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Abstract—Currently, the volume of mobile data traffic is experiencing an unprecedented increase due to the proliferation of highly
capable smartphones, laptops and tablets. To meet this explosive demands of mobile traffic, the mobile data offloading technology was
proposed to move traffic load of cellular networks to other wireless networks provided by infrastructures such as small-cell base
stations. In this work, an infrastructure-free offloading method, based on the hotspot function of smartphones, is proposed to realize
the data transaction among mobile users. In this transaction, mobile users with redundant data perform as accessible Wi-Fi hotspots,
and sell their mobile data to users with data requirements. Considering the scenarios with single and multiple data sellers, the basic
auction and networked auction frameworks are introduced to model the process of data transaction, respectively. Additionally, high
efficiency data allocation mechanisms are designed in this work, which decides how to allocate the amount of data to be sold over days
in a month and how to schedule the data transaction in different time slots in a single day, based on the auction models established. In
order to optimize the performance of data transaction systems, the behaviors of mobile users, such as changing demands of data
selling and buying, are considered when designing the data allocation mechanisms. Simulation results indicate that introducing the
prediction information of user behaviors can effectively improve the performance of data allocation, and achieve a high-efficiency data
transaction.
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1 INTRODUCTION

In recent decades, the mobile data traffic is experiencing
an enormous growth due to the significant penetration of
smartphones, as well as Web 2.0 and a large number of ap-
plications with high bandwidth requirements. Researchers
have predicted that each person will consume on average as
much as 5 GB of data each month by 2020 [1], [2]. To meet
this increasing and high speed data requirements, many
new communication techniques and standards are provid-
ed, such as LTE Release 8, which can achieve a high peak
data rates of 300 Mbps on the downlink and 75 Mbps on
the uplink for a 20 MHz bandwidth [3]. Additionally, ultra-
dense heterogeneous networks, which consists of a large
number of small-cell base stations (SBSs) to provide data
offloading, was proposed as an another solution to relief the
heavy traffic load brought to the macro base stations [4], [5].
Through data offloading, the data traffic from mobile users
can be sent over SBSs, such as femto base stations and Wi-Fi
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hotspots, when these SBSs are available, otherwise traffic is
delivered over the cellular networks.

However, almost all data offloading studied recently
can only be implemented with assistance of external infras-
tructures, i.e., SBSs. Sometimes these SBSs are operated by
the mobile network operators (MNOs), while usually the
SBSs are owned by some third parties, which means that
MNOs need to rent these SBSs if they want to utilize them
for data offloading. Meanwhile, due to the introduction of
these external and heterogeneous infrastructures, resource
management problems, such as power control and mobile
user equipment scheduling, become more complicated and
challenging, especially for networks with densely deployed
SBSs and a large number of mobile users. Moreover, system
stability, protocol compatibility and switching, traffic fair-
ness, network congestion control, etc., will pose great chal-
lenge for data offloading. In order to avoid these problems
above, we propose a novel infrastructure-free approach to
implement data offloading, i.e., operating the data transac-
tion among the mobile users by turning on the Wi-Fi hotspot
function of smartphones, in this work.

1.1 Motivation

Currently, to face the increasing data demands of mobile
users, all MNOs, such as AT&T in the US, Giffgaff in the UK
and China Mobil, have offered many optional monthly data
plans with different amount of data. While the arbitrary of
the data plan regulations made by different MNOs are the
same, i.e., if the data in the current data plan is not running
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out by the end of a month, the remaining data will not
be cumulative to the next month data plan. On the other
hand, when the monthly data has been used out before
the end of a month, mobile users have to purchase some
extra data with a higher price than monthly plans, otherwise
they will suffer a lower speed of data service. Therefore, the
opposite results leading by these regulations come down
to the following situations. On the one hand, users buying
data plans with large amount of data might still hold a
lot of unconsumed data at the end of a months. On the
other hand, users with little amount of data might use out
their data before the end of a month. As a consequence,
this contradiction between the redundancy and demands of
data resource make it possible for the two types of mobile
users to make an internal data transaction between them,
which is operated without any third party infrastructures.
According to a certain rule or contract of data transaction,
“data owners” can sell their unused data to those “data
requesters” at a lower price compared with the market price.

1.1.1 Feasibility of data transaction
The direct data dealing is never not allowed among the
mobile users, no matter whether they are belonging to the
same MNO. However, the hotpot function of current smart-
phones makes this data transaction between data owners
and requesters mentioned above to become a reality. By
unlocking hotspot mode, hotspot phones will allow other
mobile phones or wireless devices to access them and a
phone-to-phone communication via WiFi interface can be
realized [6], [7].

1.1.2 Effective and efficient data transaction
Working as a Wi-Fi hotspot means more energy consump-
tion and possible threat of personal information. So it is
reasonable for data owners to sell their data with a price
as high as possible. On the other hand, for data requesters,
buying data through this data transaction can obtain high-
speed data service by a relatively lower price. So these
requesters have the motivation to fuel the transaction and
compete for the data resource when there are many data
requesters. This competitive relationship can be modeled
by auction mechanisms effectively. So in this work, we will
introduce the auction models to describe the operation of
data transaction.

1.1.3 Changing demands of selling and buying data
The demands of selling and buying data always change
over time for data owners and requesters, respectively. To be
specific, the closer to the end of a month, the more urgent the
data owners are to sell their data. Similarly, number of data
requesters will increase when the end of a month is coming,
and the willing to buy data through data transaction tends
to be much stronger. Then tendency of data selling and
buying will further influence the price of data. So how to
allocate the amount of data to be sold in every day over
a month, especially the days in the last part of a month,
and how to schedule data auction in a single day are very
important to maximize utilities of data owners satisfy data
demands of requesters at the same time. In this work, we
will design different data allocation mechanisms to realize
high-efficiency data transaction, based on auction models.

1.2 Contribution
Main contributions of this paper are summarized as follows.

• We establish a basis auction framework for the data
transaction system with only one data seller. Based
on this model, the data allocation mechanisms are
designed to decide how to sell the extra data in
different days to optimize the expected income for
the data owner. In this work, we consider that the
urgency of data selling and buying are changing
over time, when maximizing the income of the data
owner. In addition, the transaction efficiency is also
considered to achieve a further optimization of the
income. Simulation results validate that the designed
allocation mechanism can increase the total income
of the system, and meanwhile the data transaction
efficiency can be also guaranteed.

• We propose a networked data transaction system,
in which there are multiple data owners operating
their own basic data auction, based on a networked
auction model. To describe the movement of data
bidders among different auctions, a data-demands-
driven mobility model is proposed, which can make
sure that both the data supply and the demand
can be satisfied at the same time. In addition, the
designed mobility model can also improve the effi-
ciency of data transaction.

• Based on the networked data transaction system
established, we design three different data alloca-
tion mechanisms to decide how to sell data in a
single day for every data auctioneer in the system,
to maximize the income obtained in each time slot,
each auctioneer’s income or the entire income of
the system. To optimize the system performance, the
prediction of the data bidders’ movement is con-
sidered when designing the allocation mechanisms.
Simulation results demonstrate that the prediction
based data allocation can bring more income for data
auctioneers than non-prediction approach.

The reminder of this paper is organized as follows. We
first review the relevant literature in Section 2. In Section 3,
the data allocation mechanisms are designed for the ba-
sic auction model based data transaction. Data allocation
mechanisms based on the networked auction model are
proposed in Section 4. The approximate solving of optimiza-
tion problems based on cooperative particle swarm for data
allocation is introduced in Section 5. Simulations are shown
in Section 6, and conclusions are drawn in Section 7.

2 RELATED WORK

Mobile data offloading by applying SBSs in heterogeneous
networks, as a feasible solution to deal with the increasing
of mobile data requirement and services, has attracted more
and more attention. With assistance of heterogeneous SBSs,
the throughput of cellular networks can be greatly im-
proved. To model and analyze the relationship between data
requirements and providing, many economics based theory
have been introduced to the mobile data offloading prob-
lems . In [8], a user-centered opportunistic offloading ap-
proach was proposed based on a network formation game,
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in which the users autonomously formed a cooperative
network, and promised device-to-device sharing with their
adjacent users. A coalitional game framework was proposed
in [9] to improve the performance of mobile data offloading
in wireless mesh networks, by savings the base stations’
power consumption and reimbursements for mesh users.
A competitive game was established for mobile computing
offloading problem in [10], in which each user pursued
to minimize its own energy consumption, and the game
formulated was subject to the real-time constraints imposed
by the job execution deadlines, user specific channel bit
rates, and the competition over the shared communication
channel. In [11], Nash bargaining game combining with
the group bargaining theory was analyzed for the mobile
traffic offloading in HetNets, in which the social welfare
maximization and the fairness of resource sharing were both
considered.

Auction has become an important and effective theory in
network economics. In recent yearsy, auction mechanism-
s have been introduced to deal with dynamic spectrum
optimization, spectrum sharing, device-to-device communi-
cations and many other issues in wireless networks [12],
[13], [14]. To deal with the increasing of mobile data traffic,
a novel spectrum sharing framework for the cooperation
and competition between LTE and Wi-Fi in the unlicensed
band were designed based on the an effective auction
model in [15], in which the LTE provider performed as
the auctioneer (buyer), and the APOs were the bidders
who compete to sell the rights of onloading the APOs’
traffic to the LTE provider. In [16], a multi-objective auction-
based switching-off scheme was designed for heteroge-
neous networks to foster the opportunistic utilization of
the unexploited small-cells capacity, and an energy and cost
efficiency was achieved by the designed bidding strategy
and pricing rule. In order to increase the network capacity
dynamically and adaptively, a reverse auction model was
established to formulate the mobile data offloading prob-
lem in [17], in which three alternative greedy algorithms
were introduced to solve the offloading problem. In [18],
a hierarchical combinatorial auction was designed for the
virtualization issues in 5G cellular networks, based on a
truthful and sub-efficient resource allocation framework.

However, as mentioned above, all these current studies
focus on the mobile data offloading depending on applying
third party infrastructures. The internal transaction among
mobile users to realize data offloading has been hardly
investigated. In this user-initiative data offloading, it is
necessary to study the influence of human behaviors on
data transaction performance. So in this work, the statis-
tics feature of data requests, rest amount of mobile data
owned by data sellers are consider to optimize the efficiency
and balancing of data allocation. In addition, for the data
transaction system with multiple data sellers, the prediction
information of data requester’ movement among different
data auctions is introduced into the data allocation design
to optimize the system performance.

3 DATA ALLOCATION OF SINGLE DATA PROVIDER

In this section, a classic basic data action, first established
in [19], [20], will be introduced to model a series of succes-

TABLE 1
List of Main Notations in the Basic Auction (B) and Networked Auction

(N) Formulation for Data Transaction.

Parameter Definition
λ bid arrival rate for data owner (B)
λi bid arrival rate for the ith data owner (N)
δ increment of data bids
h highest price that data requesters intend to pay

rc / rc,i
rate parameter of exponential distributed considering
time for the data owner (B) / the ith data owner (N)

rs / rs,i
rate parameter of exponential distributed service
time for the data owner (B) / the ith data owner (N)

v0
beginning state of data auction /
starting price of data auction

vj
state of that j data bids have arrived /
price of the jth bid made by data requesters

vh
state that that highest bid has been made /
highest bid made by data requesters

Aj state of the jth bid is accepted
ni number of data requesters in auction i (N)
xi price has been reached in auction i (N)
fi,j probability of each bidder in auction i gives a bid (N)
C total amount of data left (B)
D total days left to sell data (B)

cd / cid
amount of data to be sold on day d (B)
for data seller i (N)

M total time slots for a day (N)
N number of data sellers (N)
zim data to be sold in time slot m for seller i (N)

sive transaction among a single data owner and multiple
potential data buyers as bidders. In each of the successive
transaction, the data owner operate an auction to sell a fixed
size of his/her unconsumed and unnecessary data from
his/her data plan. In a later section, this basic auction will
be extended into a networked auction for the data transac-
tion system with multiple data owners. Before proceeding
further, we summarize the main notations used throughout
the following sections in Table 1.

3.1 Basic auction mechanism
The process of the auction-based data transaction with a
single data seller is shown in Fig. 1. In this work, we
assume that the automatical operation of data auction can be
realized through a special application installed in both of the
data owners’ and bidders’ smartphones. This assumption is
feasible since there are already many mature mobile appli-
cations which make the auction-based transaction become
true, especially on some e-commerce platforms. Then we
will introduce the elements and operations in the automatic
data auction as follows.

(1) Data auctioneer: The mobile user with unconsumed
and needless mobile data. To meet data requirements re-
quested by more mobile users, we assume that, instead of
selling all data as a whole, data is cut into “data blocks”
with a certain size, and in each round of auction, only one
block of data can be sold. Then the data owner will perform
as a auctioneer to operate a series of successive data auction.

(2) Data requesters: The mobile users who have run out
their mobile data and have the data requirements. In each
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Mobile device accepted by the hotspot

Data Requesters

Fig. 1. Basic data auction with single auctioneer.

round of data auction, all data requesters are potential data
buyers and give bids for the data.

(3) Beginning of a basic auction: The data owner starts an
auction by unlocking the hotspot mode of his/her phone,
sets the starting price v0 of one block of data planned to sell,
and then waits for bids.

(4) Bid arrivals: The personal mobile business for a single
user arrives according to a Poisson process with a certain
rate, and therefore the average time between successive
arrivals is the reciprocal of the arrival rate [21], [22], [23].
During the data auction, every time when the business
arrivals to the phone of a data requester, a data bid will be
triggered. We assume that the data bid providing is a public
information which can be observed by both the data owner
and other data requesters. The business arrivals for different
mobile users are independent and identically distributed
(i.i.d.), so that the bid arrivals for the data owner can be still
regarded as a statistic process obeying Poisson distribution
with arrival rate λ. If a bid is not accepted by the data owner,
then the next bid will increase the value of the offer by fixed
δ. In addition, potential buyers will stop increasing the price
of bid as long as the highest price h, at which data requesters
intend to pay, is reached. The value of h can be set as a
constant lower than the market price of data.

(5) Auctioneer decisions: After each bid arrives, the data
owner waits for a random “considering time” to determine
whether to accept the current bid or not. Assume that the
consider time has an exponential distribution with average
r−1
c and the memoryless property. If the next bid arrives

before the end of the considering time, then this considering
process is repeated for this new bid. On the contrary, if
the considering time expires and still no new bid arrives,
the data owner will accept the latest data requester’s offer,
allow him/her to access into the hotspot and complete the
data transaction with this successful data bidder. Due to the
memoryless property of the considering time, potential data
buyers cannot use the ongoing observations of considering
time to give bids. Furthermore, the remaining considering
time at any time point after an arrived bid has the same
distribution as the initial considering time.

(6) Data transaction procedure: The data transaction will

last a “service time” before starting a new round of data
auction by the data owner. The service time is modeled as
an exponentially distributes time with rate rs, and is i.i.d.
and memoryless in different rounds of auctions.

Remarks: According the “auctioneer decisions” step, we
notice that if the data owner decides to wait a long time
for the next bid , he/she might have a chance to get a
higher-price offer, but the cost is a long time consump-
tion. Conversely, short “considering time” will lead to a
frequently repeated auctions, in each of which the data
owner tends to get a low-price offer due to his/her weak
patience. So for the data seller, how to select appropriative
“considering time” to optimize the income, specifically, the
income per unit time that the auctions bring to the data
owner? Furthermore, the willing of selling and buying data
of the data owner and requesters is always changing over
days, as explained in Section 1.1.3. So how to allocate the
amount of rest redundant data to be sold in different days
before the end of a month, plays an important role when
maximizing the income of the data owner and satisfying
demands of data requesters. Next, we will pay attention to
the problems above and design the data allocation mecha-
nisms to optimize the performance of the basic auction-base
data transaction system.

3.2 Data allocation for single-auctioneer transaction
The mathematic model and system performance of the basic
auction model have been well established and analyzed
in [24], in which many important economical characteristics
of basic auction model are derived and provided with
closed-form expressions. First, we introduce this auction
model into the data transaction system, and summarize
some of important results obtained in [24] as Lemma 1.

Lemma 1. In a data auction system with only one data auction-
eer, the starting price of the data is v0. The data bids arrive as
a sequence of Poisson arrivals with arrival rate λ, and every bid
increases the value of offer by δ. The data requesters stop providing
bids when the offer price reaches h. The data seller accepts the bid
after a considering time, which follows an exponential distribution
with average r−1

c , and starts a new round of data auction after the
service time, which also follows an exponential distribution with
average r−1

s . Then the average income of the data owner from a
single round data auction is

EI =
h∑
j=1

(v0 + jδ)Pa (j) = v0 + δ · 1− ρh

1− ρ
, (1)

where ρ = λ
λ+rc

. The total average time that every round of data
auction lasts is

T = λ−1 + r−1
c + r−1

s . (2)

The average income per unit time for the data owner is

E0
I =

EI
T

=
(
λ−1+r−1

c +r−1
s

)−1 ·
(
v0+δ ·

1−ρh

1−ρ

)
. (3)

To be general, let v0 = 0 and δ = 1, the average income per unit
time can be gotten as

EGI =
EI
T

=
(
λ−1 + r−1

c + r−1
s

)−1 · 1− ρh

1− ρ
. (4)
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Proof: See [24].

Consider that the total amount of data left is C, and the
data seller plans to sell all of his/her data in the last D days
of the month. Let cd (d = 1, 2, ..., D) denote the amount
of data planned to be sold on the dth day. As assumed
previously, in each round of data auction, only one-unit
amount of data can be sold. Then on the dth day, cd rounds
of data auction are needed for the data auctioneer to sell
the amount of cd data. We use λ (d) to denote the arrival
rate of data bid on the dth day, and r−1

c (d) to denote the
average considering time of the data seller on the dth day.
As mentioned previously, the urgency of selling and buying
data from the data provider and requesters, respectively,
change over time. Therefore, we assume that λ (d) and rc (d)
satisfy the following settings:

λ (d1) ≤ λ (d2) , ∀d1 < d2; (5a)
rc (d1) ≤ rc (d2) , ∀d1 < d2, (5b)

which imply than the closer to the end of a month, the more
frequently the data requesters make bids, as well as the data
seller accepts the offers.

According to Lemma 1, the average income of the data
auctioneer from a single round of data auction on the dth
day is

EI (d) =
1− ρh (d)

1− ρ (d)
, d = 1, 2, · · · , D, (6)

where ρ (d) = λ (d) /[λ (d) + rc (d)]. Then if all allocated
data is sold, the total expected income can be achieved is

E (d) = cd ·
1− ρh (d)

1− ρ (d)
, d = 1, 2, · · · , D. (7)

To maximize the total income of D days, we establish
the following income maximization problem for the data
allocation.

max
D∑
d=1

cd ·
1− ρh (d, cd)

1− ρ (d, cd)
, (8a)

s .t.
D∑
d=1

cd ≤ C, (8b)

cd ≤ C − γ (D − d) , ∀d = 1, 2, · · · , D. (8c)

In (8a),

ρ (d, cd) =
λ (d)

λ (d) + rc (d, cd)
. (9)

Constraint (8c) indicates that the total amount of data allo-
cated to be sold in D days from d = 1 to d = D should
not exceed the amount of total data C left on the first day
(d = 1). In constraint (8b), γ > 0 is set as a constant to
denote the amount of data consumed by the data owner
every day. We can also consider γ as the amount of data to
be reserved for the seller’s own data demands. To guarantee
that the data owner will have plenty data to consume in the
following D days after allocating his/her data, the amount
of γ (D − d) data needs to be reserved on the dth day.
Therefore, constraint (8b) provides the upper limit of the
amount of data allocated on the dth day.

3.2.1 Efficiency Aware Data Allocation

According to (8), we can notice that if EI (d), the average
income of the data auctioneer from a single round auction,
is high, the data allocation mechanism formulated by this
income maximization problem will allocate more data to
that day to maximize the total expected income the data
auctioneer. With a fixed considering time, selling more data
means that the data auction will last longer according to (2),
which reduces the efficiency of the data transaction. When
the data auctioneer anticipates a higher efficiency as well
as a optimized income, it is necessary to design a data
allocation method which can achieve a tradeoff between
the total income and time cost. To realize this tradeoff, we
design an efficiency-aware data allocation (EADA), in which
the considering time, rc in (9), is modified by the following
rule:

rEADAc (d, cd) = r (d) [1 + φ1 (d, cd)] , (10)

where

φ1 (d, cd) = 1− e−[
cd

C−γ(D−d) ]
2

. (11)

According to the definition in (11), rECDAc in (10) is an
increasing function of the allocated amount of data to sell
on the dth day, cd. In other words, when the amount of
allocated data is large, the EADA mechanism will adjust
the seller’s considering time to improve the data transaction
efficiency and increase the average income per unit time
of the data seller. On the contrary, when the allocated
data is little on a day, the considering time tends to be
longer to increase the expected income of a single round of
auction. The upper limit of the allocated data, C−γ (D − d),
performs as a control factor to modify the increasing speed
of the bid acceptation rate with increasing cd. In addition,
r (d) in (11) is the original rate of bid acceptation, which has
the property given by (5b).

3.2.2 Efficiency and Request Aware Data Allocation

Through (6) and (9), we can obtain the first order partial
derivative of EI , the average income of a round of data
auction, with respect to variable λ: ∂EI/∂λ > 0. This result
holds for both mechanisms of original data allocation and
EADA. Therefore, low rate of data bid will reduce the
income of the data auctioneer. By the both of the data
allocation methods above, little or even no data will be
allocated to days with small λ, especially when the data
bid arrival rate is smaller than the rate of bid acceptation. In
other words, the requests from data bidders on these days
are hardly met if the bid arrival rate is small, which may
also result from that there are not too many data requesters.
To meet the data requests in days with small λ, we design
an efficiency and request aware data allocation (ERADA)
mechanism, in which the considering time is adjusted to fit
the data bid arrival rate according to

rERADAc (d, cd) = r (d) [1 + φ1 (d, cd)]φ2 (λ (d) , r (d)) , (12)

where r (d) is defined similar to EADA, φ1 (d, cd) is defined
as (11), and φ2 (λ (d) , r (d)) is obtained by

φ2 (λ (d) , r (d)) = emin{λ(d)−r(d)
r(d) ,0}. (13)
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According to (13), when λ (d) < r (d), then we can get

φ2 (λ (d) , r (d)) = exp

{
λ (d)− r (d)

r (d)

}
< 1. (14)

Consequently, the considering time to accept the data bid
can be expended. Then the expected incomes of the data
seller increase potentially, and more data will be allocated to
the corresponding days. On the other hand, when λ (d) ≥
r (d), some data can be allocated to the corresponding days
through applying EADA. Therefore, rc remains the same as
EADA, i.e., φ2 (λ (d) , r (d)) = 1.

4 NETWORKED ACTION MODEL FOR DATA
TRANSACTION WITH MULTIPLE AUCTIONEERS

In the precious section, we establish and analyze the data
allocation problem for a single data auctioneer. According
the proposed mechanisms of EADA and ERADA, the ex-
pected incomes of the data seller can be optimized with
a high efficiency, and the data requests from data buyers
can be satisfied as much as possible. By applying EADA
and ERADA, the data seller can make decisions that how to
allocate his/her rest data to remaining days before the end
of a month. The next problem is that after the amount of
data to be sold in a single day has been decided, then how
to operate data auctions to achieve a further optimization of
the daily income?

As analyzed previously, the proposed income maximiza-
tion problems in (8) is based on the fact that the needs of
data selling and buying vary over time within a month.
However, in a certain day d, specifically, during the period
of data transaction on this day, the rate of arrival data bids
remains relatively stable, i.e., with λ (d). In addition, by the
designed EADA and ERADA, the average considering time
can be optimized according to (10) and (12), respectively,
when cd has been determined. In a data transaction system
with only one data auctioneer, this auctioneer can operate
the basis data auction introduced in Section 3.1, and the
expected maximum income can be achieved when applying
EADA and ERADA. However, when there are multiple data
auctioneers, who share the same community of potential da-
ta requesters, then some system status, such as the number
of data requesters in a single auction, the data bid arrival
rates, etc., may change if the mobility of data requesters a-
mong different auctions is allowed. Therefore, it is necessary
to analyze the data auction and allocation mechanisms for
a networked data transaction system, in which more than
one data owners are planning to sell their fixed amounts
of data. Fortunately, with assistance of current mobile social
networks, some system status in auctions operated by differ-
ent data owners can be shared among users, i.e., referring
to both the data sellers and requesters, through the social
platforms. This status information can be very helpful for
the further performance improvement. Consequently, how
to model the networked data transaction system and how to
make advantage of the system status information to design
an efficient data auction and allocation mechanism become
essential problems to be studied.

In this section, we extend the basis data transaction
model into the networked system to discuss the data trans-
action processes operated by multiple data auctioneers. The
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Fig. 2. Networked data auction system and the mobility model.

networked data transaction system model and the mobility
model are shown in Fig. 2. A system-status-aware mobility
model is designed for data requesters. Then we analyze
the stationary probabilities of the networked auction system
for the performance estimation. Furthermore, to maximize
the income of every data auctioneer, three data allocation
mechanisms are proposed in this part.

4.1 Networked auction model

The classic networked auction model has been formulated
in [24]. In this part, we first introduce the established math-
ematical model in [24] as follows.

Consider that there are N data suctions operated
by N data sellers in the system at the same time.
These sellers are numbered by i = 1, 2, · · · , N . Let
n (t) = {n1 (t) , n2 (t) , · · · , nN (t)} denote the number-
s of potential data buyers in auction i at time t, and
X (t) = {x1 (t) , x2 (t) , · · · , xN (t)} denote the price has
been reached in auction i at time t. Similar to the basic
auction, xi (t) ∈ {v0, v1, · · · , vhi

}, and vhi
is the highest

price that data requesters intend to pay in auction i. Then
the state of the networked data auction system can be
described as the pair of vector (n (t) ,X (t)). In each of
these N auctions, the auction rule and strategy are similar
to the basic auction. We consider that the bid arrival rate in
each auction is dependent on the price xi (t) and number
of bidders ni (t) in this auction. In addition, for current
achieved prices vj (j = 1, 2, · · · , h), there are at least one
potential data buyer has given a bid and he/she will not
give the next bid. Contrarily, if current price is v0, which
means the beginning of a new round of auction, then each
of the ni (t) potential buyers are allowed to give the next
bid. As a consequence, we can define the bid arrival rate in
auction i as

λi (ni, vj) = (ni − 1)λifi,j , (15a)
λi (ni, 0) = niλi, (15b)

where fi,j = P (vj < vhi), and λi > 0 is the rate of that
each data bidder in auction i gives a bid. Moreover, similar
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to the basic auction model, we set r−1
c,i to be the average

considering time of auctioneer i, which is an i.i.d. random
variable having an exponential distribution.

4.2 Mobility model
In this this part, we will design a mobility model for the
data requesters based on the mobile bidder model (MBM)
established in [24].

In a networked data transaction system operated by
N data auctioneers, we consider that the data requesters
can enter and leave the whole system, as well as moving
from one auction to another in the system. Then how to
design a mobility model to describe the moving of these
potential data buyers, is an important issue to keep balance
of the number of participants in each auction, optimize the
efficiency of the system and maximize the expected income
of each data sellers. In order to achieve these objectives
above, we introduce some prediction-based factors that may
affect the user behaiours, and then propose a system-status-
aware mobility model for the networked data transaction,
which can reflect the mobile users’ rationality and further
improve the performance of the networked data transaction.

Next, we will formulate the mobility of data requesters.
Consider that in auction i at time t, the number of potential
data buyers is ni and the current achieved bid is vi (v0 ≤
vi ≤ vhi ). Then the dynamic parameters of the mobile model
are defined as follows.

(1) Arrivals from the outside of the system: Data
requesters arrive into auction i from the outside of the
networked data transaction system according to a Poisson
process with arrival rate λ0i .

(2) Departure from the ith auction: Consider that the
bidder providing the current highest price for the data
cannot leave auction i until that the next bid arrives or
the data seller decides to accept his/her bid. Moreover,
consider the situation that when a new round of the auction
is operated by auctioneer i, all the data bidders are allowed
to departure from this auction. The the rate of departure
from auction i can be given as follows

µi (ni, vj) = (ni − 1)µi, (16a)
µi (ni, 0) = niµi, (16b)

where µi > 0 is the departure rate of each data bidder in
auction i. The definitions above are similar to the rate of bid
arrivals formulated in (15).

• Departure from auction i to the outside of the system:

Denote PiD as the probability that the data bidders in
auction i leave the entire networked transaction system.

• Departure from auction i to auction k:

In the auction-based networked data transaction system,
mobile users with data requests are allowed to shift from
one auction to another. We assume that the amount of rest
data to be sold in the day can be updated and observed by
other auction participants in the networked system. This as-
sumption is reasonable and feasible because this kind of in-
formation can be provided by data owners, and broadcasted
to data requested through the relevant mobile applications.
Then the data requesters transfer among different auctions

according to the amount of remaining data to be sold in
these auctions. We represent the transition probability from
auction k to auction i with Pki, which is given by

Pki = (1− PkD) ·
ci,rest∑N
j=1 ci,rest

, i, k = 1, 2, · · · , N. (17)

According to (17), data requesters more likely tend to par-
ticipate the data auction operated by the data owners with
more remaining data, which can give them more chances
and higher probability to get the data quickly and success-
fully. In addition, the definition of transition probability in
(17) essentially guarantees

N∑
k=1

Pik + PiD = 1. (18)

4.3 Expected income of the networked system

To optimize the data auction performance and maximize the
incomes of data auctioneers through effective data alloca-
tion mechanism, it is important to analyze the stationary
distribution and the expected income of the networked
data transaction system. The stationary probabilities of the
number of data requesters in each auction have been ana-
lyzed in [24], the main results of which are summarized as
Lemma 2.

Lemma 2. In a networked data auction system, data bidders ar-
rive and departure from auction iwith rate λi and µi, respectively.
According to the mobility model of data requesters established
in Section 4.2, the approximate stationary probabilities of data
auctioneer i (i = 1, 2, · · · , N ) and the stationary probability of
the networked data transaction system are given by

π (ni) =
ψni
i e

−ψi

ψi (ni − 1)!
, (19a)

π (n) ≈
N∏
i=1

ψni
i e

−ψi

ψi (ni − 1)!
, (19b)

respectively, where ψi = φi/µi, and φi (i = 1, 2, · · · , N ) are
the solutions of the following linear equations:

φi = λ0i +
N∑
k=1

φkPki. (20)

When the bid arrivals and the data transactions are very frequent,
which means that for all i = 1, 2, · · · , N , µi << rc,i, then
∀ni > 0, ki > 0, the stationary solution π (X |n ) is given by

π (X |n ) ≈
N∏
i=1

πi (xi |ni ), (21)

where

πij|ni
=πi0|ni

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l
, (22a)

πi0|ni
=

1+ hi∑
j=1

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l

−1

. (22b)

Proof: See [24].
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Based on these results in Lemma 2, we further derive the
average of the income per unit time for every data owner in
the system, and we the results in Theorem 1.

Theorem 1. In a networked data auction system with N data
auctioneers, data bidders arrive and departure from auction i with
rate λi and µi, respectively. Consider the situation that the bid
arrivals and the data transactions are very frequent. According to
the mobility model of data requesters established in Section 4.2,
expected income Ei,ni for auction i when there are ni data
requesters in this auction is given by

Ei,ni =
hi∑
j=1

jP ia (j |ni ), (23)

where

P ia (j |ni ) =
rc,i
λini

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l
. (24)

The average of the income per unit time for the data owner i
is given by

E0
i =

∞∑
ni=1

ψni
i e

−ψi

ψi (ni−1)!

rc,i
∑hi

j=1 j
∏j
l=1

λi(ni−1)fi,l−1

rc,i+λi(ni−1)fi,l

1 +
∑hi

j=1

∏j
l=1

λi(ni−1)fi,l−1

rc,i+λi(ni−1)fi,l

. (25)

Proof: See Appendix.

4.4 Data allocation for networked data transaction

Based on the obtained analytical results given in the last
section, we will design some efficient data allocation mech-
anisms for the networked data transaction system in the
following part.

Consider a networked data transaction system with N
data sellers, each of them needs to sell all allocated data
in a certain duration [0, T ]. Data requesters are allowed to
enter, departure from any of N data auctions according to
the mobility model introduced in Section 4.2.

For a certain day d = 1, 2, · · · , D, vector c =
{c1d, c2d, · · · , cid, · · · , cNd}, determined by the EADA or
ERADA proposed previously, denotes the amounts of data
allocated to be sold for each of the N data sellers. In
following work, we apply the ERADA mechanism and the
rate of considering time of data auctioneer i = 1, 2, · · · , N
modified by (12) - (14). Then for data seller i, we have

rc,i (d, cid) = ri (d) [1 + φ1 (d, cid)]φ2 (λ (d) , ri (d)) , (26)

∀i = 1, 2, · · · , N . When the requests of data is far more than
the data can be provided, then φ2 (λ (d) , r (d)) = 1, and the
rate of considering time for each data auctioneer i is

rci (d, cid) = ri (d) [1 + φ1 (d, cid)] . (27)

Consider that the duration [0, T ] is slotted into M
time slots, each of them is indexed by m = 1, 2, · · · ,M .
We assume that in every time slot, the number of da-
ta bidders in every auction is stable. Then let n (m) =
{n1 (m) , n2 (m) , · · · , nN (m)} denote the number of da-
ta bidders in auction i at time slot m, ∀i, m. For each
time slot m, we express the allocated amount of data to
be sold for every data seller i in the system by zm =
{z1m, z2m, · · · , zNm}.

4.4.1 Non-cooperative Distributed Data Allocation (NDDA)
According to Theorem 1, when there are ni (m) data re-
questers in auction i at time slot m, and the amount of data
to sold is zim, then the expected income of data auctioneer i
can be given by

zimEi,ni
(m) = zim

hi∑
j=1

jP ia (j |ni (m) )

=zim

hi∑
j=1

j
rc,i

λini (m)

j∏
l=1

λi (ni (m)− 1) fi,l−1

rc,i + λi (ni (m)− 1) fi,l
.

(28)

Then at every time slot m = 1, 2, · · · ,M , each data
requester solves the following optimization problem to max-
imize his/her expected income of current time slot:

max fzim|zm
= zimEi,ni (m) , (29a)

s .t. zim≥min

{
cid−

m−1∑
t=1

zit, zmin

}
, ∀i=1, 2,· · ·, N, (29b)

zim≤min

{
cid−

m−1∑
t=1

zit, zmax

}
, ∀i=1, 2,· · ·, N, (29c)

N∑
i=1

zim ≤ zch. (29d)

In (29b) and (29c), are obtained by

zmin =
1

M
·max {c1d, c2d, · · · , cid, · · · , cNd} , (30a)

zmax = κzmin, κ > 1, (30b)

respectively.
Remarks: In constraint (29b), lower bound zmin shown

in (30a) ensures that the data owner with the most amount
of data to sold on the current day can sold out all of his/her
data before time slot m = M ends.

(
cid −

∑m−1
t=1 zit

)
in

(29b) is provided for the case that the remaining data of a
auctioneer at time slot m is less than zmin, then all his/her
remaining data needs to be sold during time slot m. The
low bound of allocated amount of data in each time slot
can keep the data allocation mechanism efficient. On the
other hand, due to the duration of every time slot is limited,
the amount of data can be transacted in one time slot is
constrained by an upper bound, which is denoted by zmax

in constraints (29c) and (30b). In addition,
(
cid −

∑m−1
t=1 zit

)
in (29c) plays a constraining role when the rest data is less
than zmax. Constraint (29d) is determined by the channel
capacity.

4.4.2 Prediction-based Cooperative Distributed Data Allo-
cation (PCDDA)
As mentioned above, the amount of rest data of different
data auctioneers to be sold is accessible information for all
data requesters having arrived and planning to enter into
the system. According to the mobility model introduced in
Section 4.2, data requesters in auction i will move to auction
k with probability Pik, which is determined by the amount
of remaining data to be sold in auction k, i.e., ck,rest. In
other words, the number of data requester in every auction
during the following time slots can be predicted in sense
of probability, according to the public information of rest
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amount of data. Then by applying the results in Lemma 2
and Theorem 1, the expected income of current time slot can
be predicted by (23) for a fixed number of data requesters.
In addition, the potential average income of the next time
slot can also be predicted through (25) by predicting mo-
bility trend of data requesters. Considering this prediction
information, data owners can make better decisions on how
much data to sell in the current time slot for maximizing the
total income of M time slots.

Consider the previous assumption that the number of
data requesters in each auction does not change. Then we
assume that the bidders transition probability from auction
k to i after time slot m, Pki (m+), is determined by the rest
amount of data after finishing the allocation of m time slots:

Pki
(
m+

)
= (1− PkD) ·

cid −
∑m
t=1 zit∑N

j=1 (cjd −
∑m
t=1 zjt)

. (31)

If PkD=PD , ∀k = 1, 2, · · · , N , then

Pi
(
m+

)
, Pki

(
m+

)
= (1− PD) ·

cid −
∑m
t=1 zit∑N

j=1 (cjd −
∑m
t=1 zjt)

.
(32)

According to (20), we can get

φ (m) = λ0 +P
(
m+

)
φ (m) , (33)

where

φ (m) = [φ1 (m) φ2 (m) · · · φN (m)]
T
, (34a)

λ0 = [λ1 λ2 · · · λN ]
T
, (34b)

and

P
(
m+

)
=


P11 (m

+) P21 (m
+) · · · PN1 (m

+)
P12 (m

+) P22 (m
+) · · · PN2 (m

+)
...

...
. . .

...
P1N (m+) P2N (m+) · · · PNN (m+)



,


P1 (m

+)
P2 (m

+)
...

PN (m+)

 ·
[
1 1 · · · 1

]︸ ︷︷ ︸
N

.

(35)

Then solve the equation (33) and we can get the solutions as

φi (m) = λi +

∑N
j=1 λj

PD
Pi
(
m+

)
, i = 1, 2, · · · , N. (36)

Therefore, applying results in Lemma 2 and Theorem 1,
the future expected income of the rest amount of data for
data owner i at time slot m can be calculated by

Ei
(
m+

)
,
(
cid −

m∑
t=1

zit

)
·

∞∑
ni=1

Ei,ni (m)π (ni), (37)

where Ei,ni (m) and π (ni) are obtained by (23) and (19a),
respectively, and ψi in (19a) is determined by φi in (36).

Consider that every data auctioneers is selfish and in-
tends to maximize his/her own total expected income of
the M time slots. Then we establish the following in-
come maximization problem for each data auctioneer i

(i = 1, 2, · · · , N ) at time slot m (m = 1, 2, · · · ,M ).

max fzim =zimEi,ni(m)+ωM−mEi
(
m+

)
(38a)

s .t. zim≥min

{
cid−

m−1∑
t=1

zit, zmin

}
, ∀i=1, 2,· · ·, N, (38b)

zim≤min

{
cid−

m−1∑
t=1

zit, zmax

}
, ∀i=1, 2,· · ·, N, (38c)

N∑
i=1

zim ≤ zch. (38d)

In (38a), ω ∈ (0, 1] denotes the discount rate of the future
income considered at the current time slot.

At the beginning of every time slot, each data owner
publishes the rest amount of his/her data, observes the
number of data requesters in his/her auction, and then solve
the optimization problem in (38) to determine how much
data to be sold in the current time slot.

4.4.3 Prediction-based Centralized Data Allocation (PCDA)
According to PCDDA designed in the previous section,
if every data auctioneer solves the optimization problem
locally to maximize his/her own expected income instead
of a central process, the optimal solution for each data
auctioneer cannot ensure that constraint (38d) is always sat-
isfied. In other words, the distributed mechanism may cause
data auctioneers to fail to get the maximum income they
anticipate. Concerning this issue, we design a prediction-
based centralized data allocation (PCDA) mechanism to
maximize the income of all data auctioneers. To achieve
this centralized optimization, we assume that there is a data
fusion center which operates the PCDA and determine how
much data to be sold for every data seller in each time
slot. Wish assistance of current mobile network platform,
this assumption is rational and enforceable. The objective
function of PCDA is shown as (39), and the constraints are
the same as those of NDDA and PCDDA, i.e., (29b) - (29d)
and (38b) - (38d), respectively.

max
N∑
i=1

[
zimEi,ni(m) + ωM−mEi

(
m+

)]
. (39)

5 OPERATION OF DATA ALLOCATION FOR DATA
TRANSACTION SYSTEMS

5.1 Approximate solving of optimization problems
In the previous two sections, we establish the income max-
imization problems for the data allocation. For a large time
scale, the data owner can decide how much data to be sold
in the following days before the end of a month, by applying
EADA and ERADA. Then for a smaller time scale, data
owners can determine how to schedule the data auctions
in a single day by considering the peer data auctioneers be-
haviours, through NDDA, PCDDA or PCDA. However, we
can also notice that it is difficult to achieve the closed-form
solutions for optimization problems formulated as (8), (29),
(38) and (39). To find the optimal solution approximately,
an efficient and effective stochastic and cooperation-based
optimization technique, called cooperative particle swarm
optimization (CPSO) algorithm [25], will be introduced to
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Protocol 1 CPSO Algorithm [25].
Initialization:

Create and initialize n one-dimensional PSOs: Pj , j =
1, 2, · · · , n;
Define:
g (j, z)≡(P1 ·ŷ, P2 ·ŷ,· · ·, Pj−1 ·ŷ, z, Pj+1 ·ŷ,· · ·, Pn ·ŷ);
Iterations T .

1: for t ≤ T do
2: for j = 1, 2, · · · , n do
3: for i = 1, 2, · · · , s do
4: if f (g (j, Pj · xi)) < f (g (j, Pj · yi)) then
5: Pj · yi = Pj · xi
6: end if
7: if f (g (j, Pj · yi)) < f (g (j, Pj · ŷ)) then
8: Pj · ŷ = Pj · yi
9: end if

10: end for
11: Update Pj by PSO with (40) and (41).
12: end for
13: end for

our work to solve the income maximization problems. CPSO
was proposed based on the traditional particle swarm op-
timization (PSO), and the term of swarm indicates multiple
particles. In PSO, each particle refers to a possible solution
of the optimization problem. In every iteration, each particle
finds its own best solution and then accelerates in the
direction of this position, as well as in the direction of
the global best position having been found at present. The
update process is operated as follows:

vij (t+ 1) =wvij (t) + c1ζ1i (t) [yij (t)− xij (t)]

+ c2ζ2i (t) [ŷj (t)− xij (t)] ,
(40)

xi (t+ 1) = xi (t) + vi (t+ 1) , (41)

where j = 1, 2, · · · , s, and s is the swarm size. xi =
[xi1 xi2 · · · xin] is the current position in the search s-
pace, vi = [vi1 vi2 · · · vin] is the current velocity, yi =
[yi1 yi2 · · · yin] is the local best position, n is the number
of particles, c1 and c2 are acceleration coefficients, and
random sequences ζ1, ζ2i ∼ U (0, 1) [26].

In PSO, there is only one swarm with s particles, which
tries to find the optimal n-dimensional vector. While in CP-
SO, this n-dimensional vector is decomposed into n swarms,
each of which has s particles. These n swarms cooperatively
optimize the one-dimensional vector. The main processes of
CPSO are shown in Protocol 1.

5.2 Data allocation for data transaction
In this part, we will introduce how to operate data allocation
in different days and different time slots in one day for the
auction-based data transaction system.

As mentioned previously, the elements of the networked
data transaction, including data auctioneers, the number of
data auctioneers, data requester arrival rates, etc., change
over time. Therefore, for a certain data owner, he/she can-
not determine how to allocate his/her extra data into rest
days through a networked auction mechanism, according
to the current data transaction network. In this work, we

Protocol 2 Data allocation for data transaction.
Initialization:

Bid arrival rate: λ (d);
Original bid acceptation rate: r (d);
Number of days left before the end of the month: D.
Number of time slots in a single day to operate data
transaction: M .

1: Each data seller i operates the following processes:
2: for d = 1, 2, · · · , D do
3: if λ (d)− rc (d) then
4: φ2 (λ (d) , r (d)) = exp

{
λ(d)−rc(d)

rc(d)

}
;

5: else
6: φ2 (λ (d) , r (d)) = 1.
7: end if
8: Apply ERADA, solve it by CPSO and obtain optimal

cid and rc,i.
9: for m = 1, 2, · · · ,M do

10: Recognize and establish the structure of the net-
worked data transaction system;

11: Submit the amount of his/her rest data
cid −

∑m
t=1 zit;

12: Predict the stationary probability of the number of
data requesters n (m);

13: Apply PCDDA/PCDA, solve it by CPSO and obtain
optimal zim (zm = {z1m, z2m, · · · , zNm}).

14: end for
15: end for
Output:

Amount of allocated data to sell on the day d: cid;
Amounts of allocated data to sell in time slot m: zm;
Optimized did acceptation rate: rc,i.

design a data allocation mechanism based on the basic data
auction and networked data auction, for a large time scale
(referring to days) and a small time scale (referring to time
slots), respectively. Specifically, for every data owner who
has extra data and plans to sell the data during the rest
days before the month ends, he/she makes decision on
how to allocate the data into different days according to
the ERADA mechanism based on the basic data auction
model. To achieve a maximum expected total income of D
days, the data owner optimizes the bid acceptation rate rc
and obtains cd, the amount of data to be sold on a certain
day d. Then the data owner recognizes and establishes a
networked data transaction system with other data owners
planning to sell data on this day. Then by applying the
networked data allocation mechanism, i.e., DNNA, PCDDA
or PCDA designed in Section 4.4, every data owner can
decide how to allocate the amount of cid data into different
time slots on day d to maximum the expected income of
his/her own (by DNNA or PCDDA) or the entire networked
data transaction system (by PCDA). The operation of the
proposed data allocation mechanism is shown in Protocol 2.

6 SIMULATION RESULTS

In this section, we will evaluate the performance improve-
ment of the designed allocation mechanisms for the data
transaction systems with single data auctioneer and multi-
ple data auctioneers.



11

TABLE 2
Simulation parameters.

Case βλ
1 βλ

2 βrc
1 βrc

2 σλ σr

Case 1 0.35 9 0.35 9 6 5
Case 2 0.35 9 0.35 9 5 6
Case 3 0.35 10 1 9 5 5
Case 4 0.15 10 1.25 9 5 5

6.1 Data allocation for transaction systems with single
auctioneer

First of all, we introduce the scenario setup for simulations.
We consider a data transaction system with only one data
seller, who plans to sell his/her rest data with amount of
C = 100 in following D = 10 days. The amount of data to
be reserved for the data owner’s own consumption every
day is set as γ = 5. The highest price data requesters can
accept is set as h = 10, and the service time is rs = 1.
To reflect the changing demands of buying and selling data
from the data requesters and data owner, denoted by (5a)
and (5b), respectively, arrival rates of data bids and original
considering time are given by

λ (d) = βλ2 −
(
βλ2 − βλ1

)
e−(d/σλ)

2

, (42a)

rc (d) = βrc2 − (βrc2 − βrc2 ) e−(d/σr )2 . (42b)

where βλ1 , βλ2 , βrc1 , βrc2 , σλ and σr > 0 are constants,
d = 1, 2, · · · , 10. For comparison purposes, we consider four
cases with different original bid acceptance rates and bid
arrival rates, the parameter settings of which are shown in
Table 2. These settings for the four cases can reflect different
relationships between λ (d) and original rc (d), which will
further influence the data allocation policies.

First, we test the convergence of the proposed allocation
algorithms and the expected maximum total income for
the data owner by applying EADA and ERADA for data
transaction system with single data seller. For CPSO algo-
rithm, the number of particles is set as 6, and the number of
iterations is set as 120. The simulation results of the first 25
iterations for the four cases are shown in Fig. 3. As shown
in Fig. 3, the maximum expected total income for the data
seller can be achieved by applying three data allocation
mechanisms, after about 15 iterations by applying CPSO
algorithm. In addition, for all of the four cases, the data
seller can obtain the maximum income when utilizing ERA-
DA (denoted by dotted lines), which is followed by the data
allocation method based on the original considering time
(denoted by solid lines), and EADA (denoted by dashed
lines) performs the worst among the three mechanisms. The
weak performance of EADA on data seller’s income results
from the its efficiency-aware property, which mean that
there is a tradeoff between the total income and time cost.
On the other hand, when we consider the influence of the
data bids arrival rates, and then modify the considering time
according to the bid arrivals in ERADA, the total income
for the data seller can be also improved, meanwhile the
efficiency can be still guaranteed. In addition, we notice that
for Case 1, the bid arrival rates are always larger than the
bid acceptation rates, then the incomes obtained by the data
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Fig. 3. Achieved maximum total income for the data auctioneer obtained
by CPSO, for the four cases when applying three allocation methods.

seller by applying EADA and ERADA are the same, which
results from the definition in (13).

For a further revelation to see how the proposed data
allocation mechanisms optimize the performance of the data
transaction system, we analyze the modified considering
time and the amount of data allocated for each day. For
the four cases illustrated by Table 2, we apply the three
data allocation methods based on original rc, EADA and
ERCDA. Then for the D = 10 days, the modified rc and the
amount of data allocated in each day are shown in Fig. 4(a)
- Fig. 4(d) and Fig. 4(e) - Fig. 4(h), respectively.

• For Case 1, the rates of bid acceptance are always
lower than bid arrival rates in the ten days. Similar
to results in Fig. 3, the two proposed data allocation
mechanisms, i.e., EADA and ERADA, get the same
adjusted rc and amount of data allocated for every
day. Results in Fig. 4(e) also indicate that without
modification of rc, the data tends to be allocated to
the beginning days when λ (d) > rc (d), ∀d, which
means that the data requests during the later days
cannot be satisfied at all. Through the modification of
considering time at the beginning days according to
(10) and (12), the average time of considering time is
shortened from d = 1 to d = 5, as shown in Fig. 4(a).
Then the data are allocated to the ten day with more
balance.

• Results of Case 2, the opposite situation to Case 1,
are shown in Fig. 4(b) and Fig. 4(f), which indicate
that EADA and ERADA will lead to different con-
sidering time modification and data allocation when
λ (d) < rc (d). Moreover, results in Fig. 4(b) reflect
the tradeoff effect of EADA for the income and time
cost, i.e., larger rc means higher frequency of bid
acceptation and less time consumption. In addition,
ERADA can achieve a further tradeoff between the
original rc and adjusted rEADAc , which can obtain
the best data allocation balancing among the three
allocation methods and the optimized income for the
data seller at the same time.
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Fig. 4. Adjusted considering time and data allocation for the data auctioneer in every day.

• As shown in Fig. 4(c), for Case 3, λ > rc in the be-
ginning days, and then λ < rc during the rest days,
which is opposite to Case 4, as shown in Fig. 4(d).
The optimized balancing effect of ERADA can be also
verified by results in Fig. 4(g) and Fig. 4(h).

Based on the obtained maximum total income shown in
Fig. 3, and the adjusted considering time and the amount of
data allocated shown in Fig. 4, we calculate the total data
transaction operation time of the 10 days and the average
income per unit time for the data seller by applying the
three allocation algorithms. The results are shown in Table 3,
which indicates that although EADA will bring less total
income for the data seller, the average income per unit
time is higher than that obtained without considering time
modification. Meanwhile, the least time consumption can be
achieved by EADA, comparing with another two allocation
methods. In addition, ERADA receives the highest total
income, which is also shown in Fig 3. This best performance
of ERADA results from its adaption to the bid arrival
rate, which also leads to larger time cost to operate the
transaction than EADA. However, the efficiency can also
be improved by ERADA than the original considering time,
for most cases. For case 4, as an exception, ERADA does not
perform better than the original considering time method,
which results from the allocation-balance improvement of
ERADA. Specifically, we can notice that for Case 4, without
any considering time modification, all data is allocated to
the last four days, which means that the data requests of
earlier six days cannot be served at all, and in addition, the
total time cost tends to be very small comparing to EADA
and ERADA, which increases the average income.

6.2 Data allocation for transaction systems with multi-
auctioneer
In this section, we will test the performance of the net-
worked data allocation for the data transaction system with

TABLE 3
Simulation results of income and efficiency obtained by applying three
allocation methods for data transaction system with single auctioneer.

Algorithm Case 1 Case 2 Case 3 Case 4

Total
Original 189.2919 187.0193 210.4264 203.9975

income
EADA 187.4022 185.5160 208.0609 202.7293

ERADA 197.4599 196.8851 212.3980 204.2962

Total
Original 8.5566 8.5566 6.6608 7.3510

time
EADA 8.2486 7.9895 6.3544 7.0858

ERADA 8.2486 8.4573 6.7222 7.5536

Average
Original 22.1223 21.8567 31.5918 27.7509

income
EADA 22.7192 23.2199 32.7428 28.6106

ERADA 23.9386 23.2799 31.5965 27.0462

multiple auctioneers. In the simulations, we consider that
there are N = 10 data sellers with different amount of
data to be sold in a single day, i.e., with values from set
{15, 20, 25, 30, 35, 40, 45, 50, 55, 60}. and these sellers are
numbered by an ascending sort order according to the
amount of data they plan to sell in M ≤ 5 time slots in a
single day. In addition, bids arrival rates λi (i = 1, 2, · · · , 10)
for different data auctioneers and the bid acceptation rates
rc,i are obtained by the single-auctioneer data transaction
system in the previous simulations, by applying ERADA.
Moreover, the numbers of particle and iterations are set as
20 and 80, respectively when applying the CPSO algorithm.

By applying the three networked data allocation mech-
anisms, i.e., NDDA, PCDDA and PCDA designed in Sec-
tion 4.4, the allocated amount of data and corresponding
income for each of the 10 auctioneer in every time slot
are shown in Fig. 5. The three mechanisms finish the data
transaction in four time slots. Results in Fig. 5(a) - Fig. 5(d)
indicate that NDDA and PCDDA can finish the data trans-
action faster than PCDA. To be specific, Auction 1 with the
least amount of data sells out all of auctioneer’s data in
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Fig. 5. Data allocation and income for each data auctioneer by applying NDDA, PCDDA and PCDA in networked data auction system.

the first time slot through NDDA and PCDDA, while two
time slots are needed when applying PCDA. In addition,
eight auctioneers finish the data transaction in three time
slots by NDDA and PCDDA, while three auctioneers with
the most data amount still have data to be sold in the
fourth time slot by PCDA. Moreover, allocation results also
indicate that with some prediction information obtained by
the information sharing and cooperation of auctioneers, i.e.,
the number of data bidders in each auction and their prob-
able movement among different auctions, PCDDA does not
operate allocation radically, which means that data owners
tend to preserve some amount of data and sell it in later
time slot. This behavior can be reflected more obviously
in Fig. 5(d), in which PCDDA has more data allocated
to this time slot than NDDA does. With the prediction
information and global income optimization for the entire
system, this conservative performance is presented much
more prominently when applying PCDA.

Then we analyze the economics performance of the three
networked data allocation methods. We further process the
obtained results in Fig. 5(e) - Fig. 5(h), and get the total
income of the N = 10 data auctioneers and their total
income in every time slot. Results are shown in Fig. 6.
Results in Fig. 6(a) indicate that the higher total income
can be obtained for every data seller by PCDDA than by
NDDA, which benefits from the prediction information uti-
lization and the income maximization for the entire auction
period. Moreover, when applying PCDA, which pursues a
global income maximization, the total income of some data
auctioneers is sacrificed, meanwhile, the other auctioneers
will get more total income.

Without any prediction information, NDDA is operated
to maximize the income of the current time slot. As a result,
in the beginning time slots, the total income by NDDA is
higher than the other two methods, which is achieved by
scarifying the income in later time slots. This phenomenon is
presents in Fig. 6(b). Fig. 6(b) also indicates the total incomes

of the ten data auctioneers in the entire four time slots,
which can be considered as the system income. As shown in
Fig. 6(b), higher system income can be achieved by PCDDA
than NDDA resulting from the prediction information. In
addition, PCDA performs the best on the system income
due to its global optimization objective, although the income
obtained in some single time slot might be lower than
NDDA and PCDDA.

7 CONCLUSION

In this paper, we have proposed a novel data transaction
system for mobile networks based on the basic and net-
worked auction models. In addition, the data allocation
mechanisms have been designed to make decisions that
how to sell the rest data in different days, and then for
each day, how to sell the allocated data in a system with
multiple data sellers, to improve the performance of the
system, maximize the income of the data sellers and satisfy
the demands of data requesters. Simulation results for the
system with single data auctioneer indicate that, the mod-
ification of considering time according to the rest amount
of data can improve the efficiency of the data transaction,
although the total income for the data seller might decrease
due to the tradeoff between the income and time cost. In
addition, when the data bid arrival rates are considered, the
system efficiency and total income of the data seller can be
both guaranteed, and meanwhile, the best data allocation
balancing effect can be also achieved. Simulation results
for the networked data transaction system demonstrate that
the prediction information of data bidders’ movement can
improve the income for every data auctioneer effectively.

APPENDIX A
PROOF OF LEMMA 1
Proof:
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Fig. 6. Income obtained by different auctioneers and in time slots by
applying NDDA, PCDDA and PCDA in networked data auction system.

The local stationary equations of the networked auction
system can be given by

λi(ni, 0)π
i
0|ni

=λi(ni, 0)
hi∑
j=1

πiAj |ni
=(rc,i+λi(ni, v1))π

i
1|ni

,

(43a)

λi(ni, vj−1)π
i
j−1|ni

=(rc,i+λi(ni, vj))π
i
j|ni

, j=1, 2,· · ·, hi−1,

(43b)

λi (ni, vh−1)π
i
h−1|ni

= rc,iπ
i
h|ni

, (43c)

rc,iπ
i
j|ni

= λi (ni, 0)π
i
Aj |ni

, j=1, 2,· · ·, hi. (43d)

According to (43d) and (22b), we get

πiAj |ni
=
rc,iπ

i
j|ni

λi(ni, 0)
=
rc,i
λini

πi0|ni

j∏
l=1

λi(ni−1)fi,l−1
rc,i+λi(ni−1)fi,l

, (44)

and then

P ia(j |ni )=
πiAj |ni∑hi

k=1 π
i
Ak|ni

=
rc,i
λini

j∏
l=1

λi(ni−1) fi,l−1

rc,i+λi(ni−1) fi,l
. (45)

Expected income Ei,ni and the total average time Ti,ni

that every round of data auction lasts for auction i when
there are ni potential data buyers in this auction are

Ei,ni =
hi∑
j=1

jP ia (j |ni ), (46)

Ti,ni =
1

niλi

1+
hi∑
j=1

j∏
l=1

λi (ni−1) fi,l−1

rc,i+λi (ni−1) fi,l

 , (47)

respectively. Consequently, we obtain the average of the
income per unit time for the data owner i as:

E0
i,ni

=
Ei,ni

Ti,ni

=
rc,i

∑hi

j=1 j
∏j
l=1

λi(ni−1)fi,l−1

rc,i+λi(ni−1)fi,l

1 +
∑hi

j=1

∏j
l=1

λi(ni−1)fi,l−1

rc,i+λi(ni−1)fi,l

. (48)

Then according to (19a), the average of the income per unit
time for the data owner i is given by

E0
i =

∞∑
ni=1

E0
i,ni

π (ni)

=
∞∑
ni=1

ψni
i e

−ψi

ψi (ni−1)!

rc,i
∑hi

j=1 j
∏j
l=1

λi(ni−1)fi,l−1

rc,i+λi(ni−1)fi,l

1 +
∑hi

j=1

∏j
l=1

λi(ni−1)fi,l−1

rc,i+λi(ni−1)fi,l

.

(49)

This completes the proof of Theorem 1.
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