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Abstract—Distributing the peak load and alleviating grid stress
by considering hourly electricity prices are some of the main
research problems for current smart grid systems. This paper
deals with the scheduling problem of home appliances’ operating
hours in smart grids, which aims to achieve minimum cost in
user-defined operation intervals. To this end, scheduling via Ar-
tificial Neural Networks Augmented with Constraint Satisfaction
Heuristic (ANN-AH) method that emulates the operation of the
optimization for smart home demand response is developed. Our
results show that a home demand response via ANN-AH achieves
close to optimal performance with 10 times lower execution time
than the optimal scheduling. These results suggest that the ANN-
AH based demand response is highly successful and practical,
and it is promising for future applications in micro-grid and
decentralized renewable energy systems.

Index Terms—demand response, optimization, artificial neural
network, scheduling

I. INTRODUCTION

Smart Grids are networks that provide sustainable, econom-
ical and secure electricity distribution. These networks provide
bidirectional information transfer and immediately intervene
in the system [1]. Due to the rapid increase in electricity con-
sumption, it is expected that the current electricity networks
will be inadequate over time [2]. Thus, in order to meet this
increasing energy demand, smart grids will be used. In the
current literature, there are several ways to develop smart grids
one of which, the most used, is demand response system [3].

A demand response system aims to distribute the energy
consumption over time so that the consumption curve in
the peak hours will be flattened [4]. In this way, energy is
consumed at the most affordable cost within the capacity of
the system resources.

In general, demand response is categorized as time-based
and incentive-based. Consumers are offered time-variant pric-
ing policy under the time-based demand response, while the
policy of incentive-based demand response is to regulate
the load at times of intense demand by offering customers
different incentives for payments [5]. The consumers for
both of these categories can be commercial, industrial, and
residential users, where the demand response system is mostly

used by residential customers which are more sensitive to the
price of electricity [6].

In this paper, we propose a smart home demand re-
sponse based on a novel methodology, called Artificial Neural
Networks Augmented with Constraint Satisfaction Heuristic
(ANN-AH). The ANN-AH is the combination of Artificial
Neural Network (ANN) and an heuristic algorithm. While it
emulates the optimal scheduling via ANN, the computations
of ANN revised to satisfy scheduling constraint via the
heuristic algorithm. The usage ANN-AH for demand response
has the following advantages: 1) It achieves close-to-optimal
schedule with significantly smaller computation time than the
optimal scheduling. 2) It is highly robust against the rapid
changes in the electricity prices, which may be occurred due
to some abnormal activities. 3) It may be easily used with
minor addition when a new appliance is added to the network;
so, its scalability is significantly high.

For demand response systems, a group of past works
[7]–[14] provided optimal scheduling approaches. Another
group of works [15]–[17] used machine learning techniques
in demand response to predict electricity prices, weather
conditions, energy consumption or its significance. Further-
more, a recent trend of research develops machine learning
based scheduling methods for demand response, e.g. by using
reinforcement learning [18], [19], ANN [8], and ANN with
genetic algorithms [20]. Although the recent research trend
considers the integration of scheduling and machine learning
techniques, according to the best of authors’ knowledge there
is no work that directly emulates the optimal scheduling of
appliances for demand response.

The remainder of this paper is organized as follows: Sec-
tion II describes the optimization problem for scheduling the
use of appliances in a residential demand response system.
Section III proposes our novel ANN-AH scheduling algorithm
that mimics the optimization process, taking into account
constraints. Section IV presents performance evaluation of
a smart home demand response system based on ANN-AH.
Finally, Section V summarizes the paper.



II. OPTIMIZATION PROBLEM

We now briefly define the optimization problem of non-
preemptive scheduling1 the working hours of appliances in or-
der to distribute the energy consumption over time prioritizing
“inexpensive” hours. To this end, first, let Pt denote the pre-
dicted value of price in cents per watt for time t ∈ {1, . . . , T}
and En denote the energy consumption in watts of appliance
n ∈ {1, . . . , N} per an active hour. Moreover, we assume that
an appliance n should stay active without an interruption for
an hours.

Furthermore, to create optimization program, we let x∗(n,t)
denote a binary decision variable on the activity of appliance
n at time t, and Θ be the upper limit for the total energy con-
sumption in one hour. Accordingly, the optimization program
is defined as

min

N∑
n=1

T∑
t=1

t+an−1∑
t′=t

Pt′Enx
∗
(n,t) (1)

subject to

T∑
t=1

x∗(n,t) = 1, ∀n ∈ {1, . . . , N} (2)

N∑
n=1

t+an−1∑
t′=t

Enx
∗
(n,t′) ≤ Θ, ∀t ∈ {1, . . . , T} (3)

dn∑
t=rn

x∗(n,t) = 1, ∀n ∈ {1, . . . , N} (4)

In this optimization program, (1) minimizes the total cost
of the consumed power over all appliances over all time
considering the constraints (2), (3) and (4). Note that the
objective function (1) is equivalent to the cost that has been
proposed in Reference [21]; however, we have originally
defined constraints (2), (3) and (4). Constraint (2) ensures that
the start of each appliance n is scheduled at only a single time.
Constraint (3) limits the total energy consumption of the active
appliances to Θ for each time t. Constraint (4) says that each
appliance n can only be active between its earliest start time
rn and its latest start time dn.

III. ARTIFICIAL NEURAL NETWORKS AUGMENTED WITH
CONSTRAINT SATISFACTION HEURISTIC (ANN-AH)

Since the optimization program has high computational
complexity and low generalization ability, we now present a
methodology, called Artificial Neural Networks Augmented
with Constraint Satisfaction Heuristic (ANN-AH), that emu-
lates the optimization program to generate a schedule with
close-to-optimal performance.

The ANN-AH system, which is shown in Fig. 1, is com-
prised of two main subsystems as Block of ANNs and
Constraint Satisfaction Heuristic. Mainly, while Block of
ANNs emulates the optimal scheduling based on the forecast

1Since we assume that the operation of each appliance is uninterruptible,
we use non-preemptive scheduling.

Fig. 1. Block diagram of ANN-AH for execution

electricity price, Constraint Satisfaction Heuristic satisfies the
constraints on the emulated scheduling.

The Block of ANNs is comprised of N parallel ANNs each
of which is associated with each appliance n and computes a
schedule {x(n,t)}t∈{1,...,T} for appliance n over a window
with length T based on the forecast electricity prices for
that window. Note that we assign a single ANN to each
appliance because the methodology is intended to be scalable
for adding new devices. That is, when a new device is installed
in the smart home environment, a new ANN can be trained
separately and added to the ANN Block without changing the
existing ANNs in this block.

We let X denote the schedule matrix which is the output
of Block of ANNs that combines the schedules for individual
appliances, where (n, t) entry of matrix X equals x(n,t). One
should note that X does not necessarily satisfy the constraints
(2), (3) and (4). Thus, the Constraint Satisfaction Heuristic in
Fig. 1 revise X in post-process to satisfy these constraints.

In the remainder of this section, we first present how the
optimization program for scheduling is emulated via ANN.
Then, we present Constraint Satisfaction Heuristic which is
executed on the output of ANN to satisfy the constraints of
scheduling.

A. Artificial Neural Network based Emulation of Optimal
Scheduling

In order to emulate the optimization we propose the training
procedure which is shown in Fig. 2. As shown in this figure,
the optimal schedule matrix, denoted by X∗, is considered as
a ground truth for the output X of Block of ANNs during the
training of Block of ANNs, where (n, t) entry of X∗ equals
x∗(n,t).

Based on X∗ and X, the scheduling error is calculated as
categorical cross entropy which is denoted by vector e whose
n-th entry is the error for appliance n.

ANN for each appliance n, namely ANNn, is separately
trained to minimize the corresponding scheduling error which
is the n-th entry of e, via Adam optimization algorithm [22].
To this end, before training starts 1) The electricity prices are
forecast2 hourly; and 2) The optimization program in (1)-(4)
is solved to collect X∗.

B. Constraint Satisfaction Heuristic

Although the emulation of optimization is practical with
respect to real-time operational costs and robust against the

2Note that within the scope of this paper, we assume that the hourly forecast
of electricity prices are available, so we do not perform forecasting.



Fig. 2. Design architecture block diagram

changes in the forecast prices as well as the forecasting errors,
the Block of ANNs itself is not able to satisfy the scheduling
constraints. Thus, we propose a heuristic post-processing
algorithm that minimally revise the emulated schedule to be
sure the final schedule satisfies the constraints (2), (3) and
(4). We present the pseudo-code of this algorithm, called
ConstraintSatisfactionHeuristic, in Fig. 3.

schedule ConstraintSatisfactionHeuristic(X, Θ) {
1 E = ComputeTotalConsumption(X);
2 for(t = 1; t ≤ T ; t+ +){
3 while(E(t) > Θ){
4 Φ = E(t)−Θ;
5 n∗ = argmin(〈En〉{n|En≥Φ and − Φ);∑t

t′=t−an+1
X(n,t′)==1}

6 X(n∗, t′) = 0 ∀t′;
7 E = ComputeTotalConsumption(X);
8 T n∗

available = {t | rn∗ ≤ t ≤ dn∗ and
(E(t′) + En∗ ≤ Θ)∀t′∈{t,...,t+an∗}};

9 t∗ = argmin(〈Pt〉t∈T n∗
available

);
10 X(n∗, t∗) = 1;
11 E = ComputeTotalConsumption(X);
12 }
13 }
14 return X;

Fig. 3. The Heuristic Algorithm

As shown in Fig. 3, the inputs of the ConstraintSat-
isfactionHeuristic algorithm are X and Θ. In addition to
these inputs, we assume that {rn}n∈{1,...,N}, {dn}n∈{1,...,N},
{En}n∈{1,...,N}, and {Pt}t∈{1,...,T} are globally available
parameters.

The algorithm first computes the total consumption at each
time t via ComputeTotalConsumption function which returns
the consumption as a vector of time on Line 1. This function
computes the consumption as

E = 〈
N∑

n=1

Enδ∑t
t′=t−an+1

X(n,t′)==1〉t∈{1,...,T} (5)

The main loop of the algorithm works over time between
Line 2 and Line 13. For each time t, until the hourly energy
consumption constraint in (3) is satisfied (i.e. as long as the

total energy consumption of the appliances that are scheduled
at t by the ANN module is greater than a threshold Θ), Lines
4-11 of the algorithm are executed. On Line 4, the difference
Φ between the total consumed energy at t and Θ is calculated.
On Line 5, the algorithm finds the appliance n∗ which is
operating between t− an + 1 and t and whose hourly energy
consumption is the closest as well as greater than or equal to
the value of Φ. On Line 6, the schedule for appliance n∗ is
cleaned, and on Line 7, E is computed for resulting schedule.

On line 8, a set of available time slots T n∗

available that may
be scheduled for the start of operation of appliance n∗ is
computed. Each of these slots must satisfy two conditions:
1) It should fall between the ready time rn∗ and deadline dn∗
of appliance n∗, so constraint (4) will be satisfied. 2) If the
time slot is used, the total energy consumption at this slot
and each of the following an∗ slots must not exceed Θ, so
constraint (3) will be satisfied.

On Line 9, to schedule the start of n∗, the algorithm selects
the time slot t∗ which has the minimum energy consumption
cost among the slots in T n∗

available. On Line 10, the start of
appliance n∗ is scheduled at t∗. Finally, on Line 11, E is
computed for resulting schedule.

IV. RESULTS

A. Dataset

During the performance evaluation of ANN-AH, we use
electricity prices dataset for Portland, Concord and Hub from
the data shared by ISO New England [23]. We use the hub
data collected in 2020 for testing and the rest for training. In
detail, 365 of 7665 samples is used for testing while 730 of
the reaming samples are used for validation during the training
of ANN. We also converted data from $/MWh to cents/Wh
and normalized it between 0-1 by dividing the original values
to their maximum.

Furthermore, we consider a smart home with 5 appliances,
dishwasher, Washing Machine, computer, Vacuum Cleaner
and LCD TV. For each of these appliances, we select an
set of feature by considering a real-life use case where the
resulting set of features are presented in Table I. We also set
Θ = 2000W .

TABLE I
FEATURES OF APPLIANCES

Name Power
(En)

Start
Time (rn)

Deadline
(dn)

Active
Duration (an)

Dishwasher 400 06:00 20:00 2
Washing Machine 510 09:00 21:00 2

Computer 90 01:00 21:00 4
Vacuum Cleaner 2000 10:00 19:00 1

LCD TV 98 18:00 21:00 3

B. Design and Parameters of ANN

We use Multi-Layer Perceptron (MLP) for each ANN in
Block of ANNs in the design of ANN-AH. The MLP model
is comprised of two hidden layers and an output layer with
128, 48 and 24 neurons respectively. In addition, the activation



function of each neuron is set to ReLU for each hidden
layer and to Softmax for the output layer. This model is
implemented by using Keras API in Python.

C. Experimental Results

We now evaluate the performance of ANN-AH for the
presented use case of smart home energy management. To
this end, the optimization program given in (1)-(4) solved by
CPLEX solver through using the docplex library on Python.
In this way, we computed the optimal schedule which is used
for the comparison during this subsection. Furthermore, we
created a benchmark random schedule in which the operation
of appliance n is started at random time from uniform dis-
tribution between rn and dn and continued for an successive
hours.

Fig. 4. Monthly Electricity Cost

First, Fig. 4 presents comparison of total monthly cost of
the considered smart home under ANN-AH with that under
optimal schedule and a schedule that is generated randomly. In
this figure, we see that the cost under ANN-AH is very close
to the cost under the optimal schedule for all months,where
the percentage cost difference is between 0.16% and 1.4%.
In addition, ANN-AH achieves considerable lower cost than a
random schedule which might emulate the usage of an human-
user. The cost reduction provided by ANN-AH over random
scheduling is between 13% and 33%.

Next, in Fig. 5, we present the histogram of the absolute
time differences between the schedule of ANN-AH and opti-
mal schedule over all appliances and all test cases. Our results
in this figure show that the absolute time difference equals
zero for the majority of cases while the occurrence of at least
1 hour difference is less than 200 which is 9.97% of the total
cases. In addition, the occurrence decreases with increasing
absolute time difference. One may indicate from the results
in this figure that the schedule of ANN-AH is significantly
matches with optimal schedule.

Moreover, Table II presents the difference between the
optimal scheduling and ANN-AH in absolute time for each
appliance. The results in this table show that the schedule of
LCD TV created by ANN-AH is almost the same with that
created by optimization because the time interval that LCD TV
can operate is only 1 hours greater than the required active

Fig. 5. Error distribution for all appliances

duration (see Table I) so the schedule of this appliance can
be changed for only 1 hour. The average difference between
schedule of ANN-AH and optimal schedule is about half
hour for Dishwasher, Vacuum Cleaner and Computer while
it is about 1.5 hours for Washing Machine. In addition, the
standard deviations are between 0.16 and 2.76 hours.

TABLE II
MEAN AND STANDARD DEVIATIONS OF ERRORS FOR EACH APPLIANCE

Name of appliances Mean (hours) Standard Deviation (hours)
Dishwasher 0.463 1.501

Washing Machine 1.457 2.762
Computer 0.652 2.633

Vacuum Cleaner 0.553 1.292
LCD TV 0.008 0.156

Finally, we present the comparison of ANN-AH and opti-
mal scheduling with respect to execution time in Table III.
Note that simulation and numerical studies held on this study
are carried out on a HP laptop with an Intel Core i7 2.80 GHz
CPU and 16GB RAM. In addition, for each method, the mean
and standard deviation are computed over 20 runs.

TABLE III
MEAN AND STANDARD DEVIATION OF EXECUTION TIME FOR EACH OF

ANN-AH AND OPTIMIZATION (SECS)

Optimization Heuristic
Mean 1.465 0.146

Standard Deviation 0.900 0.037

In this table, for a smart home with 5 appliances for a
single day, we see that ANN-AH computes a feasible and
close-to-optimal schedule in only 0.146 secs on average while
the optimization takes 1.465 secs to compute a schedule.
That is, the execution time difference between ANN-AH and
optimization is measured as 1 order of magnitude. We also
see that the standard deviation of ANN-AH is significantly
lower than that of optimization.

Our results that have been presented in this section indicate
that ANN-AH achieves very low total monthly cost which is
close to the cost of optimal scheduling while offering a fast,
practical and robust schedule that also satisfies the considered
constraints.



V. CONCLUSION

Demand response that aims to distribute the peak load
and relieve the system operators is crucial enabler of the
energy management in smart home. In a smart home demand
response, scheduling the operation times of connected appli-
ances is one of the main challenges. To this end, in this paper,
we propose a novel methodology ANN-AH that computes
the scheduling via ANN while satisfying the considered
constraints.

The proposed methodology in this paper provides the
following advantages over using optimal scheduling: 1) ANN-
AH is able to achieve close-to-optimal schedule while it only
requires 10 times lower computation time than the optimal
scheduling. 2) ANN-AH is highly robust against the changes
in the variables such as forecast of electricity prices which
may be due to forecasting error or abnormal activities in the
system. 3) ANN-AH can easily be used while new appliances
are being added to the operating system, while training is only
required for the recently added appliances.

Furthermore, we extensively evaluated the performance of
ANN-AH for home demand response system with 5 appli-
ances using the publicly-available electricity prices dataset.
Our results have shown that ANN-AH achieves significantly
low operating cost while achieving close-to-optimal schedule
under sub-second computation time.
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