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Abstract. With the development of communication technologies and
the increasing bandwidth of optical fibres and transmission speeds in
current 5G and future 6G wireless networks, there is a growing demand
for solutions organising traffic in such networks, taking into account both
end-to-end transmissions and the possibility of data processing by edge
services. The most pressing problems of today’s computer networks are
not only bandwidth and transmission delays, but also security and energy
consumption, which is becoming increasingly important in today’s cli-
mate. This paper presents a solution based on neural networks that
organises network traffic taking into account the above criteria - quality
of service (QoS), energy consumption and security.

Keywords: SDN · Random Neural Networks · Green computing ·
Edge computing · Energy-awareness · Green networking · Security ·
IoT · QoS

1 Introduction

Today’s communication technologies are capable of transmitting increasing
amounts of data per second. Their source is not only the data of human-operated
applications, but increasingly the sensors and hubs of major applications such
as healthcare [6,31] and the of the Internet of Things (IoT) and other services.
However, the Internet’s ease of use and high bandwidth also creates tremendous
opportunities for attackers, so that all these Internet accessible systems need to
be protected from malicious attacks [5,32].

Since the computational capabilities of servers and workstations are limited
and they are not always able to process data at an appropriate speed, Cloud

This work has been supported by the European Commission H2020 Program through
the IoTAC Research and Innovation Action, under Grant Agreement No. 952684.

c© The Author(s) 2022
E. Gelenbe et al. (Eds.): EuroCybersec 2021, CCIS 1596, pp. 102–117, 2022.
https://doi.org/10.1007/978-3-031-09357-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09357-9_9&domain=pdf
http://orcid.org/0000-0001-9688-2201
http://orcid.org/0000-0002-8331-9599
http://orcid.org/0000-0002-4854-4256
http://orcid.org/0000-0003-0551-6746
http://orcid.org/0000-0001-6352-730X
https://doi.org/10.1007/978-3-031-09357-9_9


Energy & QoS for Secure Edge Services 103

architectures have become the answer to this problem, grouping servers into
structures that provide huge computing capacities, but these need to be properly
accessed and scheduled [4,40,42]. The second trend, which is gaining momentum
especially with the development of 5G networks, is the multiplication of com-
puting services and their movement to the Edge, close to the users and to the
sources of data.

The primary purpose of a computer system aand network is to process and
transmit data while maintaining adequate Quality of Service (QoS) [20]. Dis-
turbances in QoS result in the need to wait for data, thus wasting computing
power, and often in the need to resend data, which in addition, in the case of
IoT devices, is associated with energy expenditure and shortening the life of
a battery-powered device. QoS problems could be avoided if it were possible
to place processing nodes close enough to the data source so that transmission
would not be a problem. However, this can be too costly, both at the invest-
ment stage and later when it comes to covering energy costs. Electricity, apart
from being an obvious cost for the operator, is obtained in the overwhelming
majority from non-renewable energy sources, and its unnecessary consumption
has an impact on the climate of our planet. It should therefore be saved for
both economic and ecological reasons [22]. How important, although underesti-
mated, is ‘green computing’ and ‘green networking’ [3,35] is shown by the fact
that, at present, the energy consumption of IT systems accounts for roughly 10%
of global electricity consumption, and by 2030 this share may even reach 20%
[1,16].

Another problem is security which needs to be assured [19,21]. As the value of
data transmitted over the network and processed on external servers increases, so
do the number of attacks on the infrastructure for transmitting, processing and
storing information. Modern computer systems must take this issue into account
already at the design level, according to the security-by-design principle.

Our ppaer addresses all these issues, improving network performance in terms
of QoS, power consumption and security [27]. This article is composed of six
main sections. In Sect. 2 we briefly introduce the reader to the topic of RNNs,
referring to previous publications on the subject. We show the specifics of the
environment that is the subject of the current research and the tailored solutions
that we have used. Section ?? discusses how to collect QoS, energy and security
data that RNNs use to make decisions. Section 3 presents the experimental part,
including a description of the implementation and the testbed. It also includes a
discussion of the obtained results. The whole work is summarised in the Sect. 4.

2 Random Neural Networks for the Control of Computer
Networks

The optimization the QoS of distributed systems has been discussed in numer-
ous publications [28,38,39,41,42]. QoS versus energy consumption of distributed
services has also been examined experimentallly in [18]. However, the focus on
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security is more recent and its impact on network management and routing is
examined in [10,11,17].

To control the network in terms of multiple criteria, including QoS, secu-
rity and energy in our case, we use a solution based on Random Neural Net-
works (RNNs) [12,13], trained using Reinforcement Learning. RNNs optimize
data packet transmission paths as well as the selection of Egde Computing ser-
vices in such a way as to maintain an appropriate (predefined) balance between
QoS, energy consumption and security. The switches and servers of a computer
network form a distributed system, and its optimization is a variation of a well-
known problem. However, by using the RNN and placing our system in a Soft-
ware Defined Network (SDN) environment as in [8,9], we show that familiar
Machine Learning techniques can also be used in state-of-the-art network archi-
tectures.

It should be noted, however, that the use of an SDN controller to implement
the presented solutions is convenient from the point of view of demonstrating
the usefulness of RNN in computer network control, but due to the distributed
architecture of the RNN-based Decision Engine the same solutions can - under
certain conditions - also be applied to a traditional, fully distributed network
architecture.

The problems of SDN design and optimization are discussed in survey paper
[36], taking into account not only energy efficiency issues, but also touching on
security problems. Security issues in SDN have received a number of publica-
tions, for example in [2]. An interesting survey article on system deployment and
optimization, shedding light on our work, was published in [25]. The popularity
of this technology and the ease of implementation of routing control algorithms
are also significant.

2.1 The Goal of the Decision System

The system we consider consists of:

– The set of network SDN switches or forwarders S = {s1, .. sn} that are
interconnected via a network graph, where S is the set of nodes and A is the
n × n one-hop binary connection matrix between nodes.

– Every switch s ∈ S may have connected “clients” or Edge services.
– The set of Clients is C = {c1, ... cm} and each client c has a node or switch

s(c) to which it is directly connected .
– Edge services are used to offload specific cloud services (with their processing

capacity and/or repositories) that are operating in close proximity so as to
offer fast service to the clients. They belong to a set E = {e1, ... eM} of
M services which all offer equivalent facilities in terms of processing and the
ability to provide specific data. Also any service e is connected to some switch
or node s(e).

The Goal of the decision system is to find a P among the set of switches S to
connect the pair of clients (c, c′), c, c′ ∈ C or the client-service pair (c, e), c ∈
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C, e ∈ E. The choice of the path is based on the QoS, security and energy
criteria, or one or two of these criteria. For ease of notation we will denote a
connection (c, c′) or (, e) as a “flow” f .

Thus a path:

– P = P (c, c′) from c to c′ is P (c, c′) = (s(c), s(P )1, ... .s(P )l(P )−2, s(c′)), or
– A path P = P (c, e) from c to e is P (c, e) = (s(c), s(P )1, ... .s(P )l(P )−2, s(e)),

where
– A(s(c), s(P )1) = 1, A(s(P )i, s(P )i+1) = 1, for 1 ≤ i ≤ l(P ) − 3,

A(Pl(P )−2, s(c′)) = 1, A(Pl(P )−2, s(e)) = 1,
– and l(P ) denotes the length of the path P in number of switches or nodes.

Thus we can now formulate the goal function G for given flow and path as the
weighted sum of three criteria:

G(f, P ) = aQ(f, P ) + bT (f, P ) + cJ(f, P ), (1)

where a, b, c are non-negative constants with a + b + c = 1, and Q(f, P ) is
the QoS value for given flow f using path P . For instance, Q(f, P ) can be the
end-to-end delay per packet for flow f on path P or the corresponding packet
loss, or some combination thereof. The measurement of such metrics is presented
in Section ?? below.

T (f, P ) is the trust metric that expresses the level of insecurity of traffic
belonging to given flow f going along the path P . It can be obtained via Attack
or Anomaly Detectors, Honeypots or similar entities, that asseses the probability
or some other non-negative metric, that connection f is harmed by devices on
path P . Note that T (f, P ) may be symmetric so that it may characterize the
effect of f on P , rather than the opposite. Furthermore it may be expressed as
the cumulative effect of all the nodes on path P , such as:

T (f, P ) =
∑

s∈P

T (f, s), or T (f, P ) = max{T (f, s) : s ∈ P}. (2)

J(f, P ) is the energy consumed per packet by flow f by devices along path P ,
which can be computed from the power consumption and traffic rate, as follows:

J(f, P ) =
∑

s∈P

Π(s, λ(s))
λ(s)

, (3)

where Π(s) is the power consumption when switch or node s carries the traffic
rate λ(s) while:

λ(s) =
∑

f∈F

∑

s∈f

λ(f), (4)

and λ(f) is the traffic rate of connection f , and F = {f} is the set of all active
connections.
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2.2 RNN Based Routing for Path Control

The approach taken here is to use the Cognitive Packet Network (CPN) idea
[14,15,23], so as to store inside the SDN Controller a “good” or near-optimal
path P (f) for flow f = (c, e) from client c to edge device e that minimizes
G(f, P (f)). Thus, rather than calculate ex-nihilo for each upcoming connection
f = (c, e) the path P (f), we follow the CPN approach that maintains for each
router or switch (i.e. node) s, a Random Neural Network [12] that computes
the best “next hop” from s to s′(s, e)), where s′(s, e) is the node to which s is
connected and that minimizes G((s, e), P (s, e)).

Since our study is focused on the IoT where the real-time operation is crucial,
the path link latencies were chosen as the key QoS metric. Since a SDN controller
within its standard means has no direct way to measure the latency on the
links and paths, Cognitive Packets (CP) were employed as described in [24]
were described for this purpose. CPs have also been employed in SDN networks
previously [9,33,34], but the concept of the Cognitive Network Map (CNM) was
extended with all necessary data within single data structure.

2.3 Energy

Fig. 1. Measurement circuit for power versus traffic characteristics.

Most network devices do not have the ability to directly measure energy during
operation. However, since each network packet handled needs to be processed and
transmitted, it is obvious that the amount of energy consumed during operation
of a network switch depends on the traffic intensity. The energy characteristic
reflecting the amount of energy in Watts [W] depending on the amount of net-
work traffic passing through the switch is, on the one hand, easy to measure in
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the laboratory, and on the other hand - during operation in the real system -
gives the SDN controller, knowing the current throughput of the node, a suf-
ficiently precise answer to the question “How much energy does the network
switch consume at this moment”.

The SDN switches used in our experiments are Intel NUC devices [26] that
run Open vSwitch [29]. Our approach, however, is universal in the sense that it
can be applied to any network switch or router.

The laboratory setup used for the measurements if the power drawn during
data transfer is presented in Fig. 1. After setting of the traffic level given in Mb/s
the energy measurement was done. The traffic was generated and received by
workstations connected to the NUC device. The experiment was carried out for
successive for increasing traffic levels as shown in Fig. 2.

The electronic circuit which is used to condition the signal obtained from a
sensor which measures the current, is based on precision operational amplifiers.
The Hall effect-based current sensor ACS712-05 (0–5A current range) is galvan-
ically isolated from the copper conduction path, integrated into the IC, which
is used to pass the measured current. This path was connected in series with
the supply wire on the constant DC voltage side at UDC = 19.5V , of the AC
adapter used for the NUC’s as shown in Fig. 1. The output signal from the sen-
sor is amplified in a single-ended amplifier and then converted to the differential
form. The instantaneous value of the measured power can then be found from
the following relationship:

P = UDC .i = UDC
Um

kuS
= AUm, in Watts , (5)

where S = 185mV/A is the sensitivity of the current sensor, and A =
UDC/(kuS) = 520.9A is a constant with ku = 2 which is related to the instru-
mentation, and Um is the measured output voltage of the single-sided differential
converter shown at “channel 1” of Fig. 1, which results from the Hall-effect mea-
surement of the NUC input current.

To reduce the effect of noise and interference, thirty separate measurements
were repeated for the power consumption as a function of incoming and outgoing
traffic, and the results are summarised in Fig. 2. Then we extracted the difference
of the energy consumption between the basic level for zero traffic and the value
for a given traffic level, and the increase of energy consumption per traffic volume
in Mb is presented in Fig. 3.

2.4 Security

The level of trust in a given flow, and therefore in the device that generates it,
can be assessed using external entities. Within the network, nodes and devices
with higher and lower sensitivity may be defined. For example, the failure of
some nodes has a greater impact on the operation of the entire network than in
the case of other nodes, and attacking such a node will cause more damage than
otherwise. Security-aware routing aims to direct suspicious traffic away from
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Fig. 2. The dependence between the instantaneous power consumption and traffic load
of the Intel NUC when used as a switch or router.

vulnerable nodes, if possible. Trust assessing entities can be Attack Detectors or
Honeypots, e.g. [17,30]. We employed SYN attack detector presented in [7].

3 Experiments and Results

The experiments we performed were done in the IITiS laboratory. The test net-
work consisted of seven NUC devices working as SDN switches, plus SDN con-
troller, client machines and attack detector. The basic topology of the network
is presented in Fig. 4

For clarity of results presentation, and in order to concisely present the dif-
ferent possibilities of our solution, two separate experiments were performed,
however the basic network configuration remained the same. The course and
results of the experiments follows.

3.1 Point-to-Point Transmission in Insecure Environment

The aim of the experiment was to reflect the situation of point-to-point com-
munication in the situation of an attack. As presented in Fig. 6, point-to-point
communication from c1 to c6 client devices was established and put under obser-
vation. In this experiment energy efficiency was not taken into consideration, to
avoid too many factors influencing the results, making it hard to separate the
influence of each of them on the final results.

The experiment had three steps:
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Fig. 3. The energy used per Mb in the function of switch load.

– Normal communication from c1 to c6
– QoS deterioration on the link c1–c4
– Security problem detected – the need to bypass sensitive nodes c3 and c5

The measurement included latency on the path c1 to c6. System reaction to
changing conditions can be easily observed in the Fig. 5. After some time needed
for the neural network to test various conditions and possibilities the path which
is both fast and secure was found. The network configurations in particular steps
are presented in Figs. 6, 8 and the final on in 8

3.2 Energy-efficient Access to the Edge

The final topology of the second experiment is presented in Fig. 9. It include
24 client devices (implemented as virtual machines) and seven edge services.
Every switch was accompanied by the separate service instance. The energy
characteristics is taken into account, as well as total time of request handling
by the Edge services. The total handling time included: time of client-to-service
communication tcs, request handling in the server tr, time of service-to-client
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communication tsc. The second component of the goal function was energy effi-
ciency, and energy characteristics from the Fig. 3 was loaded into SDN controller
for readouts of energy usage based on traffic in each switch. The RNN decision
engine was used for path-and-service choice (Fig. 7).

Fig. 4. The configuration of experimental test-bed

The course of the experiment included loading the network with heavy traf-
fic of stress-test type, as such a load was best to show differences in energy
usage. Seven steps of experiments were performed, in every step the total load
in the network was increased by 1 Gb/s. In the first run only QoS optimisation
was performed as a reference result, then both QoS and Energy components
were included into the Goal functions. The results, presented in Figs. 10 and 11,
show positive influence of the latter version of Goal function on the total energy
consumption. with minor effect on QoS.

4 Conclusions

The paper presents the possibilities of using modern tools from the field of
Artificial Intelligence (AI) and Machine Learning (ML) to control the operation
of computer networks. It has been shown that theoretical capabilities of RNNs
can be translated into practical applications, and appropriately constructed goal
functions perform complex routing based on several criteria simultaneously.

Among the criteria tested experimentally are the possibilities of increasing
the security and reducing the energy consumption of the IT infrastructure, which
are very relevant for today’s IT systems. These very promising ideas have been
tested in several experiments which demonstrate their practical value in the
framework of Software Defined Networks.
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Fig. 5. The delay in time between clients 1 and 6

Fig. 6. The c1–c6 path configuration – stage 1
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Fig. 7. The c1–c6 path configuration – stage 2
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use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Energy, QoS and Security Aware Edge Services
	1 Introduction
	2 Random Neural Networks for the Control of Computer Networks
	2.1 The Goal of the Decision System
	2.2 RNN Based Routing for Path Control
	2.3 Energy
	2.4 Security

	3 Experiments and Results
	3.1 Point-to-Point Transmission in Insecure Environment
	3.2 Energy-efficient Access to the Edge

	4 Conclusions
	References




