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Abstract—We analyze, further and deeper, a recently proposed
technique for addressing the Massive Access Problem (MAP), an
issue in telecommunications which arises when too many devices
transmit packets to a gateway in quick succession. This technique,
the Adaptive-Quasi-Deterministic Transmission Policy (AQDTP)
is a special case of “traffic shaping” which involves delaying
some packets at the points of origin to alleviate congestion at
the routers. One nice feature of AQDTP is that it loses no
packets and allows an infinite buffer. In this work, to clarify
the approach in a general queueing theory framework, and to
move beyond the original telecommunications application, we
frame these potential delays as time spent at a café by customers
before proceeding to a service facility. We first present some
sample-path results that significantly refine and expand upon
what was shown in previous work, and then present further
results under a general stationary ergodic stochastic framework.
In the sample-path realm, we give conditions that ensure AQDTP
will not change the total delay and sojourn time of any customer
as compared to what that customer would have experienced if
there was no café; but we also prove that AQDTP can never
reduce the total delay. The difference is that, under AQDTP, some
of that delay is spent at the café instead of in the queue/line at the
service facility. In a stochastic framework, our focus is on stability
and constructing proper stationary versions of the model. Under
i.i.d. assumptions we dig deeper by proving Harris recurrence
of an underlying two-dimensional Markov process, and explicitly
find positive recurrent regeneration points.

I. INTRODUCTION

The widespread proliferation of the Internet of Things (IoT)
has brought about new challenges in the field of telecommu-
nications, particularly in the area of network access. One of
the major challenges is the Massive Access Problem (MAP),
which occurs when too many IoT devices simultaneously
transmit data to a base station or IoT gateway, causing con-
gestion and potentially untenable delays and loss of packets.
A variety of techniques to address the MAP have been
proposed over the years including adaptive routing ([7], [8]),
Access Class Barring ([11], [16], [17]), Cognitive Machine-to-
Machine communication ([1], [2]), and device clustering ([20],
[15]). More proactive techniques include Joint Forecasting-
Scheduling (JFS) and Priority based on Average Load (PAL)
([19], [21]. However, these techniques can involve time-
consuming machine learning methods and require a significant
amount of communication over the network to implement.

A simpler technique to address the MAP is that of traffic
shaping of which there is a wide-ranging literature (see
Section 7.2.7 in [14], and [13],[5],[4],[12]) where packets are
purposely delayed at the origin to alleviate congestion. (This
is not to be confused with “Traffic Policing”, which involves
preventative packet dropping, [6].)

A recent simple method of performing traffic shaping,
the Quasi-Deterministic Transmission Policy (QDTP), was
introduced and empirically investigated in the context of IoT
devices in [10]. Following that, QDTP and the more general
Adaptive-QDTP (AQDTP) were modeled and analyzed more
formally and directly using some queueing theory in [9]. An
important feature of this method is that it applies to an
infinite buffer, no packets are ever lost, and no apriori
bounding constraints are placed on the inputs (arrivals,
servicing).

Here in the present paper, keeping much more to a direct
queueing theory approach (to allow for a larger range of
applications), we present deeper new results on AQDTP. We
refer to the packets as customers and the initial delay facility
as a café; one would prefer to spend most of the delay in
a café rather than in a line somewhere; the notion of utility
comes to mind in some applications; customers might even be
willing to pay more for this: Business/First Class passengers
at airports who can wait in lounges, for example.

We first present some general sample-path results that
significantly refine and expand upon what was shown in [9];
in particular, the concluded inequality in Theorem 1 of [9]
now becomes an equality in the present paper as part (a) in
Proposition 3.2. We give conditions that ensure AQDTP will
not change the total sojourn time of any packet as compared
to what that packet would have experienced in the original
FIFO model without delays; and we also prove that AQDTP
can never reduce the total sojourn time. The difference is that,
under AQDTP, some of that sojourn is spent at the café instead
of in the buffer (line) at the service facility.

Next we move on to a stochastic framework under general
stationary and ergodic input. Our focus is on stability and
constructing proper stationary versions of the model. Under
i.i.d. assumptions we dig deeper by proving Harris recurrence
of an underlying two-dimensional Markov process, and explic-



itly find positive recurrent regeneration points (even when the
system does not empty).

The layout of the paper is as follows: The AQDTP model
is presented in Section II. Section III covers the sample-
path results. Section IV introduces the stochastic setting.
Section IV-B gives stability results, with Section IV-C spe-
cializing to i.i.d. input, Harris recurrence, and regeneration.
Section IV-D contains some final remarks.

II. AQDTP QUEUEING MODEL

We start with a FIFO single-server queueing model with
unlimited waiting space (queue/line/buffer), which for our
purposes will be called the nominal queueing model. The nth

arriving customer, n ≥ 0, is denoted by Cn. The primitives of
the model are the arrival times of customers {an : n ≥ 0} on
the time axis [0,∞), with interarrival times

An = an+1 − an,

and non-negative service times {Sn : n ≥ 0}. The only
assumption on the arrival point process is that an ≤
an+1, n ≥ 0, and an → ∞ as n → ∞. We place no further
conditions. The nominal model is what the customers would
experience if there was no traffic shaping; Cn would arrive at
time an, wait in the line (if the server is busy) then get served
and depart. Letting Ln denote the delay (in queue/line) of Cn,
it satisfies the classic Lindley recursion,

Ln+1 = (Ln + Sn −An)
+, n ≥ 0. (1)

For the AQDTP model, traffic shaping is implemented in
which the an are delayed yielding new arrival times to the
service facility, tn ≥ an, with interarrival times

Tn = tn+1 − tn.

With t0 = a0 = 0, {tn} is defined recursively by

tn+1 = max{tn +Dn, an+1}, n ≥ 0, (2)

where the strictly positive {Dn} are an additional primitive
(chosen by the designer) and can all be, for example, a
deterministic constant D (yielding the QDTP model) or more
generally depend on n and even be random variables. Since
tn+1 ≥ tn +Dn, it follows that

Tn ≥ Dn, n ≥ 0, (3)

meaning that consecutive arrivals are now separated in time
by at least the amounts Dn, in effect keeping them spread out
to avoid clustering. In fact, since the Dn are assumed strictly
positive, it follows that tn+1 > tn, n ≥ 0; {tn} forms a simple
point process even if {an} has batches, i.e., if an = an+1 for
some values of n. Also note that from (2), it is possible that
tn = an for some values of n. The service facility remains
a FIFO single-server queue, but the delays in queue become
{Vn} defined by (recalling (1)),

Vn+1 = (Vn + Sn − Tn)
+, n ≥ 0. (4)

We imagine that the initial delays

Wn = tn − an ≥ 0, (5)

take place at a café, where Cn first arrives at time an, then
attends the queue at the service facility at time tn = an+Wn.
Thus for the AQDTP model, Cn has a total delay (before
starting service) of

Zn = Wn + Vn, (6)

and a sojourn time of

Rn = Zn + Sn = Wn + Vn + Sn. (7)

In essence, the AQDTP model is a two-stage in tandem model
(but with only 1 server): Cn arrives at the AQDTP model’s
café (stage 1) at time an, then moves to the service facility
(stage 2) at time tn, waits in its queue (if the server is busy),
enters service at time

aen = an + Zn, (8)

then finally departs the entire system at time

adn = an +Rn. (9)

Note that since tn = an +Wn, we can write

Tn = tn+1 − tn = An +Wn+1 −Wn, n ≥ 0. (10)

The purpose of AQDTP is to reduce congestion (delay in line
at the service facility) as compared to that in the nominal
queue, by passing on some of the line delay to time spent in
the café; and no customers are to be lost, all are to be
served. The reduction, and how to achieve it, is illustrated in
the next section.

III. SAMPLE-PATH PROPERTIES OF AQDTP

Here we present some sample-path results, by giving con-
ditions on the Dn ensuring that delay at the service facility is
reduced, Vn < Ln, but we also show that total delay (hence
sojourn time too) can never be reduced, but is shared with the
café (recall (6)). The idea is that one can control how much of
total delay is allocated to each of the two, Wn, Vn, by choice
of the {Dn} used in the construction of {tn} from (2).

In Proposition 3.1 below, we include a proof of the recur-
sion (11) below (given in [9] as Lemma 2) for completeness
since it is a fundamental result. The rate result, Corollary 3.1,
is new. In Proposition 3.2 below, we greatly refine and expand
upon what was given in Theorem 1 in [9] in which only our
current part (a) condition was considered and it concluded with
Zn ≤ Ln instead our new refined conclusion Zn = Ln. All
of parts (b)-(d) are entirely new.

Proposition 3.1: The initial delay sequence Wn = tn −
an, n ≥ 0, satisfies a Lindley recursion,

Wn+1 = (Wn +Dn −An)
+, n ≥ 0; (11)

the delay in queue/line recursion of a FIFO single-server queue



with “service times” Dn and interarrival times An.1

Proof : By induction on n: W0 = 0 since t0 = a0 = 0, and
A0 = a1 − a0 = a1. Thus (W0 +D0 − A0)

+ = (D0 − a1)
+

and from (2) we have t1 = D0 if D0 > a1 in which case
(D0 − a1)

+ = D0 − a1 = t1 − a1 = W1, and t1 = a1 if
D0 ≤ a1 in which case t1 − a1 = 0 = (D0 − a1)

+ = W1.
Thus the recursion holds for W1.

Now suppose that for some n ≥ 1, (11) holds for Wn, that
is, Wn = tn−an = (Wn−1+Dn−1−An−1)

+. We will show
that Wn+1 = tn+1 − an+1 = (Wn +Dn −An)

+ as well. By
our hypothesis,

(Wn +Dn −An)
+ = (tn − an +Dn − (an+1 − an))

+

= (tn +Dn − an+1)
+.

From (2), if tn + Dn > an+1, then tn + Dn = tn+1 and
so (tn +Dn − an+1)

+ = tn+1 − an+1 = Wn+1; whereas if
tn + Dn ≤ an+1, then (tn + Dn − an+1)

+ = 0 = an+1 −
an+1 = tn+1 − an+1 = Wn+1; the recursion holds for n+ 1
as well.

Corollary 3.1: If a rate 0 < λ < ∞ exists for {an}, that
is, if an/n → 1

λ as n → ∞, and an average d exists for the
Dn, that is, 1

n

∑n
i=1 Di → d, as n → ∞, where d < 1

λ , then
the rate of {tn} exists and is also equal to λ; tn/n → 1

λ as
n → ∞.
Proof : Because of the Lindley recursion representation (11), it
is well known that under the conditions assumed, Wn/n → 0
as n → ∞ (see Lemma 6.1 on Page 134 in [23]). Hence, since
an = tn +Wn, the limit of tn/n is the same as an/n.

We now proceed to the main result in this Section.
Proposition 3.2: If Z0 = L0, then

(a) If Dn ≤ Sn, n ≥ 0, then Zn = Ln, n ≥ 0: total
delay in AQDTP is identical to that in the nominal FIFO
G/G/1 model.

(b) If Dn = Sn, n ≥ 0, and if V0 = 0, then Zn = Ln =
Wn, n ≥ 0 : Every customer enters service immediately
when arriving at the service facility; they spend no time
delayed in the queue; all delay is spent at the café.

(c) If Dn < Sn, n ≥ 0, then Zn = Ln, n ≥ 0, but for any
n ≥ 1, if Wn > 0 then Vn > 0 (equivalently if Vn = 0
then Wn = 0, i.e., tn = an). Any customer who spends
time at the café also spends time delayed in the queue;
delay is shared.

(d) If Dn > Sn, n ≥ 0, (and V0 = 0), then: Vn = 0, n ≥ 0,
and thus Zn = Wn, n ≥ 0. All of the delay is spent at
the café but Zn ≥ Ln, n ≥ 1 with Zn > Ln if Ln > 0
: Total delay, hence sojourn time, is increased for each
customer as compared to the nominal model. (But even

1But its meaning is subtly different: In the AQDTP model, Wn is the
amount of time that the nth customer spends in the café; there is no queue
nor service times at the café. This implies that as a whole, AQDTP can’t be
modeled as a classic tandem queue in which the first stage has service times
{Dn} and the second stage has service times {Sn}; for in that interpretation,
Cn would depart the café at time an + Wn + Dn which is incorrect; they
depart at time tn = an +Wn.

in this case, in some queueing applications customers
might prefer spending all their delay at the cafe even if
at the expense of increasing total delay.)

Proof : For (a) it suffices (since by assumption Z0 = L0) to
prove that if Zn = Ln for a given n ≥ 0, then Zn+1 = Ln+1.
To this end, assume that Zn = Ln for some n. Recalling (6)
and (10) we have:

Zn+1 = Wn+1 + Vn+1 (12)
= [Wn +Dn −An]

+ + [Vn + Sn − Tn]
+

= [Wn +Dn −An]
+ + [Zn + Sn −An −Wn+1]

+

= [Wn +Dn −An]
+ + [Ln + Sn −An −Wn+1]

+.

We consider two cases, (A) and (B):

(A) Wn+1 = (Wn + Dn − An)
+ = Wn + Dn − An >

0. Then starting with the last line of (12), using our
assumption that Ln = Zn = Wn + Vn, and noting that
[Vn + Sn −Dn]

+ = Vn + Sn −Dn if Dn ≤ Sn yields

Zn+1 = Wn +Dn −An + [Ln + Sn −An −Wn+1]
+

= Wn +Dn −An + [Vn + Sn −Dn]
+

= Wn +Dn −An + Vn + Sn −Dn

= Wn + Vn + Sn −An

= Ln + Sn −An

= Ln+1.

(B) Wn+1 = [Wn+Dn−An]
+ = 0. Then starting with the

last line of (12) immediately yields Zn+1 = [Ln+Sn−
An]

+ = Ln+1.

Thus in both cases Zn+1 = Ln+1, and the proof of the first
assertion is complete.

For (b): We already are assuming that Z0 = L0. Thus if
also V0 = 0, then 0 = V0 = Z0 = W0 from (a) and so the
recursions for {Ln} and {Wn} both start at 0 and hence yield
identical processes Ln = Wn, n ≥ 0. Thus from (a) it follows
that Vn = 0, n ≥ 0.

For (c): Suppose that 0 < Wn = Wn−1 + Dn−1 − An−1.
Then

Vn = (Vn−1 + Sn−1 −An−1 −Wn +Wn−1)
+

= (Vn−1 + Sn−1 −Dn−1)
+

= Vn−1 + Sn−1 −Dn−1 > 0,

because Sn−1 −Dn−1 > 0, n ≥ 1, by assumption.
For (d): Since from (3), Tn ≥ Dn, an upper bound

Vn ≤ V n, n ≥ 0,

is established by using the recursion

V n+1 = (V n + Sn −Dn)
+, n ≥ 0.

Thus if Dn > Sn, n ≥ 0, then Sn −Dn < 0, n ≥ 0, and the
result Vn = 0, n ≥ 0 follows. Thus Zn = Wn, n ≥ 0. But
again using the assumption that Dn > Sn, n ≥ 0, we obtain
(by substituting each Sn for Dn in the recursion for Wn) that



Wn ≥ Ln, n ≥ 0, and the strict inequality, Dn > Sn, implies
that Wn > Ln whenever Ln > 0.

Remark 3.1: The arrival rate result in Corollary 3.1 is a
significant one; one can always spread out the arrivals of a
point process {an} that has a rate λ by simply adding a fixed
amount (say a constant c > 0) to each interarrival time yielding
new interarrival times An + c. But then the rate will decrease
to

λ

1 + λc
.

Using AQDTP, the arrival rate is preserved, and hence so is the
departure rate which is the measure of how much demand has
been processed per unit time in the long run. That departure
rate often can not be allowed lowered in practice, or otherwise
QoS will suffer. The way that AQDTP accomplishes this feat
is to sometimes increase the interarrival times, but sometimes
decrease ones that are large; so on average nothing has been
altered.

Moreover, the result reveals a possible practical approach
to defining {Dn} so that its average d does exist: Fix an
appropriate parameter b > 0, and define Dn = bSn, for then
if the average of the Sn exists, a reasonable assumption in
practice, denoted by 1/µ, then so does the average d of the
Dn, and d = b/µ. A stochastic version of Corollary 3.1 is
given in Corollary 4.1 in the next section.

IV. A STOCHASTIC FRAMEWORK

Here we assume that {(An, Sn, Dn) : n ≥ 0} forms a
(general) stationary ergodic sequence of random variables,
equivalently that {(an, (Sn, Dn))} : n ≥ 0}, forms a point-
stationary ergodic marked point process. Since the random
variables are stationary, we let A = A0, S = S0 and D = D0

denote generic such ones. The arrival rate, λ = 1
E(A) , is

assumed positive and finite.
Our objective is to prove stability of the AQDTP model, by

which we mean the existence of a unique limiting distribution,
and an associated (proper) stationary ergodic version.

The following two conditions are referred to as the stability
conditions for the AQDTP model:

0 < E(D) < E(A) < ∞. (13)

0 < E(S) < E(A) < ∞. (14)

As we will see over the next several sections, the first condition
yields stability of {Wn}. Then adding in the second condition
along with the first, will yield joint stability of {(Wn, Vn)}.

A. Stability of {Wn}

A proof of the following is based directly on the classic
Loynes’ Lemma [18]; that and further applications of it can
be found on Pages 131-137, Lemma 6.1, and Theorem 6.1 in
[23].

Proposition 4.1: If stability condition (13) holds, then there
exists a (2-sided; n ∈ Z instead of only n ≥ 0) jointly

stationary ergodic version of {(Wn, An, Dn)} denoted by
{(W 0

n , A
0
n, D

0
n)} = {(W 0

n , A
0
n, D

0
n) : n ∈ Z}, such that

W 0
n+1 = (W 0

n +D0
n −A0

n)
+, n ∈ Z. (15)

Wn converges in total variation, as n → ∞ to the distribution
of W 0

0 , regardless of initial conditions, W0 = x ≥ 0. If
E(D) > E(A) then {Wn} is unstable; P (Wn → ∞) = 1.

Proposition 4.1 allows us to construct a stationary ergodic
version of the point process {tn}, and it has the same rate λ
as {an}:

Corollary 4.1: If stability condition (13) holds, then

t0n = a0n +W 0
n (16)

defines a point-stationary ergodic version of {tn}, that is,
T 0
n = t0n+1 − t0n defines a stationary ergodic sequence of

interarrival times. Moroever,

E(T 0) =
1

λ
;

{tn} has rate λ, the same as {an}.
Proof : Defining t0n = W 0

n + a0n, so that T 0
n = t0n+1 − t0n =

A0
n+W 0

n+1−W 0
n indeed yields a stationary ergodic sequence

of interarrival times since it is a function of {W 0
n} an already

proven to be stationary ergodic sequence; {t0n} is thus a point-
stationary ergodic version of {tn}. That it has rate λ follows
immediately:
E(T 0

n) = E(A0
n) + E(W 0

n+1 −W 0
n) =

1
λ + 0 = 1

λ .

B. Stability of AQDTP
From Proposition 4.1 and Corollary 4.1 we can replace

{(Wn, An, Tn, Sn, Dn)} by a two-sided stationary ergodic
joint version, {(W 0

n , A
0
n, T

0
n , S

0
n, D

0
n)}, in the following total

delay recursion so that it jointly uses stationary ergodic
versions of input:

Zn+1 = (W 0
n+D0

n−A0
n)

++(Vn+S0
n−T 0

n)
+, n ≥ 0. (17)

The first piece on the right, derived from (15), already forms
a stationary ergodic sequence. We now deal with the second
piece. Recalling from Corollary 4.1 that E(T 0

n) = 1
λ , and

our stability condition (14), λ < µ, we can analogously
obtain, using Proposition 4.1 methods, on the second piece,
a jointly stationary ergodic pair {(W 0

n , V
0
n ) : n ∈ Z}, yielding

a stationary ergodic version {Z0
n} of {Zn} satisfying

Z0
n+1 = (W 0

n+D0
n−A0

n)
++(V 0

n +S0
n−T 0

n)
+, n ∈ Z. (18)

We can also jointly throw in {S0
n} to obtain a stationary

ergodic sojourn time sequence via R0
n = Z0

n+S0
n. Analogous

to Proposition 4.1, we thus obtain:
Theorem 4.1: For the AQDTP model with stationary er-

godic input satisfying the stability conditions (13) and (14),
there always exists a unique stationary ergodic version of
total delay and sojourn time. (Wn, Vn) converges in total
variation to the joint distribution of (W 0, V 0) regardless of
initial conditions, and Zn converges in total variation to the
distribution of W0 + V0, regardless of initial conditions.



C. I.I.D. Input Case: Harris recurrence and regeneration of
AQDTP

Here we focus on the special case when each of the
following two input sequences, {An} and {(Sn, Dn)}, are
i.i.d. and independent. Note that we are allowing the two
random variables Sn and Dn to be dependent for each n,
because in applications Dn might even be a function of Sn.
In our framework here, a priori, place no restrictions on
the kind of dependency/correlation allowed between Sn

and Dn.
The above i.i.d assumptions, which we will refer to as the

i.i.d. input case, in particular imply that the nominal FIFO
queueing model forms a FIFO GI/GI/1 queue. Moreover,
the café delay recursion, Wn+1 = (Wn + Dn − An)

+, now
endowed with i.i.d. input, implies that {Wn : n ≥ 0} forms a
Markov chain.

Since Tn = tn+1− tn = An+Wn+1−Wn we can re-write
the recursion for {Vn} by using the Markov chain {Wn} to
drive it:

Vn+1 = (Vn + Sn − Tn)
+ (19)

=
(
(Vn + Sn −An − (Wn+1 −Wn)

)+

(20)

=
(
Vn + Sn −An − ((Wn +Dn −An)

+ −Wn)
)+

.

(21)

Focusing on (21), and recalling the i.i.d. assumptions, it is
immediate that for Mn

def
= (Wn, Vn),

{Mn : n ≥ 0}, forms a Markov chain on R2
+. (22)

We next dive deeper. The Markov chain {Mn} turns out
to be Harris ergodic; Proposition 4.2. (For basics on Harris
recurrence/ergodicity, see [3] Chapter VII, Section 3, including
Proposition 3.13, Page 205.)

A key feature of Harris recurrent Markov chains is that they
always form regenerative processes. In Proposition 4.3 we
explicitly find two different kinds of regeneration points, Type
I and Type II, which are exhaustive; they cover all the ground.
The first type are visits to the empty state, the second type are
more elaborate.

Proposition 4.2: For the i.i.d. input case satisfying the
stability conditions (13) and (14), the Markov chain Mn =
(Wn, Vn) is Harris ergodic.
Proof : From Theorem 4.1, {Mn} is ergodic and converges in
total variation to a limiting stationary probability distribution
π, regardless of initial conditions on M0. Thus for A ⊂ R2

+, if
π(A) > 0, then regardless of initial conditions, by ergodicity,

lim
n→∞

1

n

n∑
i=1

I{Mi ∈ A} = π(A) > 0, wp1;

A is visited infinitely often. Thus π serves as a recurrence
measure; {Mn} is positive Harris recurrent by definition.

To proceed further, we need an important Lemma:

Lemma 4.1: Suppose the stability conditions (13) and (14)
hold. Then either

P (A > max{S,D}) > 0. Type 1 (23)

or
P (D > S) > 0 Type 2 (24)

must hold. (A natural sufficient condition for obtaining (23)
would be that the interarrival time distribution has unbounded
support, P (A > x) > 0, x ≥ 0.))
Proof : If (23) does not hold, then (24) must hold, for if it did
not, then P (D ≤ S) = 1 implying that S = max{S,D}, and
thus (23) is equivalent to P (A > S) > 0 which indeed holds
from the stability condition (14); we get a contradiction.

Proposition 4.3:
Assume the stability conditions, (13) and (14).
1) Type I Regeneration: If (23) also holds, then the

successive times when Mn = (0, 0) can be chosen
as positive recurrent regeneration points. In particular,
total delay, Zn = Wn + Vn, forms a positive recurrent
regenerative process, with visits to state 0.

2) Type II Regeneration: If (23) does not hold, then (24)
does hold (by Lemma 4.1) and in this case positive
recurrent regeneration points can be found for {Mn}
of the form (in distribution upon regeneration) (X, 0)
where the construction of the random variable X is given
explicitly below in Algorithm 4.1.

Proof :
[Type I Regeneration]. Since the recursion for {Wn}

describes a stable GI/GI/1 queue, Pπ(W0 = 0) > 0. Thus
there exists a B > 0 such that Pπ(W0 = 0, V0 ≤ B) > 0. By
Harris recurrence, the event {Wn = 0, Vn ≤ B} thus occurs
infinitely often and does so a positive proportion of time. For
a fixed sufficiently small δ > 0, the assumed (23) implies
p = P (An > max{Sn, Dn}+δ) > 0. If we define k = [B/δ]
(the smallest integer ≥ B/δ), and define the event

F k
n = {An+i > max{Sn+i, Dn+i}+ δ, 0 ≤ i ≤ k − 1},

then whenever the event {Wn = 0, Vn ≤ B} occurs, the event
F k
n is independent of it and will occur with probability pk =

P (F k
n ) > 0.

Using (20), suppose that for some n, both events {Wn =
0, Vn ≤ B}, and F k

n occur. Then since Wn+1 = (Wn+Dn−
An)

+, we conclude that Wn+i = 0, 0 ≤ i ≤ k, implying that

Vn+1 =
(
Vn + Sn −An − (Wn+1 −Wn)

)+

= (Vn + Sn −An)
+

≤
(
B − δ

)+

,

and we can continue forward in time step-by-step to obtain
Vn+2 ≤ (B − 2δ)+, · · · , Vn+k ≤ (B − kδ)+ = 0. Thus
we have Wn+k = Vn+k = 0. By the Borel-Cantelli Lemma,
the event {Wn = 0, F k

n} will occur infinitely often with a
positive proportion of times ≥ pkPπ(Wn = 0, Vn ≤ B) > 0.



(The regenerative cycle length distribution is aperiodic: given
that Mn = 0, there is a positive probability P (An >
max{Sn, Dn}), that Mn+1 = 0 as well.) The proof of Type
I regeneration is complete.

Proof Type II Regeneration. First, note that since in
general (from (3)), Tn ≥ Dn, n ≥ 0, we have

Vn+1 = (Vn + Sn − Tn)
+ ≤ (Vn + Sn −Dn)

+, n ≥ 0.

We thus can define a new upper bound process {V̂n} by using
the recursion

V̂n+1 = (V̂n + Sn −Dn)
+, n ≥ 0, (25)

for which it follows that

Vn ≤ V̂n, n ≥ 0, if V0 = V̂0. (26)

Now choose B > 0 sufficiently large so that Pπ(W0 =
0, V0 ≤ B) > 0 which implies the event {Wn = 0, Vn ≤
B} will happen infinitely often. Choose a δ > 0 such that
P (D > S+ δ) > 0. Define k = ⌈B/δ⌉, and F k

n = {{Dn+i >
Sn+i + δ}, 0 ≤ i ≤ k − 1}. Now suppose that for some n,
both the events {Wn = 0, Vn ≤ B} and F k

n occur. Then
similar to the proof of Proposition 4.2 (we use (25) and (26)
and set V̂n = Vn), we have V̂n+k = 0 and hence Vn+k = 0.

Meanwhile, the random variable X = Wn+k was con-
structed from only i.i.d. {(Dn+i, An+i) : 0 ≤ i ≤ k − 1},
conditional on F k

n , and is independent of all else; that is how
Mn regenerates; next we give a more explicit algorithm for
the construction of such as X .

Algorithm 4.1:
1) Let {(Si, Di) : 0 ≤ i ≤ k − 1} denote k i.i.d. pairs

conditional on each pair satisfying F k
0 = {Di > Si +

δ}, 0 ≤ i ≤ k − 1.
2) Independently, let {Ai : 0 ≤ i ≤ k − 1} be i.i.d..
3) Use as input {(Ai, Di : 0 ≤ i ≤ k − 1} (starting with

W0 = 0) in the recursion
Wn+1 = (Wn +Dn −An)

+, 0 ≤ n ≤ k − 1.
4) Set X = Wk. Then when a regeneration occurs for

{Mn} at a time n+ k, it is distributed as (X, 0).

D. Some Final Remarks
In Proposition 4.3, although the stability conditions imply

P (A > S) > 0 and P (A > D) > 0, they are not strong
enough to imply P (A > max{S,D}) > 0, when S and D are
dependent. Individually, each of {Vn} and {Wn} will empty
infinitely often, a positive proportion of times; but in general,
they do not do so at the same time n; hence the need to derive
more involved regeneration points in such a case. We illustrate
here with a Counterexample:

Choose P (A = 2.6) = 1 and choose

(S,D) =

{
(2, 3) w.p. 0.5 ,

(3, 2) w.p. 0.5.

Then
P (A > S) = P (S = 2) = 0.5,

and
P (A > D) = P (D = 2) = 0.5.

But
P (A > max{S,D}) = P (A > 3) = 0.

To see that Mn ̸= (0, 0) for n > 0, we will show that
Wn and Vn move/alternate in opposite directions. Suppose
Wn+1 − Wn ≤ 0 for some n which can happen only when
(Sn, Dn) = (3, 2). Then Tn = 2.6 +Wn+1 −Wn ≤ 2.6 and
thus

Vn+1 = (Vn + 3− Tn)
+ ≥ (Vn + .4)+ = Vn + .4;

hence Vn+1 − Vn ≥ 0.4. Thus if Wn+1 − Wn ≤ 0, then
Vn+1−Vn > 0, and if Vn+1−Vn ≤ 0, then Wn+1−Wn > 0;
Mn ̸= (0, 0) for n > 0.

To explicitly characterize the regeneration points of Type II,
we choose any b > 0 such that Pπ(W0 = 0, V0 ≤ b) > 0, then
find a minimal such b. Suppose the event {Wn = 0, Vn ≤ b}
occurs. We can then condition on alternating {(Sn+i, Dn+i) :
0 ≤ i ≤ m − 1} = {(2, 3), (3, 2), (2, 3), . . . , (3, 2)}, for
any length m, which occurs with positive probability (1/2)m.
Thus Wn+1 = 0.4,Wn+2 = 0,Wn+3 = 0.4, . . . and so on,
alternating between 0.4 and 0. Thus Tn+i = 3 for even i and
Tn+i = 2.2 for odd i. Thus Vn+i goes down by 1 and up
by 0.8 until we have Vn+i = 0 for some i. If Vn+i = 0,
we must have Wn+i = 0.4 (since Mn ̸= (0, 0) for n > 0),
and hence Pπ(W0 = 0, V0 = 0.4) > 0 holds. Thus, as
regeneration points we can take those consecutive times n such
that Mn = (0.4, 0).

There are other queueing model examples of this sort of
phenomena: the classic FIFO GI/GI/c queue with c ≥ 2 can
be stable but such that the system will never be found empty
by an arrival. (One needs P (A > S) > 0 for it to empty.)
For c = 2, for example, just take An = 1.5, n ≥ 0, Sn =
2, n ≥ 0. Then ρ = λ/µ = 4/3 < 2, so stability holds. But
all arriving customers (after n = 0) will find one server free,
but the other busy. Nonetheless, for any stable (ρ < c) FIFO
GI/GI/c queue, regeneration points can be found (see, for
example, Chapter 7, Section 2, Page 344 in [3]). For other
classic examples, see [22] and [24].
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