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Abstract: Common software vulnerabilities can result in severe security breaches, financial losses,
and reputation deterioration and require research effort to improve software security. The acceleration
of the software production cycle, limited testing resources, and the lack of security expertise among
programmers require the identification of efficient software vulnerability predictors to highlight the
system components on which testing should be focused. Although static code analyzers are often
used to improve software quality together with machine learning and data mining for software
vulnerability prediction, the work regarding the selection and evaluation of different types of relevant
vulnerability features is still limited. Thus, in this paper, we examine features generated by SonarQube
and CCCC tools, to identify those that can be used for software vulnerability prediction. We
investigate the suitability of thirty-three different features to train thirteen distinct machine learning
algorithms to design vulnerability predictors and identify the most relevant features that should be
used for training. Our evaluation is based on a comprehensive feature selection process based on
the correlation analysis of the features, together with four well-known feature selection techniques.
Our experiments, using a large publicly available dataset, facilitate the evaluation and result in the
identification of small, but efficient sets of features for software vulnerability prediction.

Keywords: software vulnerability prediction; static analysis; machine learning; feature selection

1. Introduction

Much effort has been made to avoid security failures in software, which often result
from defects in the application source code, known as software vulnerabilities. A vulnera-
bility is a flaw caused by a mistake in the specification, a program, or the configuration
of the software. If a vulnerability goes undetected, it will ultimately entail significant
maintenance costs [1] and a potential violation of (alleged or explicit) security policies [2].
The term “flaw”, based on the IEEE Standard Glossary of Software Engineering Termi-
nology [3], is the most suitable one to characterize a software vulnerability [4]. While the
execution of a faulty section of code does not always violate the security policy, under some
conditions, e.g., when specific data reach the faulty code [4], the confidentiality, availability,
or integrity of a system may be violated [5].

Security vulnerabilities are often introduced during the coding stage of the Software
Development Life Cycle (SDLC), and it is difficult to detect vulnerabilities until they
become apparent as security failures in the operational stage of the SDLC because security
concerns are not always resolved or known earlier.

Thus, it would be of great importance to identify the set of metrics/features that can
help to point out the possible occurrence of software vulnerabilities so that testing in the
early stages of the SDLC can be used to remove or repair the vulnerability before it becomes
apparent and, as a result, allow programmers to consider security from the earliest stages
of the development process [6].

Sensors 2021, 1, 0. https:/ /doi.org/10.3390/s1010000

https://www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1303-9230
https://orcid.org/0000-0002-7645-0943
https://orcid.org/0000-0002-1935-8358
https://orcid.org/0000-0002-3251-8723
https://orcid.org/0000-0001-9688-2201
https://www.mdpi.com/1424-8220/1/1/0?type=check_update&version=1
https://doi.org/10.3390/s1010000
https://doi.org/10.3390/s1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s1010000
https://www.mdpi.com/journal/sensors

Sensors 2021, 1,0

2 of 26

The detection of software defects after the introduction of a product to the market not
only causes the company to have to bear the cost of the repair, but also results in a decrease
in the company’s reputation and often entails the expenses of legal proceedings. Therefore,
techniques to detect vulnerabilities that can be used in the coding stage of the SDLC are
especially valuable [2]. Consequences are even more severe for software vulnerabilities
that violate the security and privacy of users and can cause irreparable damage because a
majority of users care about data privacy [7]. Indeed, in 2019, personal and corporate data
breaches resulted in more than 120 and 50 million dollar losses, respectively [8]. Further-
more, the infamous Equifax data breach caused by the failure of a security vulnerability
patch resulted in the exposure of sensitive data concerning 147 million Americans [9].
On the other hand, because of the increase in the number of medical Internet-connected
devices and their close interaction with human bodies, new threats to health and life arise,
e.g., in January 2017, a software vulnerability created the possibility of gaining control of
Internet-connected pacesetters [10]. Such severe consequences of security failures and data
breaches resulted in security being identified as “foundational” and a “top IT priority” by
the Cisco 2019 Annual Report [11].

To facilitate knowledge about software, security organizations such as the Computer
Emergency Response Team Coordination Center (CERT/CC) [12], Open Web Applica-
tion Security Project (OWASP) [13], and SANSInstitute [14] have been created. These
organizations, as well as community and government organizations create public vulnera-
bility repositories (National Vulnerabilities Database (NVD) [15]), vulnerability referencing
systems/lists (Common Vulnerabilities and Exposures (CVE) [16], Common Weakness Enu-
meration (CWE) [17]), rankings (CWE/SANS/25 [18], OWASP Top10 [19]), and guidelines
on how to create more secure applications (OWASP Secure Coding Practices Guide [20]).
Despite these efforts, vulnerabilities are still common and have severe consequences. It
was reported by Veracode [21] that more than 85 % of the applications scanned with their
security platform (1 April 2017-31 March 2018) contained at least one vulnerability. What
is more, in Volume 11 of Veracode’s annual State of Software Security (SOSS) report [22], it
was presented that C++ and PHP based applications were the most frequent ones to include
high and very high severity flaws. It was 59 percent for C++ and 53 for PHP applications.
The acceleration of the software production process, the limited testing resources, and the
lack of security knowledge make it impossible to find and fix all of the vulnerabilities and
to prevent the resulting exploits.

To prevent security breaches, different techniques can be applied to detect vulnera-
bilities in source code. Regarding the outputs of the systems, they can be divided into
Vulnerability Prediction Systems (VPSs) or vulnerability analysis systems and Vulnerability
Discovery Systems (VDSs) [4]. VPSs aim to decide whether a particular part of code (a file,
a class, a function, etc.) contains vulnerabilities or not (is vulnerable or neutral). DVSs, on
the other hand, target providing more detailed information for particular vulnerabilities
found (about a location, a vulnerability type, etc.). No sound and complete system (no
missed and no false vulnerabilities), in terms of both the prediction and the discovery, is
known to be existent. Therefore, both academic researchers and the software industry put
increased focus on the delivery of better and better solutions to facilitate security.

The conventional approaches to vulnerability prediction and discovery can be divided
into three groups: static analysis, dynamic analysis, and hybrid approaches [4]. Static
analysis (also known as code analysis) is usually conducted during the code review (white-
box testing). Many researchers have put efforts into facilitating the performance of static
analysis based on many different approaches. However, the derivation and validation of
software security properties are still challenging [1]. To perform dynamic analysis, the
executable version of the program is necessary. In this type of analysis, the application is
scanned during the execution to find vulnerabilities. Because dynamic analysis needs a
sufficient number of test cases to find vulnerabilities, it is often very time-consuming [1].
The diverse nature of these two types of analysis makes it a good practice to use both
of them during the different stages of the SDLC to increase the probability of creating
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secure software [23]. Some vulnerabilities simply cannot be detected before the program
execution [21], and the others need static analysis to be found. Additionally, static analysis
can be introduced in the early stages of the SDLC and examines the whole code of the
application, in contrast to dynamic analysis, which focuses on the parts of the executed code.
Therefore, it is necessary to incorporate static analysis as a part of software production. The
last group, hybrid approaches, uses a mixture of static and dynamic analysis to benefit from
these two types, e.g., dynamic analysis is used to eliminate the false positives obtained in
static analysis, or static analysis is used to select the test cases for dynamic analysis [4].

Static analysis is a process of system or component examination, which takes into
consideration its form, structure, content, or documentation without the code execution [24].
Static analysis tools search for problems in the implementation based on a predefined set
of rules, which represent potential anomalies, often occurring in the code. The set of rules
consists of a wide range of errors: from mistakes in the source code to complex errors in the
system’s logic. Here, we should mention the term, Automatic Static Analysis (ASA), which
means that dedicated automated tools are used in the analysis process. ASA alert is in
this context, a single report from the ASA tool, which indicates the area in the code, which
breaks the predefined static analysis rule. The alert type determines the rule that is broken.
The alerts indicate the areas in the source code, in which the execution can be interrupted
by, e.g., unverified input data. The types used in [25] were the following: error, mistake,
warning, security, and portability. Due to the approximations made during the rule fitting,
often a high false positive rate can be observed, and the ASA alerts have to be checked by
experts [26]. Code analysis can also provide us with traditional software metrics, which
measure some properties of a source code. The examples are: size metrics, complexity
metrics [27], complexity, coupling and cohesion (CCC) [28], and also code churn and
developer activity [2]. Modern static code analyzers offer us a great variety of different code
metrics: traditional metrics (size, complexity, etc.) and a multitude of metrics regarding the
number of issues found in the analysis, maintainability, reliability, etc. Software companies
often use static analysis tests because they allow eliminating the vulnerabilities even in the
coding stage of the SDLC [21]. This type of analysis in its limited form can be performed
using Integrated Development Environments (IDEs), e.g., Visual Studio [29] for C/C++,
Intelli] IDEA [30], and Eclipse [31] for Java, as well as special plug-ins created for that
purpose. Furthermore, dedicated tools are available on the market: e.g., Veracode [32] and
SonarQube [33]. The introduction of vulnerability prediction (usually a binary classification
of vulnerable and neutral parts of the source code) enables reducing the number of false
alerts to focus the limited testing efforts on potentially vulnerable files [28]. In Section 2, we
describe in more detail different approaches to software vulnerability prediction and works
related to the topic of our work. Here, also, no sound and complete solution exists [4];
therefore, even more effort should be put into creating more accurate and more efficient
solutions. Due to the popularity of the static code analyzers in the industrial world, it is
reasonable to use the metrics (traditional ones and those regarding issues, reliability, and
dependability) to build software vulnerability prediction models. Therefore, in the current
work, we perform a comprehensive analysis of the suitability of these metrics to create
ML based software vulnerability predictors and provide some guidelines on what features
are most probably the indicators of vulnerabilities. To assess this suitability, we conduct a
comprehensive feature analysis and selection (three types of correlation analysis and four
feature ranking techniques), as well as an evaluation using thirteen ML models (standard
and ensemble ones). The experiments are conducted using a dataset introduced in [34]
(available here: [35]), which was based on heterogeneous open-source program files divided
into smaller code elements considering resource management error vulnerabilities (CWE-
399) and buffer error vulnerabilities (CWE-119) and information gathered from the National
Vulnerability Database (NVD) [15] and the NIST Software Assurance Reference Dataset
(SARD) project [36]. We generate our features using a commercial tool, SonarQube [33],
and a research project, CCCC [37,38].
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The remainder of the paper is organized as follows. Section 2 describes different
approaches to software vulnerability prediction and related work. Section 3 presents the
methodology of the present study: the description of the dataset used in the experiments
and feature generation, feature selection methods, and machine learning based evaluation.
In Section 4, we describe the results of our experiments. Section 5 concludes the article.

2. Related Works

Software vulnerability prediction: Generally, research currently is mainly data-driven
and data-dependent. Therefore, machine learning and data mining have gained popularity
also in the software vulnerability prediction domain [4]. To predict the vulnerability of a
source component, Software Vulnerability Predictors (SVPs) are created. SVPs are highly
diversified in terms of the input features, algorithms, and approaches used. Generally, the
approaches can be divided into two main groups: calculation based techniques and classifi-
cation tasks [28]. Calculation based techniques aim to predict a number of vulnerabilities
in the system unit, and the classification tasks, the occurrence of vulnerabilities themselves.
A unit can be a function, a file, a class, or other component of the system (here, we can
also define the granularity of the SVP). In the classification task, software components are
labeled as neutral or vulnerable [39]. Different vulnerability types can be treated as one
group, or the occurrence of a specific vulnerability type can be detected. The classification
approach is the preferable one in the Vulnerability Prediction (VP) domain. SVPs can be
based on different types of features: Software Metrics (SM) [2,27,28], Text Mining (TM)
[34,39-41] features, ASA alerts [25,42], and hybrid ones [43-45]. To create SVPs, different
algorithms are used: decision trees [41,43], random forests [41,46,47], boosted trees [43],
Support Vector Machines (SVM) [48], linear discriminant analysis [2], Bayesian Networks
[2], linear regression [43], the naive Bayes classifier [39], K-nearest neighbors [41], as well
as artificial neural networks and deep learning [34,45,49,50].

Vulnerability analysis techniques can consider the causes of vulnerabilities, and the
others their characteristics and consequences. Some works focus on the consequences of
vulnerabilities and risk assessment [51,52]. The detection of the potential occurrence of
vulnerabilities in the source code can be used to assess the security risk connected to the
product. In [51], known vulnerabilities reported in the National Vulnerability Database
along with their complexity, scale, and functionality were used to assess the risk connected
to virtual machines. Additionally, knowledge about particular kinds of vulnerabilities can
be used to create Intrusion Detection Systems (IDSs) built on the basis of countermeasures
to these vulnerabilities (e.g., IDS based on countermeasures to 5G NSAvulnerabilities [52]).
On the other hand, it is possible to analyze the causes of vulnerability occurrence and its
potential indicators, e.g., features obtained from static analysis.

Many works have been done considering the evaluation of different static code an-
alyzers (e.g., [53] for C/C++), but the number of works considering the analysis of the
suitability of features generated by them for the purpose of vulnerability prediction is
limited. In [54,55], empirical studies considering three open-source PHP web applications
were conducted. They based their research on a dataset and twelve metrics introduced
in [47]. In [54], they examined the performance of different software vulnerability pre-
diction models in terms of effort-aware performance measures, in contrast to [55], where
they considered the impact of Filter-based Ranking Feature Selection (FRFS) methods on
vulnerability prediction. In [56], an empirical study was conducted to examine a security
risk (assessed by the Androrisk application) prediction of Android applications based on
21 code metrics obtained using SonarQube and six machine learning algorithms.

In contrast to the related works, we analyze C/C++ applications. C/C++ languages
are used in a variety of applications, especially when an interaction at a low level between
the application and other components is necessary (a direct interface with the hardware or
the operating system), because they offer high control over many aspects and efficiency.
These are the languages used to build the majority of operating systems and virtual
machines (also the Java Virtual Machine). However, high control and versatility come
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with a cost, the obligation to avoid bugs and software vulnerabilities, which can entail
serious consequences for critical services [57]. According to [22], fifty-nine percent of
C++ applications scanned with their analysis tools included high and very high severity
flaws. Another aspect can also be observed: high-level programming languages, e.g., Java,
are often executed in the dedicated runtime environments provided by virtual machines
(usually written in C/C++). Hence, another level of potential vulnerabilities emerges, and
software vulnerabilities can occur both in the Java code and in a virtual machine itself. To
the best of our knowledge, none of the papers regarding feature analysis for the purpose of
vulnerability prediction considered C/C++ programming languages. For that reason, it
is crucial to focus on the vulnerability prediction considering lower level programming
languages, like C/C++, to facilitate the security of a variety of (often critical) applications,
operating systems, and virtual machines, which execute programs written in more abstract
languages.

In the current work, we focus on the importance of metrics obtained from static code
analyzers for the vulnerability prediction of the C/C++ software components (two types of
vulnerabilities classified using Common Weakness Enumeration (CWE) used separately
and mixed). We conduct a comprehensive feature analysis and selection, as well as n
evaluation using 13 ML models (standard and ensemble ones). We consider three types
of correlation analysis and four feature ranking techniques. We use a dataset introduced
in [34] (available here: [35]), which was based on heterogeneous open-source program files
divided into smaller code elements considering buffer error vulnerabilities (520 files) and
management error vulnerabilities (320 files) and information gathered from the National
Vulnerability Database (NVD) [15] and the NIST Software Assurance Reference Dataset
(SARD) project [36]. We use two tools to generate the features used in the experiments:
a commercial tool, SonarQube [33], and a research project, CCCC [37,38]. Although the
experiments were conducted on the C/C++ code elements database, the approach can be
generalized to other programming languages. For that purpose, it is necessary to utilize
a database with code elements written in the language of choice. The other prerequisite
is that it is possible to obtain a sufficient number of heterogeneous metrics from a static
code analyzer, e.g., SonarQube, or some other alternative, to obtain similar metrics as those
described in [58] (but in this case, no guarantee can be made that the features have the same
quality as those of SonarQube). SonarQube itself offers static analysis for many different
programming languages (e.g., Java, C#, Python, etc.), and we encourage other researchers
to conduct similar analyses using different languages, because of the high importance of
software security.

3. Methodology

In this section, we describe the dataset used in the experiments. We focus on a raw
dataset and the process of obtaining the final features used. We also describe the feature
selection methods and the evaluation based on multiple machine learning algorithms.

3.1. Dataset

Raw dataset: To build the dataset with static code analyzer metrics, it is necessary to
gather a sufficient number of code files with the corresponding labels. For that purpose,
we used the dataset created in [34] (available here: [35]), which is a set of code components.
The dataset contains 61,638 components: 43,913 non-vulnerable and 17,725 vulnerable
ones. These files are divided into two groups: the first one considers CWE-119 vulnerabili-
ties (buffer error vulnerabilities) and consists of 10,440 components, and the second one,
CWE-399 vulnerabilities (resource management error vulnerabilities), consisting of 7285
components. After labeling the files, we obtained the dataset with 7534 elements in total.
The cardinality of the specific subsets is presented in Table 1.
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Table 1. The cardinality of the code element sets with information on the class distribution used in
the experiments. CWE, Common Weakness Enumeration.

Elements Label Cardinality
Vel o

CWE-399 V‘lﬂgﬁiﬁ‘ge g?j 1498

e ot w

Feature generation: To extract the static code analyzer features, we used two pro-
grams: SonarQube [33] and CCCC [37,38]. These tools are widely used in the literature
for the purpose of code analysis [59-61]. SonarQube is an automatic code review tool.
It is provided by a company in Switzerland called SonarSource. They also created the
SonarLint extension to some of the most popular IDEs and SonarCloud, which is the cloud
implementation of SonarQube. SonarQube allows using multiple languages. However, the
static analyzers for some languages (including C/C++) are out of the community version
scope. Therefore, we use a plugin [62] to a community version allowing the static code
analysis of C and C++ files. The static analysis results are exported to a .csv file, which
stores metrics for every file in the dataset. CCCC is a free software tool that was developed
by Tim Littlefair. It is a research project that is focused on gathering the software metrics of
the program. It provides simple code measurements of the selected file/project. It is used
as the Command Line Interface application. By default, the application creates an internal
database and the HTML report with the results of the analysis. Since the nature of our
database of programs is quite different from the usual application, we had to automate the
analysis with a Python script that enabled separate analysis of the files in the dataset. Then,
the mirror structure of the folders is created and the summary placed in a corresponding
output folder. Then, all of the analyzed results are gathered into one .csv file. We connect
both of the .csv files with the labels and achieve the datasets, which are used in the analysis.
There are three datasets: one considering only CWE-399 vulnerabilities, the second one,
CWE-119 vulnerabilities, and the last one, both of them. Each of the final datasets consists
of 33 heterogeneous features.

3.2. Feature Selection

High-dimensional attribute sets can contain irrelevant features, which introduce addi-
tional “noise” and difficulty for the learning algorithm because the meaningful information
has to be extracted from the multidimensional feature space. Reducing the dimensionality
of the features can decrease the execution time of the learning algorithm, and a good
feature selection can improve the performance of the final model. Furthermore, using
feature selection techniques can reduce overfitting and, as a result, contribute to the better
generalization of the model.

To determine the quality of the features, we used three types of commonly used
correlation analysis techniques (Pearson correlation [63], Spearman correlation [64,65],
and Kendall correlation [65]), three types of entropy based ranking methods (information
gain, information gain ratio, and Gini decrease index), and the )(2 ranking technique (the
descriptions can be found later). The purpose of correlation analysis in this work is to
detect whether there are features that demonstrate a statistically significant correlation with
the class attribute. For that purpose, after calculating the correlation coefficients” values,
we performed significance analysis. A similar approach was followed in [66], where only
the Pearson, Spearman, and Kendall correlation, mutual information (information gain),
and x? ranking technique were used. All of these methods can be used for ranking the
features for the purpose of feature selection (choosing features with the best rank values
for a particular method); however, their nature and purpose are different.
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Correlation techniques are commonly used to examine relationships between variables,
preferably the continuous ones. The correlation coefficients measure different relationship
types. Spearman’s or Kendall’s correlation coefficients indicate the occurrence of monotonic
relationships (they do not have to be linear) between the two variables in contrast to
Pearson correlation coefficients, which determine only the linear relationship. The Pearson
correlation coefficient is a parametric measure, and Spearman’s or Kendall’s correlation
coefficients are non-parametric [67]. It is possible to treat ordinal variables as continuous
variables, but this can introduce potentially incorrect estimation of correlational measures,
especially when there are few ordinal categories. This problem refers mainly to the Pearson
correlation, which should not be applied to ordinal variables [68]. Nevertheless, the
approaches based on the Pearson correlation are robust and can often successfully find a
linear association even when the traditional assumption is violated [69]. For that reason,
we decided to show the results of all the correlation coefficients, but to highlight that in the
case of ordinal variables (especially ones with a small number of values), it is safer to use
one of the rank correlation coefficients (Spearman or Kendall) and to use only Spearman
correlation coefficient values to select the best set of features obtained in the correlation
analysis.

Entropy based techniques and the x? ranking technique, on the other hand, can be
used when dealing with all types of features, and they are based on the statistical properties
of the variables. These methods are commonly used in the feature selection domain [66].
Nevertheless, these methods are not perfect either, e.g., the x? ranking technique does not
perform well while dealing with infrequent terms in data [70], and information gain favors
features with many uniformly distributed values [71]. For that reason, it is a good practice
to test different types of feature selection and to perform the additional evaluation, e.g.,
machine learning based evaluation, which was also done in [66] and in our work (described
in the next subsection).

We used the aforementioned commonly used correlation methods to obtain the corre-
lation coefficients values and the corresponding p-values. Then, to test the significance of
the correlation coefficient, we performed the hypothesis test using the p-value. We define
the hypotheses as follows:

*  Hp: The correlation between the particular feature and the label value is significant
®  Hj: The correlation between the particular feature and the label value is not significant

We used the level of confidence &« = 0.05. By comparing the p-value with «, we could
conclude if the null hypothesis Hy should be rejected. We rejected the null hypothesis if
the p-value was not less than the significance level, and we did not reject the hypothesis if
the value was less than «.

Information gain is a statistical property originally used to select the attributes used
in the succeeding nodes of the decision tree in the ID3algorithm [71]. The information gain
determines the efficiency of using a particular feature to separate the samples according
to their class membership. The measure is based on entropy, one of the basic terms in
information theory. Entropy for a binary classification can be defined as follows:

Entropy(S) = —p1logap1 — pologapo, 1)

where pg and p; are the probabilities of a sample being a member of a negative and
a positive class, respectively. In the general case, for the multi-class classification, this

transforms to:
N

Entropy(S) = — Y _ pilogapi, @)
i=1

where p; is the probability of a sample being a member of an i-th class. Now, information
gain can be defined as follows:

InfoGain(S, A) = Entropy(S) — ) SSU|| Entropy(Sv), (©)]
vEVy
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where V4 is the set of possible values of a feature A and S, is a subset of V4, for which
the feature A takes the value v. With such a defined measure, we can clearly see that the
measure describes the reduction in the entropy, which is expected when the examined
attribute is used to divide the dataset according to classes [71].

Gain ratio is another technique to choose the decision attributes. It penalizes the
features with many uniformly distributed values. It uses the earlier defined information
gain measure, as well as the measure defined as follows [71]:

il

N
SplitInfo(S, A) Z% T )

where §; is the subset of instances, a result of partitioning the set S according to N classes.
The metric measures the entropy of S, but takes into consideration the number of distinctive
values of the observed feature. The gain ratio can be defined as follows [71]:

InfoGain(S, A)

GainRatio(S, A) = SplitInfo(S, A)

©)

The Gini decrease or the decrease in the Gini impurity can be interpreted as the
decrease of the impurity between the subsequent nodes in the random forest [72]. Impurity
determines the probability of obtaining two instances of the separate classes in two draws,
with the assumption that the distribution of instances is multinomial. The examples from
the dataset (it can be perceived as a node using the random tree terminology, w) are divided
into two parts (into two child nodes, w1 and wy)). The decrease in Gini impurity can be
evaluated as follows [72]:

Ri(w; v 170) = i(W) — Z%i(w1) — 22i(w,), ©)
Ny Ny
where v is the considered feature and 7 is the threshold for this value. The features are
selected to maximize the reduction in the impurity.

The x? statistic measures the difference between the observed number of instances
of feature f for a particular class from the expected value. It is assumed that no feature is
dependent on the label c. The measure can be defined as follows [73]:

= vy,¢) ~ B(f = v;,))*

-y Z , : 7)

c=1i= (f - UIIC)
where v; is the category, k the number of classes, and m the number of instances of the
feature f. O(f = v;,¢) is the number of v; instances in the feature f with value c. It can
be used in the random variable independence test. Let us define the zero hypothesis as
Hy (The random variables are independent) and the alternative one H; (the examined
variables are not independent). The bigger the value of the statistic x(f), the bigger the
chance that the examined random variable is correlated with the decision class and the null
hypothesis should be rejected [73].

3.3. ML Based Evaluation

Using multiple heterogeneous machine learning models in a supervised task and
observing their performance can be treated as an indicator of the “worthiness” of the
training dataset (e.g., different types of vulnerabilities). Acceptable results of the majority of
algorithms can be an indicator of the reliability of the features used [74]. Selection methods
used in the study are different in nature and produce different subsets of features as “best
features”. That is why we also used machine learning models to test the effectiveness of
the feature selection methods in the case of features generated from a static code analyzer.

To evaluate the performance of different machine learning models, we used 5-fold
cross-validation. We used thirteen different ML algorithms and eight standard ones:
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Correlation

decision trees, k-Nearest Neighbors (KNNs), logistic regression, kernel naive Bayes, SVM
(linear, quadratic, cubic, and Gaussian kernels), and five ensemble models: boosted trees,
bagged trees, subspace discriminant, subspace KNN, and RUSBoostedtrees. As the model’s
performance indicators, we used three standard ML metrics: accuracy, recall (sensitivity,
True Positive Rate (TPR)), and specificity (True Negative Rate (TN)R). Accuracy gives
an overall evaluation of the model’s performance, and the two additional metrics focus
on particular parts of the prediction: the correctness of the prediction of the vulnerable
elements (recall, sensitivity) and the neutral elements (specificity) [75].

Some of the ML models, so-called white-box models, allow us to obtain the interpre-
tation of the prediction process and, as a result, an even more detailed evaluation of the
features’ reliability. In our work, we decided to present the graphs of decision trees trained
on two subsets of data, the first one with only CWE-119 vulnerabilities considered and
the second one with CWE-399 vulnerabilities. We used all 33 features to let the model
decide what features it uses to make the decision. This knowledge can be used by experts
to evaluate the security of code elements (or at least give them some insights into the issues
that are chosen by the models as the strongest indicators of vulnerabilities).

4. Experimental Results

In Figures 1-3, we present the correlation coefficients for different coefficients and sub-
sets of the dataset, considering both types of vulnerabilities, and also specific vulnerability:
CWE-399 or CWE-119. We clearly see that among the coefficients, the highest values are
reached for the CWE-399 subset. In the majority of cases, the correlations are negative, and
their strength is weak to moderate. We can also observe that the correlation coefficients’
values are similar for two rank correlation coefficients, Kendall’s and Spearman’s, and
differ significantly for Pearson’s coefficient. This can be caused by the fact that some of the
metrics used in this study are ordinal values with a small number of values and that the
Pearson correlation can only determine the linear relationship between the variables.

Pearson Correlation results

[ El

SonarQube Metrics

Figure 1. Pearson correlation values for the features obtained using different subsets of a dataset.
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Figure 2. Spearman correlation values for the features obtained using different subsets of a dataset.

Kendall Correlation results

SonarQube Metrics

Figure 3. Kendall correlation values for the features obtained using different subsets of a dataset.

To examine the significance of the correlations, we used the level of confidence & = 0.05
and determined whether the null hypothesis Hj (stated in Section 3.2) should be rejected.
In Table 2, we give the p-value results for the columns, in which it is larger than a. In
other cases, the p-values were < 0.001. The underlined, bolded values are the values that
suggest that the null hypothesis Hy should be rejected. In these cases, the conclusion is
that there is insufficient evidence that the correlation between the particular feature for this
type of correlation is significant. In the group of features for which the null hypothesis was
rejected at least in one case, there are three features obtained from the CCCC analyzer.

Table 2. p-values obtained in the correlation analysis for the columns, in which at least one p-value suggests that the null

hypothesis should be rejected.

Minor CCCCLines Comment Duplicated Effort_to_REACH
_Violations _of_Code _Lines _Blocks ccecroccoM ccecemvGeoM _Maintainability_Rating a
CWE-399
Pearson <0.001 <0.001 <0.001 0.4415 0.0002 0.0231 0.0513
Spearman <0.001 0.0726 0.3540 0.0033 0.0723 <0.001 0.2308
Kendall <0.001 0.0726 0.3539 0.00336 0.0723 <0.001 0.2307
CWE-119
Pearson <0.001 <0.001 <0.001 <0.001 0.00439 0.0088 <0.001
Spearman 0.0694 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Kendall 0.0694 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
All
Pearson <0.001 <0.001 <0.001 <0.001 <0.001 0.0009 0.0024
Spearman <0.001 <0.001 0.0011 <0.001 0.0027 0.0581 <0.001
Kendall <0.001 <0.001 0.0011 <0.001 0.0027 0.0581 <0.001
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To build the 10 best features dataset using the correlation results, we used the features
with the highest value of the Spearman correlation coefficient on the dataset with both types
of vulnerabilities considered. For this case, the p-value is more than the significance level
only for the feature CCCCMVGCOM. This feature is not included in the reduced dataset.

We ranked the features using the information gain, gain ratio, Gini decrease, and X2
technique to determine the ten best features for each of the methods, which we then used to
train the thirteen ML models. We chose the ten best features in the sense of the whole dataset
to standardize the evaluation process. The results of this analysis can be seen in Figure 4.
The features used in the reduced sets are listed in Table 3. We can notice that seven out of
ten features are the same for all of the subsets. These features are: code_smells, open_issues,
violations, major_violations, sqale_index, comment_lines_density, and critical_violations.
Most of them are connected to the number of issues found in the code by SonarQube,
which seem to be reasonable choices to build the vulnerability prediction model. What is
crucial is that none of the pairs of subsets contain the same information.

Information gain
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Figure 4. Feature ranks obtained using different types of metrics for the whole dataset.
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Additionally, we performed the same analysis on the subsets of the dataset focused
on the CWE-399 (Figure 5) and CWE-119 (Figure 6) vulnerabilities. Because of the higher
number of samples from the CWE-119 subset, the overall values of the metrics are influ-
enced more by these samples. The 10 best features according to the information gain for
the summary dataset consist of nine out of the ten best features from the CWE-119 subset.
One feature, minor violations, comes from the other subset, and it has the highest value
of the information gain for the CWE-399 subset. Seven out of these 10 best values can
be found in the group with the relatively high information gain values for the CWE-399
subset (not in the first ten values, but the values ranked 4 to 19 are all on a similar level
of the information gain value). For the gain ratio, eight out of the 10 best features overall
were found in the CWE-119 10-best features, and seven out of the 10 best features overall
were found in the CWE-399 10 best features and the relatively high subsequent values.
Similarly for the Gini decrease, there were 9/10 features for the CWE-119 subset and 7/10
features for the CWE-399 subset. For the x? metrics, the ratios were 8/10 for the CWE-119
subset and 9/10 features for the CWE-399 subset. For CWE-399, the values of all metrics
decreased slower than in other cases, which is why it is reasonable to also consider some of
the features not included in the 10 best ones as potential information sources for the model.

Information gain

Gain ratio
0.15
0.1
s Llrnnnnnn
0
0 "

Gini Decrease

0.15

Figure 5. Feature ranks obtained using different types of metrics for the CWE-399 subset of the dataset.
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Figure 6. Feature ranks obtained using different types of metrics for the CWE-119 subset of the dataset.

Table 3. Ten best features obtained for different ranking techniques.

13 of 26

Rank  Spearman Correlation

Information Gain

Gain Ratio

Gini Decrease

Chi-squared

code_smells
open_issues

comment_lines_density
duplicated_lines_density
critical_violations
info_violations
statements

SO0 ®NOU R WN =

violations
open_issues

sqale_index
comment_lines_density
sqale_debt_ratio
duplicated_lines_density
critical_violations

blocker_violations
minor_violations

major_violations
critical_violations
sqale_index
comment_lines_density
info_violations

violations
open_issues

sqale_index
comment_lines_density
sqale_debt_ratio
duplicated_lines_density
critical_violations

critical_violations
violations

violations code_smells violations code_smells open_issues
major_violations major_violations open_issues major_violations code_smells
sqale_index minor_violations code_smells minor_violations major_violations

duplicated_lines_density
sqale_index
comment_lines_density
duplicated_lines
uncovered_lines
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We aggregated the performance results using the different subsets of the input features
as the grouping attribute and the following methods to obtain the aggregation: mean value,
standard deviation, maximum value, and minimum value. The results can be observed
in Figure 7 (accuracy), Figure 8 (recall), and Figure 9 (specificity). Figure 7 shows that
the average accuracy results are comparable for all the subsets of input features. The
standard deviation is also comparable for all the examined cases. We can observe a
significant difference between the maximum results for the subset considering only CWE-
399 vulnerabilities, which suggests that these types of vulnerabilities are easier to detect
using the features from a static code analyzer. For the minimum values, this difference
is less visible. The highest minimum value was obtained for the CWE-399 based subset
with all features included. The results were much more varied for the recall and specificity,
more for recall than for specificity. In Figures 8 and 9, it is visible that the minimum results
of the specificity are in the majority of cases higher than the recall ones. In almost all cases,
the highest average results were obtained for the full set of features. This dataset is the
biggest one, contains the most varied types of information, and delivers the most general
information, which can be used by different classifiers.

We also aggregated the results by grouping them by the type of ML model to as-
sess the performance of the models trained on different subsets of the dataset. Again,
we used three metrics and their statistical features (mean, standard deviation, maxi-
mum, and minimum), namely accuracy, recall, and specificity. The results can be seen in
Figures 10-12.
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Figure 7. Aggregated accuracy results grouped by feature subset.
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Figure 8. Aggregated recall results grouped by feature subset.
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Figure 9. Aggregated specificity results grouped by feature subset.
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Figure 10. Mean, standard deviation, maximum, and minimum of the accuracy results for different types of classifiers.
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Figure 11. Mean, standard deviation, maximum, and minimum of the recall (TPR) results for different types of classifiers.
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Figure 12. Mean, standard deviation, maximum, and minimum of the specificity (TNR) results for different types of

classifiers.

In Figure 10, it is visible that in terms of accuracy, the classifiers with the highest
performance are the KNN algorithm and bagged trees. Their performance is also good
in terms of the maximum and minimum value, as well as the standard deviation, that
is 6% for both models. The models that obtained the worst results were logistic regression,
naive Bayes, SVMs (the exception was the SVM with the Gaussian kernel), and subspace
discriminant.

In Figure 11, we can clearly see that the recall results are much more varied than the
accuracy ones. Although the maximum values of the classifiers take similar values, the
minimum values and the average show that some of the classifiers are highly unstable in
terms of recall, namely naive Bayes and SVMs with cubic and quadratic kernels. For these
classifiers, the minimum value of recall is close to 0%, which means virtually no predictions
of vulnerabilities.

In terms of specificity (Figure 12), the results are more reliable than the recall ones;
however, in the case of SVM with the cubic kernel, the standard deviation value reaches
31.18% and the minimal value 0%. Furthermore, the SVM with the quadratic kernel is
highly unreliable.

The ensemble models achieve reliable results in terms of all the ML metrics and the
grouping categories (avg, std, max, min), besides the subspace discriminant.

Additionally, we present detailed information about all the performance results gath-
ered in the study. They can be observed in Figure 15 (accuracy), Figure 16 (recall), and
Figure 17 (specificity). The highest performance of the models was achieved for the subset
of data considering only CWE-399 vulnerabilities using the KNN algorithm and the bagged
trees. In the case of bagged trees, the best models in this category reached 94.4% accu-
racy/92% recall/96.4% specificity (when accuracy was considered the most important) and
94.1% accuracy/92.8% recall/95.2% specificity (considering recall). In the case of the KNN
algorithm, there is one best model for both the recall and the accuracy, and its characteristics
are: 94.3% accuracy/94% recall/94.5% specificity. In the cases of KNN and the best model
based on bagged trees, for the accuracy, the subset of input features determined by the x?
analysis was used. For the best bagged trees model considering recall, the method used to
determine the input features was information gain.

White-box ML models put the focus on the interpretability of the models. The goal is
to create a transparent process of prediction. They allow us to visualize what features were
used in the prediction process and their behavior. To provide more information on the
features suitable for the vulnerability prediction task, we decided to present the structure of
the decision trees, which predict the occurrence of vulnerabilities on the basis of all features
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obtained (33 features) and let them decide what features should be used in a medium-sized
model. In our analysis, we used fine trees; however, their structure is much larger, so for
the purpose of the interpretation of the features used, we decided to build smaller models,
which are more practical in this case. The accuracy of the models obtained was 75.9%
(86.7% specificity, 62.6% recall) for the CWE-119 subset and 85.3% (81.6% specificity, 8§9.8%
recall) for the CWE-399 subset.

In Figure 13, we present the structure of the tree trained on the subset with CWE-399
vulnerabilities considered. The feature comment_lines_density was used in the root of
the tree. Furthermore, the parameter comment_lines is high in the hierarchy. This can
suggest that the code might be complicated and needs many comments to be understood
by the programmers. Many comments can also signal inadequacies in the code, but also
the maturity of the code. Furthermore, features from the issue category (minor_issues
and major_issues) are important for the prediction. They determine a number of potential
problems in the code; here, the power of static code analyzer rules is used. Maintainability
features (technical debt and code smells) are also used. The low maintainability and
complexity of the code result in fault-proneness (proven in an empirical investigation [76]).
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Node 1 (branch)
Rule: comment_lines_density < 17.75
A

Node 2 (branch)
Rule: comment_lines_density < 2.85

Node 3 (branch)
Rule: minor_violations < 1.5
A

Node 4 (branch)
Rule: duplicated_lines_density < 7245

Node 5 (branch)
Rule: CCCCMVGCOM < 10.35

Node 7 (branch)

Node 6 (branch
4 ) Rule: major_violations < 100

Rule: comment_lines < 38.5

Node 10 (branch)

Node 14 (branch)
Rule: code_smells < 36.5

Rule: minor_violations < 2.5

Node 12 (branch) Node 13 (branch)
Rule: duplicated_lines_densily < 39.5 Rule: code_smells < 25.5
Node 19 (branch) Node 20 (branch)

Node 21 (branch)
Rule: lines_to_cover <56 Rule: comment_lines < 12.5| |Rule: development_cost < 4065

Figure 13. Medium tree based given all 33 features as the input for the subset with CWE-399 vulnerabilities considered.

Node 11 (branch)
Rule: sqale_debt_ratio < 5.45

Node 24 (branch)
Rule: CCCCMVGCOM < 43.5

Node 16 (branch)
Rule: comment_lines_density < 14

Node 17 (branch)
Rule: major_violations < 57

e

1 0 0 1

In Figure 14, a structure of the tree is presented, which was trained on the subset
with CWE-119 vulnerabilities considered. In the root of the tree, one of the maintainability
features can be found: code smells. Here, again, we can notice that the high maintainability
and complexity of code can be a sign to consider the fault-proneness of the code [76]. Other
features used in this model, functions, LOCCOM, complexity, and cognitive_complexity,
also suggest that the size and complexity of the code can be indicators of software vulnera-
bilities. A number of functions (with a smaller number of functions, a probability of fault-
proneness is bigger) can be a sign that large functions are used instead of small ones, and the
single responsibility principle can be broken (but it is also strongly dependent on the size
of the code element). The number of duplicated_lines, on the other hand, can indicate bad
coding practices.

Node 1 (branch)
Rule: code_smells < 8.5

Node 2 (branch)
Rule: sqale_debt_ratio <545

Node 3 (branch)
Rule: functions < 2.5

Node 9 (branch)
Rule: cognitive_complexity <8
AN

Node 15 (Branch)
Rule: complexity < 47.5

JAY

= A
Node 4 (branch)
Rule: CCCCLOCCOM <31.5 Node 5 (branch) Node 7 (branch)
Rule: duplicated_lines < 75 Rule: info_violations <5.5
Vo A 5 A

Node 10 (branch)

Node 12 (branch
Rule: lines_to_cover <6.5 te 12 (branch)

Rule: duplicated_blocks < 5.5

Node 13 (branch)
Rule: development_cost < 4005

VAS

Node 17 (branch
Rule: dese\cpm)m cost < 1336 Node 18 (branch) Node 19 (branch) Node 20 (branch) Node 21 (branch)
— Rule: info_violations < 1.5 Rule: CCCCMVGCOM < 98| |Rule: CCCCLines_of_Comment < 27.5 Rule: CCCCLines_of_Comment < 46.25
JAY

Figure 14. Medium tree based given all 33 features as an input for the subset with CWE-119 vulnerabilities considered.
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Figure 15. Detailed accuracy results for different types of classifiers.
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5. Conclusions

The aim of this work was to deliver a comprehensive evaluation of the features
generated using static code analyzers for the purpose of vulnerability prediction and the
delivery of guidelines considering the features that can be used as indicators of software
vulnerabilities. Static code analyzers are often used at software companies to increase
software quality, and works evaluating these tools are available in the literature, but focus
on the usability of these tools and not on the discriminant power of the obtained metrics for
the prediction of vulnerabilities. None of the works were focused on the feature selection
regarding C/C++ languages, which are commonly used to build critical applications,
operating systems, and virtual machines. What is more, our work delivers the most
comprehensive feature analysis and selection (13 ML models, 33 features from static code
analyzers, three correlation types, and four well-known feature selection techniques used).
The results of this work aim to highlight the lack of analysis considering feature selection
for C/C++ vulnerability prediction. What is more, our target is to inspire future works
of the academic and industrial communities by delivering an extensive knowledge base
and discussion considering a multitude of feature selection methods and their suitability
for vulnerability prediction evaluated using a variety of standard and ensemble machine
learning models.

The results of the correlation analysis show that the correlations between the features
gathered from the static code analyzers are statistically significant in the majority of cases.
The fact that for three out of five features from the CCCC tool, the hypothesis about the
correlation significance was rejected suggests that it is better to use SonarQube to obtain
the static analysis based features because it delivers a bigger number of features, which
is more reliable in terms of statistical significance. This can be justified by the fact that
SonarQube, in contrast to CCCC, is a commercial tool for static analysis and also outputs
the metrics connected to the number of issues found in the code and is not limited to the
traditional software metrics.

All the subsets of features examined in this work can be used to successfully train
the ML classifiers. The analysis delivered us much information about the performance
of different ML models on different subsets of data. Using the information gathered in
the figures, one can choose the most suitable model for the problem and then check what
subset of features is the most suitable for this particular model.

It was shown that the accuracy metric is not sufficient to evaluate the performance of
the ML models. The aggregated results obtained for the different types of feature subsets
show that although the accuracy results are comparable, the main difference lies in the
recall and specificity, and here, a trade-off has to be considered. Early indication needs a
higher specificity value and less false alarms. As an alternative, a more sensitive model can
be created, which can result in more security alerts, but for which there is a bigger chance
that the true vulnerability will be detected.

All of the methods (the correlation analysis, different ranking techniques, and the
evaluation using different machine learning models) show that the CWE-399 vulnerabilities
are the most statistically dependent on the features generated by a static code analyzer.
These are resource management vulnerabilities. From that, we can infer that the difficulty
of predicting the occurrence of the vulnerability is strongly dependent on its type.

Using different feature selection methods (correlation analysis, entropy based, chi-
squared) and the interpretation of the white-box ML models (in our case, decision trees),
we can determine the features that are the strongest indicators of vulnerabilities for the
case of CWE-119 and CWE-399 vulnerabilities for C/C++ code elements. The results of our
analysis show that features representing the size, character (density of comments, number
of duplicated lines), and complexity of the code can be used for the purpose of vulnerability
prediction. Furthermore, the maintainability metrics (code smells and technical debt) are
determined by the techniques. These features can indicate bad coding practices, the fact
that code may be over-complicated, etc. Furthermore, the low maintainability of the code
can be a sign to perform security testing. SonarQube generates metrics considering the
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number of potential issues found in the examined code; these features should naturally be
used to evaluate the security of the code.

Additionally, from our experiments, it appears that it is reasonable to create efficient
ML models based on the features generated by static code analyzers, especially models
created to predict the CWE-399 vulnerability type. To create the models considering only a
particular type of vulnerabilities, it would be beneficial to evaluate the models on different
subsets of features and consider only the best-ranked features determined for this particular
class of vulnerabilities. This way, considering multiple types of vulnerabilities, multiple
binary models could be created based on different subsets of input features.
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