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ABSTRACTAQ:5 There is growing widespread adoption of augmented reality in tech-driven industries and
sectors of society, such as medicine, gaming, flight simulation, education, interior design and modelling,
entertainment, construction, tourism, repair and maintenance, public safety, agriculture, and quantum
computing. However, ensuring smooth and intuitive interactions with augmented objects is challenging,
requiring practical performance evaluation and optimizationmodels to assess and improve users’ experiences
with AR-enhanced systems. In this paper, we apply Fitts’ Law to model and predict interaction task difficulty
with objects distributed across four spatial quadrants. We use genetic optimization algorithms to fine-tune
Fitts’ Law parameters, achieving a model that significantly enhances predictive accuracy. Our optimized
model demonstrates an approximately 40% reduction in interaction task difficulty across all quadrants,
leading to a more ergonomic and intuitive user interface. This study contributes to the Human-Computer
Interaction (HCI) field by offering a refined metric for evaluating and optimizing AR interfaces and
addressing the unique challenges of three-dimensional interaction environments. Therefore, we propose a
practical framework for the performance evaluations and optimization of augmented reality and other user
interfaces.

15

16

INDEX TERMS Augmented reality, SLAM, Fitts’ law, level of difficulty, ergonomics in AR, user
engagement.

I. INTRODUCTION17

Augmented reality (AR) is revolutionizing how we engage18

with digital information systems by integrating virtual19

elements with the physical world [1], profoundly impacting20

various industries and sectors of society such as robotics,21

gaming, marketing, education, repair and maintenance,22

medicine, flight simulation, security and safety, interior23

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Strada .

design andmodelling, construction, agriculture, and quantum 24

computing. At the core of this technology is SLAM 25

(Simultaneous Localization and Mapping), which leverages 26

a combination of sensors, such as cameras and Inertial 27

Measurement Units (IMUs), to ensure precise alignment of 28

digital content within the user’s real-world environment [2]. 29

This precision enhances the immersive and engaging quality 30

of AR interactions. 31

Despite the rapid advancements in AR technology, ensur- 32

ing that these interactions are both ergonomic and intuitive 33
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presents significant challenges. Developing robust interaction34

models that leverage natural gestures is essential for max-35

imizing AR technologies’ potential to create engaging user36

experiences. Research shows that effective user engagement37

strategies in AR can lead to better retention, enhanced38

learning outcomes, and higher satisfaction across various AR39

applications [3].40

This paper addresses a critical gap in HCI research41

by adapting Fitts’ Law—traditionally applied to two-42

dimensional (2D) interfaces for use in the complex, three-43

dimensional (3D) environments of AR. Fitts’ Law predicts44

the time required to move to and select a target based45

on the target’s distance and the target’s size [4], which is46

essential in understanding and optimizing user interactions.47

By incorporating head movement and SLAM-based spatial48

awareness, this study contributes a novel approach to49

modelling and predicting interaction difficulties in AR,50

advancing the broader field of HCI. While a few studies (e.g.,51

[5], [6]) have attempted to extend Fitts’ Law to evaluate 3D52

virtual environments, considering performance metrics such53

as index of difficulty and movement time (MT), a critical54

challenge in AR lies in aligning user expectations with55

interaction outcomes. Discrepancies in this alignment can56

lead to decreased satisfaction and efficiency.57

To address these challenges, our study incorporates a com-58

prehensive survey that captures subjective user experiences59

with AR elements in different spatial orientations. This data,60

combined with experimental findings, validates the accuracy61

and robustness of our model. The contributions of this paper62

are summarized as follows:63

• We evaluate the interaction task difficulty in various AR64

quadrant environments using the Fitts’ Law framework.65

• We refine Fitts’ Law parameters specifically for AR66

interfaces, using a genetic optimization algorithm to67

enhance precision and usability in AR interactions.68

• We established a benchmark for AR interaction models69

through a combination of subjective user surveys and70

experimental data, ensuring a thorough understanding of71

AR interface effectiveness.72

The implications of our findings are profound, with the73

potential to influence a wide audience, including those74

involved in game development for VR and AR solutions,75

interactive applications—such as flight, optical, and car76

simulators—and service application creators. [7], [8]. This77

work is a pivotal step towards optimizing AR technology for78

practical use, providing professionals and researchers with79

the necessary insights and tools to shape the future of AR80

interfaces. It offers a promising outlook for the future of AR81

technology, where user-friendly and efficient interfaces are82

the standard.83

II. RELATED WORK84

Fitts’ Law, a foundational concept in HCI, was initially85

developed for Graphical User Interfaces (GUIs) to predict86

the task difficulty of interacting with objects based on factors87

such as target shape and movement direction. This is partic- 88

ularly critical in augmented reality, where spatial properties 89

like target distance, size, and user interaction dynamics play 90

crucial roles [9]. Over the years, Fitts’ Law has been adapted 91

to various interfaces, including touchscreens [10], [11], [12] 92

and Virtual Reality (VR) systems [13]. The evolution of 93

Fitts’ Law from 2D interfaces to its application in 3D virtual 94

and augmented reality environments represents a significant 95

milestone in Human-Computer Interaction (HCI). 96

This evolution began with MacKenzie and Buxton’s 97

seminal work in 1992, which extended Fitts’ Law to 2D 98

mouse-based pointing tasks [14]. 2003 Accot and Zhai 99

refined this model for 2D interfaces by incorporating a 100

weighted Euclidean norm to improve target acquisition 101

predictions [15]. These early adaptations laid the ground- 102

work for more sophisticated interactions across different 103

dimensions. In 2001, Murata and Iwase introduced the first 104

significant adaptation of Fitts’ Law to 3D interfaces by 105

incorporating azimuth angles to predict user performance 106

in 3D spaces [16]. This was followed by Grossman and 107

Balakrishnan’s 2004 model, which integrated variables such 108

as target size and movement direction within 3D environ- 109

ments [17]. Subsequent advancements, such as those by Cha 110

and Myung in 2013, who focused on spherical targets and 111

inclination angles [18], and Schuetz et al. in 2019, who 112

emphasized gaze-based interactions in 3D spaces [19], have 113

further refined the application of Fitts’ Law in complex 114

interaction scenarios. 115

Recent studies have continued this trend of refinement. 116

For instance, Jiang and Gu provided an extensive review 117

of modern adaptations of Fitts’ Law across various plat- 118

forms, including its application to three-dimensional Human- 119

Computer Interactions (HCI) and augmented reality envi- 120

ronments [12]. Clark, Bhagat, and Riggs in 2020 explored 121

the application of Fitts’s Law in VR using low-cost technol- 122

ogy [5], while Lou et al. in 2021 examined hand-adaptive 123

interfaces in VR [20]. Liu et al. [21] explored the study of 124

rotation gestures on touchscreens enhanced with electrostatic 125

tactile feedback. They demonstrated that adding tactile 126

feedback, either in the target area or during the interaction 127

process, significantly improves the efficiency and accuracy 128

of rotation operations, adhering closely to Fitts’ Law [21]. 129

Wagner et al. [22] studied gaze-hand alignment in 3D 130

user interfaces, comparing techniques like Gaze&Finger 131

and Gaze&Handray against hand-only methods. Their find- 132

ings showed that gaze-hand techniques outperformed the 133

baselines, especially for targets close to the image plane, 134

with reduced performance at greater depths due to parallax 135

effects [22]. 136

However, applying Fitts’ Law to AR remains under- 137

explored, particularly in environments where head movement 138

and spatial orientation play critical roles. Existing adaptations 139

often do not sufficiently account for the nuances of AR,where 140

the user’s physical orientation and the dynamic nature of the 141

environment significantly impact interaction task difficulty. 142
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This paper builds on the work of MacKenzie and Buxton143

[14] and others who have extended Fitts’ Law to 2D and144

3D environments. To address this gap, we propose a model145

that integrates head movement and SLAM-based spatial146

awareness into Fitts’ Law, offering a refined model that147

specifically addresses the unique challenges posed by AR.148

III. METHODOLOGY149

Our study adapts Fitts’ Law to the unique demands of AR150

environments by integrating head movement into the model151

and refining key parameters using a genetic optimization152

algorithm.153

A. ERGONOMIC INTERACTIVE ELEMENT PLACEMENT IN154

AR155

Our research investigates the application of Fitts’ Law to156

analyze user interactions within various quadrants of a 360◦157

AR environment [23]. This analytical approach allows us to158

understand and quantify the ease with which users can locate159

and engage with objects contextually instantiated within their160

virtual space, corresponding to the cardinal and intercardinal161

directions outlined in figure 1.162

FIGURE 1. Ergonomic placement and angular interaction framework for
AR objects: This schematic depicts the strategic positioning of interactive
objects within a user’s 360◦ field in an AR environment, highlighting the
angular dimensions and ergonomic zones that facilitate intuitive
interaction.

We leverage Unity’s XR Interaction Toolkit to position163

interactive elements within the AR environment strategically.164

Based on spherical coordinates, this positioning adheres165

to specific ergonomic zones designed for user comfort166

and interaction efficiency [24]. Our approach extends the167

traditional application of Fitts’ Law, emphasising the impact168

of target proximity and size on interaction time. We adapt169

this law to the three-dimensional AR context, where user170

accessibility and field of view are crucial factors. Beyond171

varying object scales and colours, we strategically place172

them to align with natural human gaze and movement173

patterns, similar to recent work highlighting the importance174

of ergonomic design in enhancing AR interaction [25].175

Segmenting the user-centric space into anatomical planes176

(akin to Figure 2) provides a nuanced understanding of177

spatial interaction in AR. This segmentation allows us to178

identify areas of varying interaction task difficulty based179

on ergonomic limitations. Our findings indicate that initial180

user engagement often focuses on the upper frontal quadrant, 181

suggesting potential strain due to ergonomic limitations. 182

This aligns with research emphasizing the importance of 183

aligning virtual objects with natural ergonomic bound- 184

aries to minimize user strain and improve interaction 185

quality [26]. 186

FIGURE 2. Anatomical planes and AR interaction zones for ergonomic
interface design: This illustration juxtaposes the division of the human
body by anatomical planes (left) [26] with their application in AR
interaction zones (right), delineating quadrant-based zones for intuitive
user engagement. It is a visual framework for designing AR interfaces that
complement natural human movement patterns.

B. SLAM-BASED SPATIAL ANCHORING IN AR OBJECT 187

INTERACTION 188

Algorithm 1 outlines our novel approach for dynamically 189

placing various 3D models within an AR environment. 190

Leveraging the HoloLens’ Simultaneous Localization and 191

Mapping (SLAM) capabilities and spatial awareness toolkit, 192

the algorithm continuously tracks the user’s environment, 193

forming the foundation for anchoring virtual objects. The 194

algorithm initializes the SLAM system, establishing a 195

real-time map of the user’s surroundings. Subsequently, 196

it determines the number (N) of objects to be instantiated 197

within the AR scene. Each object type is intelligently selected 198

from a pre-defined set, ensuring diverse user experiences. 199

The algorithm uses the Spatial Awareness system to 200

identify suitable placement locations within the user’s 201

current environment. These locations consider the user’s 202

position, environmental obstacles, and ergonomic factors, 203

ensuring object placement within reachable and visible zones. 204

Spherical coordinates are then computed for each object 205

relative to the user and converted into Cartesian coordinates 206

based on the HoloLens’ spatial understanding. This step 207

guarantees object positioning within the user’s field of view 208

and at suitable interaction distances, enhancing immersion 209

and interaction comfort. Also, each object is instantiated at 210

the calculated position with randomly applied scaling and 211

colour. This variability promotes user engagement and allows 212

for assessing the impact of object appearance on interaction. 213

As users interact with the objects, vital metrics are collected 214

throughout the session. After completion, the SLAM system 215

concludes the session, and the collected data is saved for 216

further analysis. More details about the implementation and 217

analysis can be found in GitHub. 218
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Algorithm 1 AR Object Placement and Interaction Data
Collection
Require: C : CameraPosition ▷ The position of the AR

camera in world space
Require: r : [rmin, rmax] ▷ Range of distances for object

placement
Require: O: [Sphere, Cube, Car] ▷ Array of 3D object

prefabs
Ensure: L: [] ▷ List to store instantiated objects and their

properties
1: InitializeCamera(C) ▷ Set up the AR camera at position

C
2: N ← DetermineSampleCount() ▷ Determine the total

number of samples required
3: for i← 1 to N do
4: T ← SelectRandomObject(O) ▷ Select an object

type at random from O
5: [H ,V ] ← [SelectRandomHorizontalQuadrant(),

SelectRandomVerticalQuadrant()] ▷ Select
horizontal and vertical placement quadrants ran-
domly

6: [d, θ, φ] ← [GenerateRandomDistance(r),
CalculateAngle(H ), CalculateAngle(V )] ▷

Generate spherical coordinates
7: [x, y, z]← [d · sin(φ) · cos(θ ), d · sin(φ) · sin(θ), d ·

cos(φ)] ▷ Convert spherical coordinates to
Cartesian coordinates

8: P← C + [x, y, z] ▷ Calculate the object’s world
position relative to the camera

9: SetObjectPosition(T , P) ▷ Set the object’s position
to P

10: [S,Col]← [GenerateRandomScale(), GenerateRan-
domColor()] ▷ Generate random scale and
color

11: ApplyTransformations(T , S, Col) ▷ Apply the
transformations to the object

12: L.Add(T , CaptureMetrics(P, S, Col)) ▷ Add object
and metrics to the list

13: HandleUserInteraction(T ) ▷ Handle user
interaction with the object T

14: [Att, �]← CaptureInteractionMetrics(T ) ▷ Record
interaction time and orientation

15: N ← N − 1 ▷ Decrement the sample count
16: SaveData(L) ▷ Persist the collected data to storage
17: end for
18: if N = 0 then
19: TerminateExperiment() ▷ Conclude the experiment

and clean up resources
20: end ifreturn L ▷ Return the list of instantiated objects

and their properties

C. ADAPTATION OF Fitts’ LAW INTO AR ENVIRONMENT219

In augmented reality (AR) interactions, multiple factors220

influence the task difficulty. In this study, we utilize several221

difficulty metrics to evaluate AR interactions:222

1) INDEX OF DIFFICULTY (ID) 223

Based on Fitts’ Law, ID quantifies interaction difficulty using 224

target size and distance. 225

2) LEVEL OF DIFFICULTY (LoD) 226

A novel metric we introduced, which adjusts for angular 227

distances between the user and AR objects, providing a 228

refined measure of spatial interaction complexity. 229

3) TASK DIFFICULTY 230

A general term referring to user-perceived or actual difficulty 231

during AR interactions influenced by both ID and LoD. 232

Throughout this paper, we specify which metric is being 233

referenced to ensure clarity. 234

Traditional Fitts’ Law models index of difficulty based 235

on target distance and size. However, these factors alone 236

are insufficient in AR environments, where users must often 237

rotate their heads to align with targets. We propose a new 238

index of difficulty (I3D) that includes a head distance metric 239

dm(H ,T ) calculated using quaternion algebra to account for 240

head rotation and spatial positioning. Our genetic algorithm 241

optimizes four key parameters:3 (scaling factor),µ (optimal 242

head distance), σ (width of head distance influence), and 243

s (strength of head influence), to tailor the model to AR’s 244

specific needs, as described in Equation 6. 245

Originally, Fitts’ Law was articulated as follows: 246

ID(S,T ) = log2

[
2
d(S,T )
w(T )

]
(1) 247

where ID(S,T ) represents the index of difficulty between a 248

source object (S) and a target object (T), with d(S,T ) being 249

the distance between them and w(T ) denoting the width of 250

the target object. Furthermore, the index of performance (IP) 251

is defined as: 252

IP(S,T ) =
ID(S,T )
δt(S,T )

(2) 253

with δt(S,T ) indicating the time taken to move from the 254

source to the target object [14]. 255

In the context of AR, as experienced through Hololens, 256

traditional metrics like Euclidean distance and object width 257

become less significant. This is due to the unique spatial 258

interactions in AR, where the user’s physical orientation and 259

position play a critical role. We observed that interactions 260

involving head or body rotation present a different challenge, 261

particularly when objects are positioned at unconventional 262

angles or near the user. ‘‘With head movement’’ refers to 263

scenarios where the user needs to move their head to align 264

their gaze with the target, thereby influencing the task’s 265

difficulty. Conversely, ‘‘without head movement’’ refers to 266

interactions where the user’s head remains stationary and 267

only the hand or controller moves to interact with the target. 268

Such spatial arrangements necessitate modifying the original 269

Fitts’ Law to accurately reflect the complexities of AR 270

interactions. 271
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To address these challenges, we incorporated the concept272

of quaternion algebra to represent head rotation. The rotation273

of a vector p, defined as a unit quaternion, by a rotation274

quaternion q is given by:275

p′ = q · pq−1 (3)276

where q−1 = q∗ represents the conjugate of q. This approach277

is substantiated by the work of Świtonski et al. [27], who278

provided a formula for calculating the distance in quaternion279

space:280

dQ(q1, q2) = arccos(2⟨q1, q2⟩ − 1) (4)281

This formula captures the rotational distance between two282

quaternions, q1 and q2.283

In adapting Fitts’ Law for the 3D AR environment,284

we replaced the traditional width metric with the object’s285

volume V (T ). We also introduced the head distance,286

dm(H ,T ), defined as the modified distance from the target287

object T to the user’s head position H . The head distance288

is pivotal, especially when objects are close to the user,289

as these situationsmay complicate perception and interaction.290

Our hypothesis posits that task difficulty increases when291

this distance surpasses the threshold µ (in meters), which292

represents the point of optimal task difficulty, as visually293

depicted in Figure 3. The task difficulty is least when294

dm(H ,T ) is equal to µ, and it increases as the distance295

decreases, indicating that objects too close to the user may296

be challenging to interact with. This is particularly true297

for objects placed such that they require significant head298

movement to be perceived.299

PARAMETERS IN THE MODIFIED FITTS’ LAW300

The head distance is mathematically expressed as:301

dm(H ,T ) = s− (s− 1) · e
−

1
2

( dQ(H ,T )−µ

σ

)2
(5)302

where s (Strength of Head Influence): This parameter303

represents the strength of head movement’s impact on304

interaction task difficulty. It is computed by analyzing305

head movement data captured via the HoloLens sensors.306

By measuring the amount of head rotation needed to align307

with each target, we quantify the extent to which head308

orientation increases task difficulty. This value is optimized309

using a genetic algorithm to minimize task completion time.310

µ (Optimal Head Distance): The parameter µ represents311

the optimal head distance, which is the distance at which312

interaction task difficulty is minimized. It is determined by313

analyzing the task completion times at various distances314

between the head and the target object.315

σ (Width of Head Distance Influence): This parameter316

defines the range of distances within which head movement317

significantly influences interaction task difficulty. The influ-318

ence is modelled as a Gaussian distribution centred aroundµ,319

and σ represents the spread of this influence.320

These parameters, s, µ, and σ , are empirically determined321

through experiments, as illustrated in Figure 3. They are322

refined through a genetic optimization algorithm to tailor the 323

model to AR environments. 324

FIGURE 3. Illustration of the head distance influence with parameters s,
µ, and σ .

Consequently, we have formulated a revised equation for 325

the index of difficulty in a 3D AR environment, taking into 326

account head rotation and object volume: 327

I3D(S,T ) = log2

[
3 · dm(H ,T ) ·

d(S,T )
V (T )

]
(6) 328

where d(S,T ) is the Euclidean distance between the source 329

and target, and V (T ) is the volume of the target object. 330

Although the index of performance (IP) formula remains 331

unchanged, it now employs the revised index of difficulty 332

I3D. This adjustment to Fitts’ Law offers a refined metric 333

for evaluating the interaction intricacies in AR environments, 334

as seen with Hololens usage. 335

D. OPTIMIZING Fitts’ LAW PARAMETERS FOR AR 336

Our experimental design focuses on calibrating four pivotal 337

coefficients in the revised Fitts’s law: 3, µ, s, σ . We intro- 338

duce a quantified Level of Difficulty (LoD), as visually 339

indicated in Figure 3, based on the normalized angular 340

distance between the source and target objects, with normal- 341

ization done by π to confine values within the [0, 1] interval. 342

The LoDs are discretized into four categories: 343

LoD = 1⇔ 0.00 ≤ dm(H ,T )/π < 0.25 344

LoD = 2⇔ 0.25 ≤ dm(H ,T )/π < 0.50 345

LoD = 3⇔ 0.50 ≤ dm(H ,T )/π < 0.75 346

LoD = 4⇔ 0.75 ≤ dm(H ,T )/π ≤ 1.00 (7) 347

Each experimental sample was assigned an initial LoD, 348

which informed the subsequent calculation of the Index of 349

Performance (IP) under two conditions: with and without the 350

VOLUME 12, 2024 5
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influence of head distance. Then, we divided the samples into351

groups according to LoD, and for each group, we calculated352

the mean and standard deviation. The range for the j-th group353

was defined as:354

R(j) =
[
avg(LoD = j)− std(LoD = j), avg(LoD = j)355

+ std(LoD = j)
]

(8)356

The calibration aims to satisfy two stringent conditions:357

firstly, that there is a marked and increasing separation358

between the average LoDs–specifically avg(LoD = 1) ≪359

avg(LoD = 2) ≪ avg(LoD = 3) ≪ avg(LoD = 4) and360

secondly, that there is minimal or no overlap between the361

ranges of consecutive LoD groups, R(j) ∩ R(j+ 1), to ensure362

distinct differentiation between levels of difficulty.363

IV. EXPERIMENTAL SETUP364

The experiment was conducted using Microsoft HoloLens 2,365

a widely recognized AR device, to ensure the accuracy366

and relevance of the findings. The selection of HoloLens367

2 was based on its robust sensor suite, which includes368

advanced head tracking capabilities essential for assessing369

head movement impacts on interaction task difficulty.370

A. EXPERIMENTAL PROCEDURE371

1) PARTICIPANT RECRUITMENT AND SELECTION372

Thirty participants (24 males, 6 females, aged 18 to373

50, mean = 32, SD = 13.39) were recruited using a374

multi-channel approach to ensure a representative sample375

across age, gender, and AR experience levels. This strategy376

was designed to capture diverse interaction patterns within377

the AR environment.378

2) INFORMED CONSENT PROCESS379

An exhaustive informed consent process was conducted in380

adherence to ethical standards and institutional guidelines,381

ensuring participants were fully briefed on the study’s382

scope, involvement, potential risks, and rights, including383

confidentiality and voluntary participation.384

3) TASK DESCRIPTION385

Participants were categorized into two groups based on their386

posture—standing or seated—for the study, as depicted in387

Figure 4. They were equipped with the Microsoft HoloLens388

2 and immersed in an AR-enabled environment optimized389

for interactive tasks. The procedure began with participants390

completing a registration form, where they provided their391

username, session ID, and the number of samples they392

would interact with during the session. Each session lasted393

approximately 10-15 minutes, depending on the number394

of samples selected. Participants with more AR experience395

typically selected more samples (40-60 samples), while those396

with less experience chose fewer (10-30 samples). No breaks397

were provided during the session to maintain participant398

engagement and ensure consistency in the data collection399

process.400

After registration, a guiding arrow in their field of view 401

directed attention towards a designated holographic target. 402

These objects were placed at varying distances—ranging 403

from 0.3 to 6.0 meters—from the participant and distributed 404

across different quadrants in the AR environment to ensure 405

spatial variation and engagement of head movement in 406

different ergonomic directions. The objects themselves varied 407

in size from 0.1 to 1.2 meters, with scaling factors applied 408

between 0.3 and 0.5 for diversity, ensuring that participants 409

encountered objects of different sizes and distances to interact 410

with. 411

Tomaintain continuity, the guiding arrow’s orientation was 412

adjusted after each interaction to highlight the next target, 413

with a two-second intermission and a message preparing 414

participants for the following tasks. The array of holographic 415

objects encountered—spanning spheres, cubes, and cars— 416

was strategically varied to examine the impact of object form 417

and participant posture on interaction modalities and user 418

experience insights. 419

4) DATA 420

In our dataset, precisely recorded via the software mentioned 421

above, each entry encapsulates the object’s location and 422

the observer’s head orientation (both position and rotation) 423

and quantifies the distortion vector’s scale factor alongside 424

the action’s timing. The distortion vector meticulously 425

records the object’s scaling across various axes, adhering 426

to a predefined range of [0.8, 1.2] to preserve the object’s 427

geometric integrity. We rigorously calculate the object’s 428

volume from this vector, ensuring a precise understanding of 429

its spatial dimensions. Furthermore, the ‘action time’—the 430

interval from application initiation to the user’s interaction 431

with the object—is meticulously recorded. This time-based 432

measurement, δt , crucial for computing the index of per- 433

formance (referenced as eq.2), is derived by calculating 434

the time difference between successive actions, adjusted by 435

a two-second standard interval to account for experiment 436

consistency. This detailed data collection and analysis frame- 437

work underpins our experimental investigation, enabling a 438

nuanced exploration of user interaction dynamics within AR 439

environments. The data set comprises 659 samples (438 for 440

standing and 221 for sitting cases). The division into the LoD 441

is presented in Table 1 below. 442

TABLE 1. Data set characteristics. The number of samples and division
into sitting and standing cases (horizontally) and into the level of
difficulty (vertically).

V. RESULTS AND DISCUSSION 443

Our refined model significantly improves the predictive 444

accuracy of AR interactions, as demonstrated by a strong 445

6 VOLUME 12, 2024
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FIGURE 4. Experiment setup: A user interacts with a virtual environment through a HoloLens device, performing tasks in both standing (Condition A
panel(d)) and sitting (Condition B panel(f)) positions. The setup includes interface development in Unity panel(a), user input registration panel(b,c), and
interaction with virtual objects panel (e).

correlation (R2
= 0.910) between the predicted and actual446

user performance data, as illustrated in Figure 12. A QQ447

plot (Figure 13) further confirms that the residuals follow448

a normal distribution, validating the model’s predictive449

power across different interaction scenarios. By applying a450

genetic optimization algorithm to fine-tune key parameters451

of the modified Fitts’ Law (I3D)—such as µ (optimal452

head distance), σ (width of head distance influence), and s453

(strength of head influence)—we achieved a 40% reduction454

in interaction task difficulty across various spatial quadrants.455

This reduction was measured against the initial interaction456

task difficulty values calculated using themodified Fitts’ Law457

before applying optimization.458

The 40% improvement is particularly notable in the upper459

frontal quadrant, where ergonomic challenges are most pro-460

nounced. The results were validated through empirical data461

collected from a flight simulation scenario, which closely462

mirrors real-world AR applications. The consistency of our463

findings across different spatial orientations underscores464

the robustness of the proposed model in predicting AR465

interaction challenges.466

The spatial positioning of objects greatly influences467

interaction task difficulty. Objects within the user’s direct468

line of sight (0◦ to 90◦) are more accessible to interact469

with, while those positioned outside this range require more470

complex movements. Our detailed examination of these471

interaction challenges within the AR setting is documented472

in Tables 2 (standing), 3 (sitting) and illustrated in Figure 7.473

These results outline the average and standard deviation474

of the Index of Difficulty (ID) across various condi-475

tions.476

In addition to the spatial analysis, we assessed the 477

distribution of absolute errors across the four quadrants in 478

both standing and sitting conditions. As shown in Figure 8, 479

the standing condition exhibits a higher spread of absolute 480

error in the first and fourth quadrants (Q1 and Q4), indicating 481

increased task difficulty in these regions. This variability is 482

likely due to the ergonomic challenges associated with these 483

spatial orientations, particularly those outside the user’s direct 484

line of sight. In contrast, the absolute errors across quadrants 485

in the sitting condition were more consistent, with less 486

variability than in the standing condition. This consistency 487

suggests that users can better manage interactions across the 488

quadrants while sitting due to increased stability and reduced 489

physical strain. This segmentation by quadrant highlights 490

how spatial orientation affects interaction task difficulty and 491

emphasizes the importance of head orientation. 492

A. STATISTICAL ANALYSIS 493

We conducted repeated-measures ANOVAs with Tukey HSD 494

post hoc tests at the 5% significance level. Normality 495

was confirmed via QQ plots (Figure 13), showing that 496

the residuals followed a normal distribution. The ANOVA 497

revealed a significant main effect of target location on 498

task difficulty for both standing and sitting conditions (F(3, 499

N) = 46.51, p < 0.001). Post-hoc tests identified significant 500

differences between Q1, Q2, and Q4 for standing, and Q1 and 501

Q3 for sitting as illustrated with an asterisk in (Figure 7). 502

Despite these differences, the error results (STD) in 503

Figure 8 showed no significant differences in perfor- 504

mance variability between quadrants for either condition 505
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(F(3, N) = 1.53, p = 0.257), indicating similar consistency506

across all quadrants.507

Post-optimization, a significant main effect was observed508

for both conditions (F(3, N)= 148.99, p < 0.001) (Figure 15).509

Post-hoc tests showed significant differences in task difficulty510

for Q1 and Q4 in standing and Q1 and Q3 in sitting.511

1) LIGHTING CONDITION ANALYSIS512

We also analyzed how lighting conditions impacted task513

difficulty across different spatial quadrants in both standing514

and sitting positions. Brightness levels were categorized into515

three groups: low, medium, and high, and the Index of516

Difficulty (IoD) was analyzed using ANOVA and post-hoc517

Tukey HSD tests. The ANOVA revealed a significant518

effect of brightness on task performance (F = 4.16, p =519

0.016), indicating that changes in brightness levels notably520

influenced task performance. Tukey HSD further identified521

Quadrant 4 as being most affected by brightness, with high522

brightness leading to increased task difficulty (F-statistic:523

3.37, p-value: 0.038). Figure 5 illustrates this relationship,524

with asterisks marking the significant impact in Quadrant 4.525

This suggests that visual strain or ergonomic factors may play526

a role in heightened task difficulty in this quadrant.527

In contrast, the sitting condition did not show a significant528

effect of brightness on task difficulty (F= 0.581, p= 0.560).529

Task difficulty remained consistent across brightness levels530

in the sitting condition, as shown in Figure 5. These findings531

suggest that standing tasks, particularly in Quadrant 4, are532

more sensitive to lighting while sitting tasks are less affected.533

2) ENVIRONMENTAL COMPLEXITY IN AR534

To assess environmental complexity in the augmented reality535

(AR) setting, we analyzed two factors: crowding (object536

count within quadrants) and object positioning (horizontal537

and vertical). Task difficulty was measured through interac-538

tion time, and ANOVA tests evaluated these factors. Objects539

were categorized into low, medium, and high levels of540

crowding. The ANOVA did not show a significant effect of541

crowding on task difficulty (F = 3.52, p = 0.0602).542

The ANOVA test for object positioning revealed that543

horizontal placement significantly impacted task difficulty544

(F = 10.73, p = 0.0025), while vertical placement did not545

(F = 1.56, p = 0.2658). Post-hoc Tukey HSD identified546

a significant difference between HQuadrants 2 and 4 (p =547

0.024). Figure 6 illustrates these effects, emphasizing the548

role of horizontal positioning in driving task performance549

challenges.550

This highlights the importance of optimizing lighting con-551

ditions and spatial organization, especially for standing work552

tasks, to reduce visual fatigue and improve performance.553

To further illustrate user task difficulties, we present an554

integrated perspective on interaction complexity, merging555

assessments from horizontal and vertical planes to capture the556

multifaceted nature of AR experiences. This synthesis allows557

for a thorough evaluation of the ergonomic and cognitive load558

on users across different spatial orientations, enhancing our559

FIGURE 5. The Figure compares the Index of Difficulty (IoD) across four
quadrants (Q1 to Q4) under three brightness levels (Low, Medium, and
High) for both standing (top) and sitting (bottom) conditions. The
asterisks (*) in the standing condition indicate significant differences in
task difficulty (p < 0.05), with Quadrant 4 showing the greatest sensitivity
to high brightness levels.

FIGURE 6. Boxplots show task difficulty (interaction time) across
horizontal (Q1–Q4) and vertical (V1 – V4) quadrants under different
crowding levels (Low, Medium, High). Object positioning includes both
horizontal and vertical quadrants. Asterisks (*) indicate significant
differences in task difficulty for horizontal quadrants (p < 0.05),
particularly in Q2 and Q4.

model’s utility and informing the design of user-centric AR 560

interfaces. 561

In the intricate three-dimensional environment of AR, 562

evaluating task difficulty requires a holistic approach that 563

considers the full scope of user interactions. Our research 564

introduces a comprehensive metric that integrates horizontal 565
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TABLE 2. The Average (AVG) and Standard Deviation (STD) of task difficulty measures in standing conditions (Horizontally and Vertically) without and
with head influence.

TABLE 3. The Average (AVG) and Standard Deviation (STD) of task difficulty measures in sitting conditions (Horizontally and Vertically) without and with
head influence.

FIGURE 7. The bar charts show the average perceived task difficulty of AR
interactions while standing and sitting across four quadrants (Q1-Q4),
both with and without head movement. The asterisks (*) indicate
quadrants with statistically significant differences (p < 0.05). These charts
highlight increased task difficulty with head movement, emphasizing the
importance of ergonomic design in AR interfaces.

and vertical dimensions using the cosine and sine of566

user movement angles as indicators. The quadrant-specific567

behavior of cosine and sine functions is foundational to this568

approach, as detailed in Table 4, which defines the angle569

ranges for different quadrants and provides the necessary570

conditions for determining which quadrant each interaction571

FIGURE 8. This figure shows the absolute errors across four quadrants
(Q1 to Q4) during AR interactions in standing (top) and sitting (bottom)
conditions. Each boxplot displays the error variability, with outliers
marked as points, highlighting the precision and consistency of
interactions across the conditions.

belongs to. This is particularly important in spatial navigation 572

within AR, where user movements can vary across horizontal 573

and vertical axes. 574

To quantify task difficulty in these contexts, the task 575

difficulty metric DQ for each quadrant Q is formulated as: 576

DQ =
√
(cosAVG)2 + (sinAVG)2 (9) 577
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This equation is based on the standard 2D Euclidean578

norm, which combines the squared cosine and sine values579

representing user movement’s horizontal and vertical com-580

ponents. These components reflect the relative task difficulty581

performed in the different quadrants. Each trigonometric582

component maps to a quadrant as indicated in Table 4,583

enabling us to assess the overall interaction task difficulty584

based on user movement direction.585

Given that AR interactions occur in a three-dimensional586

space, our methodology adapts this 2D metric to suit the 3D587

context. We do this by normalizing the task difficulty metric588

across all quadrants. This normalization is essential to ensure589

that interaction task difficulty is represented consistently590

across different spatial dimensions, avoiding bias introduced591

by quadrant-specific complexities.592

To achieve this, we normalize the metric to a 0-1 scale593

by dividing by the maximum value of
√
2, which is the594

upper bound of the Euclidean norm in a 2D space when both595

horizontal and vertical components contribute equally. This596

ensures that the task difficulty metric reflects the same range597

of values across different conditions:598

DQnorm =
DQ
√
2

(10)599

Our methodology effectively combines user interaction’s600

horizontal and vertical aspects into a single measure of601

task difficulty, offering a powerful tool for assessing AR602

performance. Integrating these multidimensional interactions603

into a comprehensive task difficulty metric, as shown in604

Equation 9, provides a transparent and standardized way to605

evaluate user challenges in AR environments. The result is606

illustrated in Figure 9.607

B. QUANTITATIVE EVALUATION OF USER INTERACTION608

CHALLENGES609

We employed a Weighted Average Difficulty (WAD) metric610

derived from user ratings to assess the perceived task611

difficulty of interacting with AR targets. This metric, detailed612

in Table 5 and illustrated in Figure 11, was calculated using613

the formula:614

WA =
n∑
i=1

(Pi × Vi) (11)615

wherePi represents the percentage of responses for level of616

difficulty i, and Vi corresponds to the ordinal value assigned617

(1 to 7, from ‘‘Very Easy’’ to ‘‘Extremely Hard’’). This618

approach ensures a proportional reflection of perceived task619

difficulty. Our analysis of the WAD across different task620

series revealed moderate variance in the F Series (2.38 to621

4.35), with F4 being notably challenging. The L Series622

exhibited a narrower level of difficulty range, peaking at623

5.29 for L6. The R Series was consistently challenging,624

with R6 having the highest level of difficulty (5.36). The625

B Series displayed the broadest range, with B6 being the626

most demanding (5.50). We observed patterns in WAD627

values, such as identical ratings for L4 and R3/R4 (3.34 and628

FIGURE 9. Heatmaps of AR interaction task difficulty: These heatmaps
visually contrast average task difficulty in standing and sitting positions,
with (right) and without (left) head movement. Colour gradients indicate
the level of difficulty, with lighter shades denoting higher challenges.
They emphasize how head movement increases the task difficulty,
informing ergonomic AR design.

TABLE 4. Trigonometric conditions for quadrant determination.

3.71), respectively, and extreme values–B6 being the most 629

challenging and F3 being the least. These insights informed 630

our computational analysis and interface design. 631

To validate these findings, vector data from a Hololens 632

experiment was incorporated into Unity, aligning with inter- 633

action quadrants shown in Figure 10. This spatial mapping 634

of user interactions confirmed that certain quadrants, like 635

the upper frontal area, presented higher level of difficulty, 636

consistent with our earlier results. Our comprehensive anal- 637

ysis strongly supports the robustness and applicability of our 638

optimized Fitts’ Law model in real-world AR environments. 639
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This reassures us and our audience of the validity of our640

findings and the potential of Fitts’ Law in understanding user641

interaction challenges in AR.642

FIGURE 10. Vector data from unity showing interaction points and
quadrants for empirical validation. Each vector represents a user’s
interaction within the AR environment, categorized into different spatial
quadrants.

TABLE 5. Weighted average task difficulty ratings for F, L, R, and B series
targets based on user feedback.

FIGURE 11. This chart presents the collective user feedback from a survey
on interaction task difficulty within an augmented reality environment.
It summarizes the relative frequency of perceived level of difficulty,
offering a consolidated view of user experiences across the spectrum of
AR interactions.

VI. DISCUSSION643

The findings from this study significantly advance the644

design of AR interfaces and contribute to the broader645

field of Human-Computer Interaction (HCI). Integrating 646

head movement and spatial orientation into Fitts’ Law 647

provides a more accurate framework for predicting and 648

optimizing interaction task difficulty in AR environments. 649

Applying a genetic optimization algorithm effectively refined 650

model parameters, allowing adaptation across various AR 651

scenarios. Furthermore, using quaternion algebra to handle 652

head rotations addresses limitations in previous models of 653

Fitts’ Law. 654

We structured the interaction space around the user’s 655

head based on anatomical planes—frontal, left, right, and 656

back—and subdivided these regions for detailed analysis 657

(Figure 2). Our results reveal varying levels of interaction 658

task difficulty across these regions, with the upper frontal 659

area being particularly challenging due to the complex 660

gaze and head movements required for interactions above 661

the transverse plane. This underscores the importance of 662

ergonomic considerations, especially for objects close to the 663

user’s line of sight, as interactions along the vertical axis pose 664

additional challenges. 665

The analysis further shows that the lower frontal and lateral 666

planes are more accessible to interact with as they align more 667

naturally with head positioning and gaze direction. However, 668

the task difficulty increases in peripheral areas due to the 669

ergonomic constraints of head and neckmovement. Factoring 670

in head movement introduces significant ergonomic nuances, 671

with increased interaction task difficulty in initially faced 672

quadrants (Figure 9, 1.51 for V1H1 with head influence). 673

To optimize the interaction model, we employed a genetic 674

algorithm to adjust parameters such as Lambda (3), the 675

strength of head (s), Sigma (σ ), and Mu (µ), significantly 676

enhancing the model’s performance across spatial quadrants 677

(Figure 3). 678

Initially, the algorithm started with baseline parameters: 679

(3 = 3, s = 6, σ = 8, and µ = 4). The final optimized 680

parameters (3 = 1.77, s = 0.07, σ = 0.60, µ = 0.02) 681

achieved a minimized Mean Squared Error (MSE) of 0.98, 682

resulting in an average Level of Difficulty (LoD) reduction 683

by approximately 40%. The first quadrant saw a reduction 684

of about 66.7%, and the fourth quadrant experienced a 685

40.0% reduction. The second and third quadrants also showed 686

improvements with reductions of approximately 33.3% and 687

20.0%, respectively, as shown in Figure 15, indicating a more 688

consistent and ergonomic user experience across varying 689

head distances. 690

This fine-tuning ensures the model’s accuracy and user- 691

centricity. Empirical validation, comparing predicted inter- 692

action times with actual user performance, showed a strong 693

correlation (Figure 12, R2 (0.910), Additionally, our analysis 694

of the relationship between task complexity (LoD) and 695

perceived task difficulty (WAD) further validated the model, 696

establishing a critical link between objective task metrics and 697

user experience (Figure 14). 698

Building on our model’s refinement, Figure 16 presents 699

the probability density of task difficulty levels across various 700

user experiences within the AR environment after applying 701
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FIGURE 12. Scatter plot showing the correlation between Predicted LoD
and actual user movement times, with an R2 of 0.910 indicating the
accuracy of the module.

FIGURE 13. QQ Plot of residuals from the model fit, illustrating that the
residuals closely follow a normal distribution, supporting the validity of
the model’s predictions.

FIGURE 14. Correlation between task complexity (Level of Difficulty, LoD)
and user perceived task difficulty (Weighted Average Difficulty, WAD) in
an augmented reality Setting.

the optimization algorithms. This figure illustrates the normal702

distribution of task difficulty, with the mean (µ) signifying703

the average user-perceived challenge after optimization.704

The shaded areas represent the 1-sigma (68.27%), 2-sigma705

(95.45%), and 3-sigma (99.73%) intervals, demonstrating706

the spread and likelihood of various levels of difficulty707

encountered. As shown, the fine-tuning of parameters 3, s,708

FIGURE 15. LoD comparison by quadrants, pre- and post-optimization.

σ , andµ using the genetic algorithm has not only reduced the 709

mean squared error (MSE) but also tightly concentrated the 710

task difficulty around the optimal point, thereby indicating 711

a more consistent and user-friendly AR experience. The

FIGURE 16. The graph illustrates a normal distribution curve with the
percentages corresponding to the one, two, and three standard deviation
ranges (sigma levels) from the mean µ.

712

optimized parameters indicate a nuanced model that adapts 713

to the ergonomics of AR interaction, considering the intricate 714

dynamics of user orientation and task complexity. The 715

achieved MSE represents a robust fit of the model to the 716

empirical data, ensuring high confidence in the task difficulty 717

predictions and their alignment with user experience. 718

In comparison to other established methods, such as 719

the raycasting technique evaluated by Mifsud et al. [28], 720

which achieved an average throughput of 2.63 bits/second 721

and movement times of 1068 ms, our model demonstrated 722

a 40% reduction in interaction task difficulty across var- 723

ious quadrants. While raycasting performs well in AR, 724

our method’s inclusion of head movement and ergonomic 725

considerations provides a more tailored interaction model 726

for AR environments, offering consistent reductions in task 727

difficulty across quadrants, particularly in challenging areas 728

like the upper frontal quadrant. These enhancements make 729
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ourmodelmore suitable for complexAR environments where730

head orientation plays a significant role.731

Additionally, recent work by Wagner et al. [22] highlights732

the effectiveness of gaze-hand alignment techniques in AR,733

such as Gaze&Handray, which outperforms raycasting for734

close-range tasks but struggles with distant targets due to735

parallax. Our model addresses these limitations, offering a736

versatile and efficient solution for AR interaction, effectively737

reducing task difficulty regardless of target distance.738

VII. CONCLUSION739

The findings of this study, particularly the adaptation of740

Fitts’ Law for AR, have significant implications for the741

design and optimization of interactive systems beyond742

AR. This work contributes to a deeper understanding of743

how Human-Computer Interaction (HCI) principles can be744

adapted to suit immersive environments, such as Virtual745

Reality (VR) andMixed Reality (MR), where user interaction746

dynamics differ significantly from traditional 2D interfaces.747

Moreover, developers could apply the proposed adapted748

Fitts’ Law, which accounts for head movement and spatial749

orientation, to optimize the placement of objects in the750

AR environment, providing users with more intuitive and751

ergonomic interaction. The proposed adapted Fitts’ Law-752

based model demonstrates approximately 40% reduction in753

interaction task difficulty across all quadrants, resulting in a754

more ergonomic and intuitive user interface. Our proposed755

theoretical and experimental methodology provides a frame-756

work for performance evaluations and optimization of AR757

and other user interfaces. To further enhance the impact and758

applicability of our findings, future research should consider759

broadening the scope of this study by extending the optimized760

Fitts’s Law model to different AR devices beyond Microsoft761

Hololens 2, such asMagic Leap, AR-enabled mobile devices,762

and virtual reality (VR) devices. This expansionwould enable763

a comprehensive comparison of interaction difficulties across764

different immersive technologies, providing valuable insights765

into the generalizability and adaptability of the model.766

Additionally, real-time measurement of cognitive load767

(using EEG, eye-tracking, etc.) should be incorporated to see768

how the task difficulty in AR environments impacts mental769

workload. This data could further refine the task difficulty770

metrics used in the study.771
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