, or at individual servers,
to observe the system’s state. The great variety of short,
medium and long tasks, and their different measuerd resource
requirements are shown on the left-hand-side of Figure 5,
while on the right-hand-side of the same figure we show how
different applications may have distinct service-level or QoS
requirements that need to be respected, as discussed in [104].

These observations are then collected by smart packets
(SPs), as described in Section III-C. The SPs are forwarded
by TAP at regular intervals to identify the sub-systems which
provide better performance, and each SP generates an ACK
packet that comes back to TAP and carries the required
measurement data. This provides TAP with a constant flow
of information that TAP can use in its decision making.

The same TAP platform has been used to compare different
task scheduling schemes, in order to see whether a self-
aware approach would have distinct performance advantages.

Although the work in [104] considers a larger set of task
scheduling algorithms, including some that are based on a
queueing analysis of the expected response times, here we
will summarize results obtained with three schemes:
• (a) A round-robin allocation of incoming tasks to distinct

hosts, so that irrespective of their size or of the host
servers’ workload, the tasks are shared equally among
the servers. Round-robin provides a simple and practical
baseline for comparison.

• (b) A “sensible” scheme [106] that allocates tasks to
server i among a set of S servers, with a probability
pi that is inversely proportional to the measured average
response time Ri, which includes the queueing and
service delays at the server i:

pi =
1
Ri∑S
j=1

1
Rj

, (1)

so that the system tends to load more those servers that
provide better service. The assignments are randomized
using a random number generator with the probability (1)
for server i. Note that this algorithm will yield an average
response time of:

R =

S∑
j=1

pi.Ri = [

S∑
j=1

1

Rj
]−1 . (2)

This algorithm also exploits the self-aware capabilities
of TAP because it assigns load to a particular server
as a function of all of the servers’ ongoing measured
performance.

• (c) Finally, a self-aware scheme that runs the RL algo-
rithm in Section III-C, based on the observed task total
execution times, including any wait time measured at the
different servers.

This last approach differs from the “sensible” scheme in
several ways. While the sensible scheme tends to spread the
load over all of the servers but varies the fraction of tasks being
assigned as a function of measured QoS, even if some of the
servers provide poor performance, the last approach focuses
at any time on a small set of the “best ones”, and can stick
to one “best” host server for some time, until that host server
may become itself overloaded and provide poor performance.
Furthermore, the use of equation (5) to update the RL scheme,
offers an in-built technique to encourage changes in decision
making by “forgetfulness”. This makes the self-aware scheme
(c) more responsive to new data, and more reactive with its
ability to focus one the current small number of host servers
that are able to provide the best performance.

Experimental data from [104] summarized in Figure 6,
shows that the RL based task assignment scheme (c) results
in significantly lower average response time (y-axis) for tasks
at different levels of load, represented by the task arrival rates
in the x axis.

C. SDN with the Cognitive Packet Network

The Cognitive Packet Network (CPN) protocol has been
incorporaed into SDN [71] for QoS driven routing. It uses
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Overall Architecture of the Self-Aware Distributed Cloud Task 
Allocation Platform (TAP) 
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Fig. 4. Overall architecture and operation of the Task Allocation Platform
which distributes tasks locally to a Cloud server, or distributes jobs remotely
via the Internet to other Fog and Edge servers. On the tight-hand-side of the
figure we see that tasks may be of different types and may have wide ranging
requirements in terms of memory occupancy and task execution time, while
their QoS requirements may also vary widely.

1Task Resource Requests and QoS Constraints

Fig. 5. Tasks may be of different types and their Resource Requirements
may vary in terms of memory occupancy and task execution time. Their QoS
requirements and Service Level Agreements may also vary widely.

smart packets (SPs) which are sent out by each node e to
the destination to measure the round-trip delay D(f, e) from
e to the destination node of the flow f . The packet loss rate
L(f, e) is measured by comparing the rate at which packets
are forwarded for f and the rate at which ACK packets return.
Similarly, at any node u of the network it is possible to
measure the power consumption in watts πu, as well as the
total traffic rate at the node λu, in packets/second, so that
the average energy consumption per packet at the node is
Eu = πu

λu
. This data is also collected by SPs.

E(f, e), the total average energy consumed by a packet of
flow f from node e until the destination, is then the sum of
the energy consumed at each node from e to the destinatin.

The CPN approach uses a Goal Function, which describes
the objective that the self-aware system is trying to minimize,
and whose value can be measured. At any node e, for any flow
f travelling through it, the Goal Function G(f, e) can include
both the effect of delay D(f, e), Energy Consumption E(f, e)

1

Fig. 6. Average response time for tasks that allocated to servers using RL
and the RNN based algorithm (marked RNN) as compared to the Average
Response Time observed by using Round-Robin scheduling and the Sensible
algorithm. The x-axis indicates increasing load levels in number of tasks
arriving to TAP per unit time. For all load levels, the self-aware system that
uses the Cognitive Packet Network based on Average Response Time, provides
the best performance. The ”sensible” scheduler is the second best, while the
Round-Robin heuristic offers the worst performance.

and packet loss rate L(f, e):

G(f, e) = [b.D(f, e) + (1− b).E(f, e)][1− L(f, e)]

+L(f, e)[bD(f, e) + (1− b)E(f, e), (3)

=
bD(f, e) + (1− b)E(f, e)

1− L(f, e)
, (4)

where 0 ≤ b ≤ 1 and (1 − b) provide a relative weight to
the importance given to Delay and Energy. Thus G(f, e) is a
composite Goal Function that the CPN tries to minimize as it
decides how to forward packets.

From G(f, e), the RL algorithm used by CPN computes
the “reward” R(f, e) = [G(f, e)]−1 at each node e using
only locally available information that is collected by SPs,
and carried back by the acknowledgement packet (ACK) that
corresponds to each SP. Each time such an ACK arrives at e
a new value Rl(f, e) becomes available at e, where l is the
integer describing the successive values of the reward. The RL
algorithm will first update the quantity:

θl = αθl−1 + (1− α)Rl, 0 ≤ α < 1, (5)

so that θl describes the historical behaviour of the reward, and
tells how well the network has been doing, and a large value
of θl represents “good” behaviour.

The core decision element is the RNN [107], where each
neuron corresponds to a distinct outgoing link of a router.
Note that hardware implementations of the RNN have also
been suggested [108], [109], and such additional hardware can
potentially be installed in a routing engine.

For the case of task allocation discussed in Section III-B,
each neuron corresponds to a distinct server that may be
assigned to a task. The RNN has three useful properties:

1) It is a “recurrent” model, so that each neuron is in-
terconnected with all other neurons, and allowing the
RNN to represent competition between neurons which
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recommend the choice of using different outgoing links
of the network.

2) For a given numerical input and a given set of weights,
the RNN state exists and is unique [110], i.e. we are
guaranteed to find a single solution to the state equations,
which will be identical if the initial data is the same. This
characteristic is very important for the reproducibility
of the results, and for the explainability of experimental
outcomes.

3) The RNN state is easily computed from a non-linear
fixed-point computation.

The RL algorithm will then compute a set of RNN [110]
connection weights as follows.

An N neuron RNN will be used, where N is the number of
outgoing links for node e. With each outgoing link i from the
node we associate te neuron i whose state is the “excitation
probability” qi. Let the RNN weights be the non-negative real
numbers W+

ij , W
−
ij ≤ 0 for i, j ∈ {1, ... , N}. From RNN

theory [110] we know that:

qi =
λ+i +

∑N
j=1 qjW

+
ji

ri + λ−i +
∑N
j=1 qjW

−
ji

, (6)

where ri =
∑N
j=1[W+

ij + W−ij ] is the “total firing rate” of
the neuron i, and λ+i , λ

−
i are, respectively, the arrival rate

of excitatory and inhibitory spikes to neuron i from outside
the neuron i. These rate parameters are set so that when all
connection weights are of equal value, all the neurons in the
RNN have an excitation probability of qi = 0.5 representing
an equal choice among all outgoing links.

The RNN’s weights are updated as follows:

If Rl ≥ Tl−1, then for j 6= k

∀i 6= k, W+
ik ←W+

ik +Rl, W
−
ij ←W−ij +

Rl
N − 2

,

If Rl < Tl−1, then j 6= k

∀i 6= k, W−ik ←W−ik +Rl, W
+
ij ←W+

ij +
Rl

N − 2
,

where the division by N − 2 is due to the fact that we are
excluding the node I from which the SP initially arrived since
we will not send the SP back, and also not increasing the
inhibitory weights of the winner nodes when Rl ≥ θl−1, nor
will we increase the excitatory weights of the loser nodes when
Rl < θl−1.

Then we also renormalize the weights to avoid having
weights that indefinitely increase or decrease:

r∗i ←
N∑
j=1

[W+
ij +W−ij ], (7)

W+
ij ←W+

ij

ri
r∗i
, W−ij ←W−ij

ri
r∗i
. (8)

Finally we calculate all the qi from equation (6), select the
new output link for flow f at node e by selecting the new
output link k∗. Note that the node from which a SP entered
the current node (where the next-hop decision is being taken)
will not be used as the next hop since a SP is not allowed
to head backwards along its path, so that the decision at a

given node will only cover N − 1 other nodes. Thus if I is
the incoming link of a packet to be forwarded, we will choose
the new outgoing link (or next hop) as being k∗ as follows:

k∗ = argmax{qi : i 6= I, 1 ≤ i ≤ N}. (9)

IV. SELF-AWARE NETWORK FOR QOS, SECURITY AND
ENERGY CONSUMPTION

In this section we describe the example of a practical
working system that embodies many of the concepts and
techniques that were described in the previous sections, with
the objective of showing how they can be used in a self-aware
network, to optimize the QoE which was discussed in Section
I-B, and combines in the same common a goal function three
key components of QoE which are security, QoS and energy
consumption.

Many networks use low-end devices which may be battery
operated. Some of them rely on sources of intermittent har-
vested energy. Thus low energy consumption is a significant
issue [111]. Furthermore some attacks, such as “denial of
sleep” and battery attacks, directly aim at depleting rapidly the
energy stored in battery operated devices to disable the sensors
and their networks [112], [113]. In addition, the overall energy
consumption load due to networks, routers [114] and Clouds
[28] are also a critical issues.

A. System Architecture

The System Architecture that we consider is shown in
Figure 7 where we show several Smart Forwarding Elements
or Routers (SFE) connected to each other. Each SFE can be
connected to several fixed or mobile devices, or to gateways
that themselves are connected to several devices (as at the
bottom of the figure). Some of the SFEs will typically be
connected to Cloud Servers (as at the top right-hand side of
the figure) which may also consist of one or more Fog servers.
Some SFEs can be connected to an IoT or other device which
comes under attack (as at the bottom right-hand-side of the
figure), and some SFEs may be connected to Honeypots (H
in the middle of the figure) which collect and analyse attack
data. Attacks are also detected by software at the SFEs and
IoT gateways that carry out attack detection schemes similar
to the work presented in [115].

The QoS, Energy and Security data is being constantly
collected throughout the network about the gateways and SFEs
via Smart Packets (SP), and is provided to the “Controller and
Routing Engine” (top of the figure), operating as a standard
OpenFlow SDN Controller to compute paths for the active,
using the CPN algorithm. We call it the Smart Routing Engine
(SRE) whose is to update paths for the flows that are being
carried in the network from source-destination pairs so as
to minimize the Goal Function, and then communicate these
paths to the SFEs using Openflow [116], [117].

Our SDN Controller uses CPN routing [65] described in
Section III-C, that is implemented with the RNN [107] and RL.
Though such techniques appeared to be excessively advanced
in the past, they are now attracting serious attention from
industry [118]. The SDN Controller is an extension of a
standard SDN network, whose principal components are:
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Fig. 7. Overview of the networked architecture.

1) The Smart Forwarding Elements (SFE), extending the
concept of a SDN forwarder (or switch).

2) The Smart Controller(s) or Routing Elements (SRE),
built upon a standard SDN controller which is an open-
source, professional grade SDN Controller ONOS [67],
as shown in Figure 8.

3) Attack Detectors [119]–[122] that are designed to detect
attacks at edge devices and SFEs, and Honeypots [123]
that are also installed at SFEs, or edge devices and
servers, and used to attract potential attacks and to
inform the Controller by sending SPs to the SRE. The
SPs will contain an attack detection probability that is
included in the Goal Function that the SRE uses for
routing control.

The heart of SRE shown in Figure 8 is the Cognitive Routing
Module (CRM) which implements the decision making by
RNNs [110], [124], responsible for path selection according to
the current QoS, security and energy consumption conditions
in the network. The algorithm used by the CRM was described
in Section III-C. The SPs, traveling from SFE to SFE, gather
time-stamps used for QoS evaluation, the current energy
consumption at the SFEs (and possibly at edge devices when
this information is available), and security data. The Network
State DB combines Trust obtained from Anomaly Detection
and forwarded in SPs to the SRE by SFEs, delays obtained via
SPs, and Energy Per Packet coming from energy consumption
and traffic data also carried by SPs. The Path Translation (PT)
module of the SRE translates the RNN decisions into path
configuration commands, which are subsequently processed by
the SRE and sent to specific SFEs using OpenFlow commands.

Fig. 8. The Smart Routing Engine SRE acting as an SDN Controller that
takes decisions for Goal Based Routing using the RNN and RL.

Each of SFE forwards the network’s flows according to
Openflow instructions that are sent to it by the SRE. SFEs are
also able to collect data in the network with Smart Packets
(SPs) which gather security, QoS and energy usage data.
On the other hand, SPs are routed by each SFE’s internal
Cognitive Packet Agent (CPA). The agent unpacks the SP,
adds its own data to the list stored inside it, packs it again
and forwards it to the next node based on the path set up
by the SRE. After the SP has travelled a complete path, it
carries the information given it by all SFEs along the path.
When a CPA recognizes that the SP it receives has reached
the end of its path, it encapsulates the SP and sends it up to a
specific data module, the Network State Database (NetStatDB)
in the SRE. On the other hand, payload packets travel from
SFE to adjacent SFE following a path that was set up by the
SRE according to the SDN rules. Thus SFEs handle both user
packets and SPs.

Each SFE also sends standard network monitoring data
(packet counters, byte counters) to the SRE, and an edge SFE
will have client devices connected to it, such as IoT devices
or edge servers.

B. Incorporating Security in the Goal Function

To show how new self-aware functionalities can be intro-
duced into the system we have described, we illustrate the case
of being able to recognize security issues, and react to them
in a timely manner. So suppose that attack detectors placed at
SFE’s or at edge devices can generate security allerts that are
then conveyed by SPs to the SRE. In that case, the SRE needs
to be able to act upon these alerts. Thus the Goal Function
G(f, e) must be extended and the expression in (3) should be
modified to include security issues.

For some SFE or node e, and flow f , we define the Trust
Level T (f, e), as a non-negative number that says how much
we can trust f when it flows through e, or reciprocally, how
much f itself can trust e. This quantity can be provided either
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by the attack detector or by a honeypot, or it can be based on
some a priori knowledge concerning the flow f , for instance
related to its source and destination nodes. Note that even
when a flow is in one direction from source to destination,
the source node can still be compromised by the flow via
acknowledgement or other control packets that move back
from intermediate or destination nodes towards the source or
by other flows that pass enter that node .

Similarly, we define S(f, e) the Sensitivity of e when it is
carrying f . This is a metric which says how tolerant the node
e may be to events that are interpreted as a sign of insecurity
in f , and S(f, e) is again a non-negative number.

With these concepts in mind, we have to indicate, how
we take actions based on these metrics, and we define the
Insecurity Factor I(f, e) that “separates” e from f and vice-
versa:

I(f, e) =

{
0 if S(f,e) ≤ T(f,e),
S(f, e)− TF (f, e) S(f,e) > T(f,e),

and using the notation [X]+ = X if X > 0, and [X]+ = 0 if
X < 0, we write:

I(f, e) = 100.[S(f, e)− T (f, e)]+, (10)

where the multiplicand 100 is a factor used to scale insecurity
in comparison to the values of the QoS and Energy Consump-
tion in the goal function. Clearly, if security is a critical issue
this scaling factor will be set to a much larger value than the
usually measured values of energy consumption per packet,
and of delay per packet.

The parameters S(f, e) and T (f, e) can be easily set by
the arrival to the SRE from a node e that is equipped with
an attack detection mechanism such as the ones described in
[122], [125]. The SP will bring to the SRE the probability of an
attack on node e, PNA (e). Similarly the flow attack probability
PFA (f) can be defined for some flow f via the probabilities
that the nodes u which are on the path f , including the source
and destination, have been attacked or compromised, via the
expression:

PFA (f) = 1−Πu∈f [1− PNA (u)]. (11)

Let us illustrate the manner in which this may be used with
two examples:
• The flow f has a sensitivity to attacks of the order of

20%, i.e. if the probability of an attack being detected is
larger than 0.2 then the flow f feels uncomfortable about
using e. In this case, we set S(f, e) = 20. Now suppose
that the attack detector reports an attack probability
PNA (e) = 0.90 – then we set T (f, e) = 90 and this results
in I(f, e) = 100.

• The node e has a sensitivity to attacks of the order of
20%. Again, we set S(f, e) = 20, and if the attack
detection system provides a probability PFA (f) = 0.5,
then we obtain again I(f, e) = 100.

Thus S(f, e) acts as a threshold above which an attack
becomes of concern. Note that the non-linearity (10) can be
modified to offer a more graduated, rather than step-function,
response to security alarms. The Goal Function that will be

used in our RL [126] based routing scheme is extended from
(3) to become:

G(f, P ) =
bD(f, e) + cE(f, e) + (1− b− c)I(f, e)

1− L(f, e)
, (12)

where 0 ≤ b+ c < 1 are constants that allow us to weigh the
relative importance of QoS, Energy and Security.

C. Experimental Setting

To illustrate these ideas, laboratory test-bed was set up
with several SFEs that are implemented in lightweight Linux
boxes with a quad-core ARMv8 processor running at 1,4
GHz, 4 Gigabit Ethernet interfaces and 2.4GHz and a 5GHz
802.11b/g/n/ac WiFi interface. SFEs were configured to use
Ethernet ports as data plane interfaces, and WiFi as a man-
agement, monitoring and SRE (Controller) communication
interface.

Fig. 9. Topology of the test-bed.

The data plane connections are represented schematically in
Figure 9 where:
• The symbols s1, s2, .. , s7 denote SFEs.
• The symbols h1, h2, h3, h4 denote terminal devices

which are each emulated by 633MHz MIPS processors,
a 100Mb/s Ethernet port, and 2.4Mhz WiFi connection
that is used as a management port.

• The Controller (SRE) is installed on a separate worksta-
tion that is connected to the test-bed via WiFi.

We have run many experiments, and can emulate a variety of
attacks, such as the effect of a worm which drops packets at
random from the queue of a given SFE, the effect of DDoS
attacks, or the detection of an intrusion which would result in
an increase of the numerical value of the trust metric TF (.),
indicating greater danger or mistrust, associated with a flow
and a node. We can also represent QoS degradation by sudden
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increases in network traffic rates, or by introducing artificial
delays or even complete stoppages (e.g. failures) of the SFEs.

However due to space limitations, we focus on examples of
the self-aware SDN’s, i.e. the SRE’s, adaptive reactions to two
types of effects: the degradation of QoS due to a significant
increase in source to destination packet forwarding delay, and
the degradation of security by an increase in the trust metric
associated with a given path. The experiments we describe in
this section are summarised in the real trace of events shown
in Figure 13.

The traffic in the network during the experiments was as
follows:

• Every distinct pair of clients from the set
{h1, h2, h3, h4} connected to the network generated
the same flow of 20 packets per second each, i.e. of
the order of 20 − 40 Kb/sec. Thus the network had 12
ongoing connections. Each individual flow’s packet rate
is compatible (and even quite high) with respect to IoT
connections that may be monitoring physical conditions
such as temperature of devices or rooms, water flow in
pipes, etc.

• Additional traffic came from SPs generated by every
edge node at 10 packets per second, and the SRE’s
management traffic including OpenFlow commands, link
discovery, topology discovery, and traffic statistics. We
observed that the number of management packets passing
through a SFE (router or forwarder), as observed using
the Wireshark packet analyser, was about four to five
times higher than the SP traffic.

• The measurements we present only concern one of the
12 end-user flows.

The experiments we report illustrate the ability of the network
to adapt as a self-aware system. In particular:

1) We evaluate the reaction time of the network as a whole,
to changes in the observed end-to-end delay of flows, so
as to measure the network’s reaction delays to sudden
deterioration of QoS.

2) We measure the reaction time of the SRE itself to
changes in the end-to-end delay of flows.

3) We track the changes to the important parameters of the
RL algorithm: Rl and θl−1 defined in (5), measured at
successive steps l = 1, 2, ....

4) We measure the reaction time of the SRE to changes of
the security conditions represented by the level of trust.

5) We examine the behaviour of the SRE in conditions that
combine both the changes in path delay and the changes
in the level of trust regarding the flows.

The SRE was programmed to update the network paths every
5 seconds. On the other hand, the measured SRE response
times combine the delay related to the RL algorithm, the delay
related to the RNN’s computation, plus the network delay
to receive data via SPs, together with the controller’s own
decision cycle. The resulting measurement does not give a
clear picture of the speed at which the SRE works, but it does
provide a realistic view of the overall reaction times perceived
from the viewpoint of the network user.

D. System Reaction Times

As indicated in the literature [127], SDN routers introduce
delays in decision making and network changes due to the
need for the collection of data from the base routers, followed
by the computation of a decision, followed in turn by the
transfer of the decision to the base routers using the OpenFlow
protocol. Thus it was important in this work to actually
measure the resulting effect when we use the self-aware
routing algorithm.

We measured the packet round-trip time between hosts h1
and h4 of Figure 9. The best path found by the controller
was {s1, s4, s7}. After 5s, the delay on link s4 → s7 was
changed in three distinct sets of experiments to the artificial
values 100ms, 200ms and 300ms, and each trial was repeated
independently 20 times.

We measured the time between the change in the value of
the link delay (resulting immediately in an increase in the
packet Round-Trip Delay), and the installation of a new path,
whose effect is observed by the return of the round trip delay
to a lower value, since the new path does not use the link with
the longer delay. The results are shown in Figure 10.

Figure 10 summarizes the resulting distribution of the
network reaction time, measured with an accuracy of 1 second,
over 20 trials for each of the colour-coded delay values (100,
200 and 300 ms). Very interestingly, and as expected, we see
that the reaction time is substantially better when the link delay
is higher. Since we are considering the networked system as
a whole, the reaction times are higher than those observed in
Figure 11.

Fig. 10. Measured Probability Distribution of the Reaction Time of the system
as a whole, including the network and the SRE, as viewed by the end user.

1) The SRE’s Reaction Time to a Large Increase in Link De-
lay: The next experiments show the performance of the RNN
based algorithm in the Routing Engine (including the effect
of the SPs which convey the QoS information), measured in
a way that eliminates the impact of delays introduced by the
SRE. The reaction time here is measured from the instant the
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link delay increases to the time when the RNN decision is
made within the SRE, but excludes the SDN time needed to
change paths and inform the SFE. The relevant probability
distributions, each resulting from 20 trials, and for the three
values of link delay (100ms, 200ms, 300ms) are presented
in Figure 11. Again we see that the largest change in link delay
(dotted green) results in the fastest reaction times, as would
be expected. As expected, all times are shorter than those seen
in Figure 11 for the routing engine by itself.

Fig. 11. Distribution of the Routing Engine’s (SRE) Reaction Time, including
the arrival of SPs to the SRE, and the effect of the RNN based RL algorithm.

E. Plotting the Values of the Reward

The values of Rl and θl are plotted versus the index l of
successive events in Figure 12. We see that that after each
update of θl its value follows Rl, but the speed at which θl
follows Rl will be affected by α in (5). In the present case
we used α = 0.4. The instants when the two variables differ
significantly is when the RNN-based algorithm “recommends”
a path change to the SRE, which in turn will use the SDN
protocol to forward the new paths to the SFEs.

Note also from Figure 12 that in these measurements the
system is starting from an empty state, hence the rise in the
values of θl and Rl, but we see that the increase levels off at
the right-hand-side of the figure.

F. Reaction to Changes in Network Delay and Trust Level

The impact of a change in the Trust T (., .) level is shown
in Figure 13, where we present the probability distribution of
the time it takes the SRE to respond to a large increase of 100
indicating some form of attack, in the value of T (f, e) for a
given e on the path being currently used. We note the roughly
one second average delay showing the SRE’s capacity to react
very rapidly to attacks.

Finally, in Figure 14 we show the observed delay across the
network’s response to changing delay (i.e. QoS in this case)

Fig. 12. Values of Rl and θl versus l the index of the sample.

Fig. 13. Distribution of Routing Engine Reaction Time to a sudden substantial
change in the Trust Metric T (., .).

and security conditions. At the first change point starting at the
left of the figure, we see that when a very high delay of 300ms
appeared on the link, the system as a whole reacts in circa
2s, finding a new path that does not use the deteriorated link.
Then, as the T (., .) value rises significantly as an indication of
the lack of security of the path that is being used, the network
reroutes the traffic via a safe path, which includes a link with
high delay. However, a small change in delay, results in a rapid
path change to an insecure path with good QoS, and rapidly
back. After circa 50 seconds the system manages to find a
longer path (in number of nodes) which has a relatively low
path delay and a good security metric.
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Fig. 14. System reactions to changes in delay and security. Note that the
x-axis describes the course of real events in seconds, while the y-axis plots
the reaction times of the system as a whole, in milliseconds, to the events
that occur along the x-axis.

V. CONCLUSIONS AND FUTURE WORK

The widely distributed and highly interconnected structure
of information processing systems, and the ever-changing
nature of the underlying infrastructures makes it very difficult
to control such systems in a top down hierarchical way.
Thus it is important to investigate means to manage and
run such systems autonomously, based on self-measurement,
local decisions, and self-optimisation. The need for scalability
imposes additional constraints, and the multiple of objectives
of QoE, including QoS, Energy Savings and System Security
offer further challenges. This took us to the concept of self-
awareness, which allows a system to monitor itself and take
decisions based on objectives that it pursues and observations
regarding its own state.

Thus in this paper, we have started with a survey of
approaches that incorporate self-awareness into networked sys-
tems. We have discussed the premises from cognitive science,
and also described early attempts related to self-observation in
packet networks which resulted in widely used Ethernet-like
systems. We have then discussed an early attempt to bring
intelligence and adaptation into networks through the attractive
concept of Active Networks and discussed some of the ideas
that have then carried over into modern networking research.

Our focus has then turned to more recent work where self-
awareness has been implemented in overlay networks and task
management systems in the Cloud for optimising system per-
formance. We have reviewed several proposals regarding the
combination of recent advances in Software Defined Networks
that create programmable controllers to dynamically manage
paths in the network, to achieve significant performance
improvements. These discussions have been completed with

experimental results that show the significant performance
improvements that can be obtained when real-time self-aware
adaptive management is implemented in an overlay network
and in a Cloud.

Then we have presented an approach to introducing self-
awareness into SDN through a Cognitive Packet Network
(CPN) which has specific performance goals it pursues, and
which is implemented through a RL algorithm that is incorpo-
rated into SDN controllers. It was illustrated then via a specific
imlementation in a multi-hop network test-bed where the SDN
controller aims at optimising QoE including QoS, Security and
Energy. Experimental results have been shown concerning the
responsiveness of the system and its ability to react rapidly to
sudden degradation in network delay or in security levels.

This broad panorama, going from historical premizes all
the way to a system demonstrator, is meant to entice the
reader’s curiosity and encourage the reader to investigate this
area further. Many things remain yet to be done.

The integration of such techniques into hierarchical struc-
tures is a worthwhile direction of research. We have incorpo-
rated QoS, Energy and Security together, and these areas are
not distinct since they strongly interact: cyberattacks degrade
QoS and increase energy consumption, while the optimisation
of QoS will itself increase energy consumption through addi-
tional computation and communication. Similarly, by reducing
energy consumption we may also slow down the system as a
whole. Thus all these interactions are quite complex and will
require further work.

Similarly, it will be useful to study the best possible machine
learning techniques that may be used. For instance, dynamic
system management based, not just on short term observation
through RL, but also using long-term experience and big
data, may be an alternative way to approach these interesting
problems. Future work should also make use of predictions
from performance models to improve and optimize the design
of such networked systems [128], [129].
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