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We are in the Noisy Intermediate-Scale Quantum (NISQ) devices’ era, in which quantum hardware
has become available for application in real-world problems. However, demonstrating the usefulness
of such NISQ devices are still rare. In this work, we consider a practical railway dispatching prob-
lem: delay and conflict management on single-track railway lines. We examine the issue of train
dispatching consequences caused by the arrival of an already delayed train to the network segment
being considered. This problem is computationally hard and needs to be solved almost in real-time.
We introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, com-
patible with the emerging quantum annealing technology. The model’s instances can be executed
on present-day quantum annealers. As a proof-of-concept, we solve selected real-life problems from
the Polish railway network using D-Wave quantum annealers. As a reference, we also provide so-
lutions calculated with classical methods, including those relevant to the community (linear integer
programming) and a sophisticated algorithm based on tensor networks for solving Ising instances.
Our preliminary results illustrate the degree of difficulty of real-life railway instances for the current
quantum annealing technology. Moreover, our analysis shows that the new generation of quantum
annealers (the advantage system) perform much worse on those instances than its predecessor.

I. INTRODUCTION

Concentrated efforts all around the globe [1–5] are pur-
suing the development of viable quantum technologies.
However, the technological challenges are immense, and
it may still take some time before the first fault-tolerant
quantum computers may become available for practical
applications [6]. Thus, it is of instrumental importance
to not only build a quantum literate workforce [7], but
to also ensure investments are made in realistic and so-
cietally beneficial avenues for development [8].

Despite the fact that the first demonstrations of quan-
tum advantage have been published [9], currently avail-
able hardware is still prone to noise. Thus, it has been
argued that we are in the era of noisy-intermediate scale
quantum (NISQ) technologies [10]. For instance, the D-
Wave quantum annealer promises to deliver scalability
beyond current classical hardware limitations. However,
exploiting NISQ technologies often requires a different
mathematical modeling framework. For instance, the
D-Wave quantum annealer accepts an Ising spin-glass
instance as its input and outputs solutions encoded in
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spin configurations. High-quality solutions are expected
to be computed by these devices in a reasonable time,
even for problems of the size which already bear practi-
cal relevance (currently, up to 5000 variables on a sparse
graph [11]). More importantly, a NISQ computer may
not (yet) be able to outperform classical computers, how-
ever seeking and demonstrating amendable applications
provides the instrumental guiding principle for the devel-
opment of purpose-specific devices with genuine quantum
advantage.

To date, at least in public domain research, most of the
studied “ quantum” problems are not directly relevant to
a particular industrial application, but rather concern
the solution of “classical” generic, computationally hard
problems, such as, e.g. the traveling salesman problem
or the graph coloring problem [12], see e.g. Ref. [13]
for a comprehensive review. The present work belongs
to a more practically motivated line of research: it is
dedicated to making quantum computing more broadly
accessible by demonstrating its applicability to a prob-
lem that can be easily understood especially by the non-
physics audience – conflict management in railway op-
eration. Railway operations involve a broad range of
scheduling activities, ranging from provisional timetable
planning over rolling stock circulation planning, crew
scheduling and rostering, etc. to operational train dis-
patching in case of disturbances, such as, e.g. severe
weather, or unplanned events, technological breakdown.
Many of these tasks require solving computationally ex-
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pensive and overall challenging combinatorial problems.
Various consequences of improper planing, e.g. incorrect
dispatching decisions can be severe in terms of resources
(e.g., time costs, passengers’ satisfaction, financial loss).

In the domain of transportation research the applica-
bility of quantum annealing has only been demonstrated
for very few problems. For instance, Stollenwerk et
al. [14] recently addressed a class of simplified air traf-
fic management problems of strategic conflict resolution.
Their preliminary results show that some of the challeng-
ing problems can be solved efficiently with the D-Wave
2000Q machine. As to the railway industry, to the best
of our knowledge, a preliminary version of the present
work [15] was the first to apply a quantum computing
approach to a problem in railway optimization.

The main purpose of the present paper is to elucidate
how railway management problems can be solved with
the currently available hardware. Naturally, we do not
expect the current generation of the D-Wave annealer
to outperform the best available classical algorithms.
Rather, the present work is of pedagogical and instruc-
tive value as it provides an entry point for transportation
research into quantum computing, and demonstrates the
applicability of a NISQ computer. To this end, we solve
the delay and conflict management on an existing Polish
railway, whose real-time solution is of paramount impor-
tance for the local community.

Realizing that especially in the NISQ era there is still a
significant language barrier between foundational quan-
tum physics and real-life applications, the present paper
strives to be as introductory and self-contained as pos-
sible. In particular, Sec. II provides a brief review of
railway conflict management as well as quantum anneal-
ing. Our model of the “real” problem is then outlined in
Sec. III, before we discuss our findings in Sec. IV. The
discussion is concluded with a few remarks on future re-
search directions in Sec. V. In the supplemental material
we give a fully detailed description of our model. We
include there also the description of a possible linear in-
teger programming formulation that we use for compar-
ison. The Supplemental Material contains a number of
additional partcular solutions.

II. RAILWAY DISPATCHING PROBLEM ON
SINGLE-TRACK LINES

Railway dispatching problem management is a com-
plex area of transportation research. Here we focus on
the delay management on single-track railways. This
problem concerns the operative modifications of train
paths upon disturbances in the railway traffic. Incor-
rect decisions may cause the dispatching situation to de-
teriorate further by propagating the delay, resulting in
unforeseeable consequences. Henceforth, we discuss this
problem’s details and survey the relevant part of the lit-
erature. Although we focus on single-track railway lines,
some considerations may also be applicable to multi-track

railways [16].

A. Problem description

Consider a part of a railway network in which the traf-
fic is affected by a disturbance. As a result, some trains
cannot run according to the original timetable. Hence, a
new, feasible timetable should be created promptly, min-
imizing unwanted consequences of the delay. To be more
specific, we are given a part of a railway network (re-
ferred to as the network), such as e.g. those depicted in
Figs. 2(c) and 2(d). The network is divided into block
sections or blocks [17]: sections which can be occupied
by at most one train at a time. The block sections are
labeled with numbers in the figures. We focus on single-
track railway lines. These include passing sidings (re-
ferred to as sidings): parallel tracks, typically at stations;
the blocks labeled with upper indices in parantheses in
the figures. Via the sidings, trains heading in opposite
directions can meet and pass (M-P), while trains heading
in the same directions can meet and overtake (M-O).

All trains run according to a timetable. Examples of
timetables are illustrated in Figs 2(b) and 2(a) in the
form of train diagrams, and will be explained later in Sec-
tion IVA. We assume that the initial timetable is conflict
free and that it meets all feasibility criteria. The crite-
ria may vary [18, 19] depending on the railway network
in question. The possible variants include technical re-
quirements such as speed limits, dwell times, and other
signaling-imposed requirements, as well as rolling stock
circulation criteria, and passenger demands for trains to
meet. The railway delay management problem can be
viewed from various perspectives, including that of a pas-
senger, the infrastructure manager, or a transport oper-
ation company [18–20]. Here, we look at this problem
from the perspective of the infrastructure manager, who
is to make the ultimate decision about the modifications
and is in the position to prioritize the requirements.

In what follows, we assume that – for whatever reason
– a delay occurs. Hence, some trains’ locations differ from
the scheduled ones. A conflict is an inadmissible situa-
tion in which at least two trains are supposed to occupy
the same block section. For instance, if an already de-
layed train would continue its trip according to the orig-
inal plan shifted in time with the delay while the other
trains would run according to the original timetable, mul-
tiple trains could meet in the same block, as illustrated
in Fig. 3(a).

The objective of conflict management is thus to re-
design the timetable to avoid conflicts (like in Fig. 3(b)
in our example), and minimize delays. The overall delay
of a train is the sum of two types of delays. A primary
delay is caused by an initial disturbance directly. Ob-
viously there is a minimal amount of time needed for
a train to reach further destinations, e.g., due to speed
limits, hence, the primary delay of a train propagates
through the network; it would be unavoidable even in
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the absence of any other trains. The primary delay is
thus a lower bound on the overall delay. The delay of
a train beyond the primary delay is termed as the sec-
ondary delay. These are induced by conflicts that have
to be resolved by appropriate dispatching decisions. The
objective of the optimization of these decisions is the min-
imization of a suitable function of secondary delays, e.g.,
their maximum or a weighted sum. Note that there are
many other practically relevant options for the objective
function [21], e.g. the total passenger delay or the cost
of operations, and some of these are also inline with our
approach.

The mathematical treatment of railway delay and con-
flict management leads to NP-hard problems [22]; certain
simple variants are NP-complete [23]. It is broadly ac-
cepted that these problems are equivalent to job-shop
models with blocking constraints [24], given the release
and due dates of the jobs and depending on the require-
ments of the model and additional constraints such as
recirculation or no-wait. The correspondence between
the metaphors is the following. Trains are the jobs and
block sections are the machines. Concerning the objec-
tive functions, the (weighted) total tardiness or make-
span is typically addressed, which is the (weighted) sum
of secondary delays or the minimum of the largest sec-
ondary delay in the railway context. So with the standard
notation of scheduling theory [25], our problem falls into
the class Jm|ri, di, block|

∑
j wjTj .

B. Existing algorithms

The following summary of railway dispatching and con-
flict management is focused on the works that are closely
related to the problem addressed by us. A more com-
prehensive review of the huge literature on optimiza-
tion methods applicable to railway management prob-
lems can be found in many related publications, notably
in Refs. [19, 21, 26–30].

On a single-track line, the possible actions that can be
taken to reschedule trains are the following: allocating
new arrival and departure times, changing tracks and
platforms, and reordering the trains by adjusting the
meet-and-pass plans [19, 21, 31]. An important issue
in modeling single-track lines is the handling of sidings
(stations). As pointed out in [32], there are three ap-
proaches: In the parallel machine approach, in which its
is assumed that each track within the siding corresponds
to a separate machine in the job shop, thereby losing the
possibility of flexible routing i.e., changing track orders at
a station afterward. In the Machine unit approach par-
allel tracks are treated as additional units of the same
machine. Finally, in the buffer approach the sidings at
the same location are handled as buffers without inter-
nal structure, therefore not warranting the feasibility of
track occupation planning at a station. We adopt the
buffer approach in our model.

As to the nature of the decision variables, two major

classes of models can be identified:

• Order and precedence variables prescribe the order
in which a machine processes jobs, i.e., the order of
trains passing a given block section in the railway
dispatching problem on single-track lines.

• Discrete time units, in which the decision variables
belong to discretized time instants; the binary vari-
ables describe whether or not the event happens at
a given time.

These two approaches lead to different model struc-
tures, which are hard to compare. The discrete time
units approach appears to be more suitable for a possi-
ble QUBO formulation, but it leads to a large number of
decision variables and thus worse scaling. On the other
hand, the order and precedence variables approach can
lead to a representation of the problem with alternative
graphs [33, 34], which is an intuitive picture. The solu-
tion of this problem representation leads to mixed-integer
programs that can possibly be solved with iterative meth-
ods (such as branch-and-bound), which makes them un-
suitable for a reformulation to QUBO. Time-indexed
variables, on the other hand, can result in pure binary
problems that can be transformed into QUBOs [35], so
we follow the latter approach.

Returning to Ref. [32], the authors considered the
problem adopting the parallel machine approach and the
machine unit approach, with order and precedence vari-
ables; addressing the problem Jm|ri, di, block, rcrc|

∑
j Tj

in the standard notation of scheduling theory. In compar-
ison, in the present work will adopt slightly different con-
straints and objectives, namely, Jm|ri, di, block|

∑
j wjTj .

As to decision variables, we opt for discrete time units
and time-indexed variables [36].

In Ref. [37], Zhou and Zhong considered the problem
of timetabling on a single-track line. The starting times
of trains and their stops are given, and a feasible sched-
ule is to be designed to minimize the total running time
of (typically passenger) trains. Although their problem,
notably its objective function and the input, is differ-
ent, the constraints are similar to those of our problem.
The authors also deal with conflicts, dwell times, and
minimum headway times for entering a segment of the
railway line. They handle the problem with reference to
resource-constrained project scheduling. Their decision
variables are the discretized entry and leave times of the
trains at the track segments, binary precedence variables
describing the order of the trains passing a track seg-
ment, and time-indexed binary variables describing the
occupancy of a segment by a given train at a given time.
They introduce a branch-and-bound procedure with an
efficiently calculable conflict-based bound in the bound-
ing step to supplement the commonly used Lagrangian
approach. They demonstrate its applicability to schedul-
ing of up to 30 passenger trains for a 24-hour periodic
planning horizon on a line with 18 stations in China.

Harrod [38] proposed a discrete-time railway dispatch-
ing model, with a focus on conflict management. In this
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work, the train traffic flow is modeled as a directed hyper-
graph, with hyperarcs representing train moves with vari-
ous speeds. This may be confined to an integer program-
ming model with time-, train-, and hypergraph-related
variables and a complex objective function covering mul-
tiple aspects. The model is demonstrated on an imagi-
nary single-track line with long passing sidings at even-
numbered block sections of up to 19 blocks in length. An
intensive flow of trains at moderate speeds is examined.
The model instances are solved by CPLEX in the order
of 1000 seconds of computation time. As a practical ap-
plication, a segment of a busy North American mainline
is used, on which the model produced practically useful
results. Bigger examples were also experimented with,
leading to the conclusion that the approach is promis-
ing but that it needs more specialized technology than a
standard mixed-integer programming (MIP) solver to be
efficient.

Meng and Zhou [39] describe a simultaneous train
rerouting and rescheduling model based on network
cumulative flow variables. Their model also employs
discrete-time-indexed variables. They implement a La-
grangian relaxation solution algorithm and make de-
tailed experiments showing that their approach performs
promisingly on a general n-track railway network. In
the introduction of their article they tabulate numerous
timetabling and dispatching algorithms.

This brief survey of the extensive literature confirms
that the problem of railway dispatching and conflict man-
agement is indeed a good candidate for demonstrating
new computational technology capable of solving hard
problems. Only a very few models have been put into
practice. The size and complexity of realistic dispatch-
ing problems make it challenging for the models to solve
them with current computational technology.

C. Quantum annealing and related methods

Let us now turn our attention to the main tools used in
the present study: quantum annealing techniques. These
have their roots in adiabatic quantum computing, a new
computational paradigm [40], which, under additional as-
sumptions, is equivalent [41] to the gate model of quan-
tum computation [42] (provided that the specific interac-
tions between quantum bits can be realized experimen-
tally [43]). Thus this emerging technology promises to
tackle complicated (NP-hard in fact [44]) discrete opti-
mization problems by encoding them in the ground state
of a physical system: the Ising spin glass model [45].
Such a system is then allowed to reach its ground state
“naturally” via an adiabatic-like process [46]. An ideal
adiabatic quantum computer would in this way provide
the exact optimum, whereas a real quantum annealer is
a physical device that has noise and other inaccuracies.
Hence, currently existing quantum annealers are paradig-
matic examples of the NISQ era [10]. Their output is
only a sample of candidates that is likely to contain the

optimum. Hence, quantum annealing can be regarded
as a heuristic approach, which will become increasingly
accurate and efficient as the technology improves.

1. Ising-based solvers

The Ising model, introduced originally for the mi-
croscopic explanation of magnetism, has been in the
center of the research interests of physicists ever since.
It deals with a set of variables si ∈ {+1,−1} (origi-
nally corresponding to the direction of microscopic mag-
netic momenta associated with spins). The configura-
tion of N such variables is thus described by a vector
s ∈ {+1,−1}N . The model then assigns an energy to a
particular configuration:

E(s) =
∑

(i,j)∈E
Ji,jsisj +

∑

i∈V
hisi, (1)

where (V,E) is a graph whose vertices V represent the
spins, the edges E define which spins interact, Ji,j is the
strength of this interaction, and hi is an external mag-
netic field at spin i. Although the early studies of the
model dealt with configurations in which the spins were
arranged in a one-dimensional chain so that the coupling
J was non-zero for nearest neighbors only, the model has
been generalized in many ways, including the most gen-
eral setting of an arbitrary (V,E) graph, i.e., incorporat-
ing the possibly of non-zero couplings for any i, j pair.
Such a system is referred to as a spin glass in physics.
For comprehensive reviews of generalizations of the Ising
model we refer to the literature [47, 48].

From an operations research point of view, the physical
model is interesting , since it describes is a computational
resource for optimization. The idea originated from the
fact that in physics, the minimum energy configuration
determines many properties of a material.

In mathematical programming, it is often more con-
venient to deal with 0-1 variables. By introducing new
decision variables x ∈ {0, 1} so that

xi =
si + 1

2
, (2)

and the matrix

Qi,i = 2


hi −

n∑

j=1

Ji,j


 , Qi,j = 4Ji,j , (3)

the minimization of the energy function is equivalent to
solving a QUBO problem:

minxTQx, s.t. x ∈ {0, 1}N . (4)

Therefore, minimizing the Ising objective in Eq. (1) is
equivalent to solving a QUBO. Moreover, the matrix Q
can always be chosen to be symmetric, as Q = (Q′ +
Q′T )/2 defines the same objective. Solvers based on Ising



5

C
hi
m
er
a
4
×
4
×
8

0 1/4 1/2 3/4 1
0

15

30

45

t/T

F
re
q
u
en

cy
[G

H
z]

g

∆

FIG. 1. D-Wave processor specification. Left: An example of the Chimera topology, here composed of 4 × 4 (C4) grid
consisting of clusters (units cells) of 8 qubits each. The total number of variables (vertices) for this graph is N = 4 · 4 · 8 = 128.
A graph’s edges indicate possible interactions between qubits. The maximum number of qubits is Nmax = 2048 for the Chimera
C16 topology, whereas the total number of connections between them is limited to 6000 � N2

max. Right: A typical annealing
schedule controlling the evolution of a quantum processor, where T denotes the time to complete one annealing cycle (the
annealing time). It ranges from microseconds (∼ 2µs) to milliseconds (∼ 2000µs). The parameters g and ∆ are used in (6).

spin glasses are actual devices (or specialized algorithms
simulating them or calculating their relevant properties)
that can handle models of this form only. The technology
offers the possibility of efficiently tackling computation-
ally hard problems (when formulated as a QUBO, which
is possible for all linear or quadratic 0-1 programs [49]).
It does have limitations with respect to size and accu-
racy, as will be illustrated in the present case study, but
it is likely that the technology will continue to improve.

Simultaneously, with the rapid development of quan-
tum annealing technology, probabilistic classical acceler-
ators have been under massive development. In recent
years, we have witnessed significant progress in the field
of programmable gate array optimization solvers (dig-
ital annealers [50]), optical Ising simulators [51], coher-
ent Ising machines [52], stochastic cellular automata [53],
and, in general, those based on memristor electronics [54].

It is therefore vital to develop modeling strategies to
make operational problems suitable for such models and
to create novel techniques for analyzing the obtained re-
sults. This should progress similarly to how the powerful
solvers for linear programs first started appearing: mod-
eling strategies for linear programs as well as sensitivity
analysis had been developed ahead of the creation of the
hardware.

2. Quantum annealing

An essential step in finding the minimum of an op-
timization problem [encoded in Eq. (1)] efficiently is to
map it to its quantum version. The mapping assigns a
two-dimensional complex vector space to each spin, and
a complete spin configuration becomes an element of the
direct (tensor) products of these spaces. An orthonor-
mal basis (ONB) is assigned to the −1 and +1 values of
the variables; thus the product of these vectors will be
an ONB (called the “computational basis”) in the whole

C2N . The vectors with unit Euclidean norms are referred
to as “states” of the system; they encode the physical con-
figurations. The fact that the state can be an arbitrary
vector, and not only an element of the computational ba-
sis means that the quantum annealer can simultaneously
process multiple configurations, i.e., inherent parallelism.

As to the objective function, the spin variables are re-
placed by their quantum counterpart: Hermitian matri-
ces acting on the given spin’s C2 tensor subspace. The
product of spins is meant to be the direct (tensor) prod-
uct of the respective operators. Thus, the objective func-
tion (1) turns into a Hermitian operator, referred to as
the problem’s Hamiltonian:

Hp := E(σ̂z) =
∑

〈i,j〉∈E
Jij σ̂

z
i σ̂

z
j +

∑

i∈V
hiσ̂

z
i , (5)

whose lowest-energy eigenstate is commonly called the
“ground state.” Above, σzi denotes the Pauli z-matrix
associated with ith qubit. In the present case, it is an
element of the computational basis, so it represents also
the optimal configuration of the classical problem. Note
that the energy of a physical system is related (via eigen-
values) to a Hermitian operator, called its Hamiltonian.
Although it seems to be a significant complication to deal
with C2N instead of having 2N binary vectors, it has im-
portant benefits, the most remarkable of which is that
they model realistic physical systems.

The main idea behind quantum annealing is based on
the celebrated adiabatic theorem [55]. Assume that a
quantum system can be prepared in the ground state
of an initial (“simple”) Hamiltonian H0. Then it will
slowly evolve to the ground state of the final (“complex”)
Hamiltonian Hp in (5) that can be harnessed to encode
the solution of an optimization problem [45]. In particu-
lar, the dynamics of the current D-Wave 2000Q quantum
annealer is governed by the following time-dependent
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Hamiltonian [46, 56]:

H(t)/(2π~) = −g(t)H0 −∆(t)Hp′ , t ∈ [0, T ]. (6)

Here the original problem’s Hamiltonian in (5) must be
converted into a bigger one Hp′ whose graph is compli-
ant with the existing hardware can realize: the “Chimera
graph” in case of DWave 2000Q; see Fig. 1. The original
problem’s graph will be the minor of this graph. This pro-
cedure, called “minor embedding”, is standard in quan-
tum annealing procedures (see also Section SIII C for a
simple graphical representation of this Chimera embed-
ding).

In fact, many relevant optimization problems are de-
fined on dense graphs. Fortunately, even complete graphs
can be embedded into a Chimera graph [57]. There is,
however, substantial overhead, which effectively limits
the size of the computational graph that can be treated
with current quantum annealers [58, 59]. This is, nev-
ertheless, believed to be an engineering issue that will
most likely be overcome in the near future [11, 60]. After
the Chimera embedding, the Hamiltonian describing the
system reads as follow:

Hp′ =
∑

〈i,j〉∈E
J ′ij σ̂

z
i σ̂

z
j +

∑

i∈V
h′iσ̂

z
i , H0 =

∑

i

σ̂xi , (7)

where σxi is the x Pauli matrix associated with ith qubit.
The annealing time T varies from microseconds (∼ 2µs)
to milliseconds (∼ 2000µs) depending on the specific pro-
grammable schedule [46]. As shown in Fig. 1, during the
evolution, g(t) varies from g(0) � 0 (i.e., all spins point
in the x-direction) to g(T ) ≈ 0, whereas ∆(t) is changed
from ∆(0) ≈ 0 to ∆(T ) � 0 (i.e., H(T ) ∼ Hp′). The
Pauli operators σ̂zi , σ̂xi describe the spin’s degrees of free-
dom in the z- and x-direction, respectively. Note that
the Hamiltonian Hp is classical in the sense that all its
terms commute (which is the result of their multiplica-
tion being independent of the order). Thus, as mentioned
previously, its eigenstates translate directly to classical
variables, qi = ±1, which are introduced to encode dis-
crete optimization problems.

The annealing time, T in Eq. (6), is an important pa-
rameter of the quantum annealing process: it must be
chosen so that the system reaches its ground state while
the adiabaticity is at least approximately maintained.
The adiabatic theorem gives us a guidance in this re-
spect. In the spectrum of the Hamiltonian in Eq. (6),
there is a difference between the energy of the ground
state(s) and the energy of the state(s) just above it in
energy scale. This difference is known as the (spectral)
“gap”, and its minimum value in the course of the evolu-
tion determines the required computation time if certain
additional conditions hold. Roughly speaking, the big-
ger the gap, the faster the quantum system reaches its
ground state (the dependence is actually quadratic; see
Ref. [61] for a detailed discussion). Thus, if the run time
is not optimal, there is a finite probability of reading out
an excited state instead of the true ground state.

Therefore, the ideal approach would be to calculate the
optimal time, and only then let the system evolve for as
long as it is necessary. However, the spectrum is actu-
ally unknown, and its determination is at least as hard as
solving the optimization problem itself. Hence, in prac-
tice, a reasonable annealing time is determined from an
educated guess, and the evolution is repeated reasonably
many times, resulting in a sample of possible solutions
(over different annealing times as well as other relevant
parameters). The one with the lowest energy is consid-
ered to be the desired solution, albeit there is a finite
probability that it is not the ground state. A quantum
annealer is thus a probabilistic and heuristic solver. Con-
cerning the benchmarking of quantum annealers, consult
also [62].

As a side note, it should be stressed that it is not al-
ways possible to maintain the adiabatic evolution. As
an example, consider the second–order phase transition
phenomenon [63–65], in which even a short–lasting lack of
adiabaticity will result in the creation of topological de-
fects preventing the system from remaining in its instan-
taneous ground state. This effect, on the other hand, is a
clear manifestation of the quantum Kibble–Żurek mech-
anism Ref. [66–72] and can be used to detect departures
from adiabaticity.

3. Classical algorithms for solving Ising problems

An additional benefit of formulating problems in terms
of Ising-type models is that the existing methods de-
veloped in statistical and solid-state physics for finding
ground states of physical systems can also be used to
solve a QUBO on classical hardware. Notably, varia-
tional methods based on finitely correlated states (such
as matrix product states for 1D systems or projected en-
tangled pair states suitable for 2D graphs) have had a
very extensive development in the past few decades. A
quantum information theoretic insight into density ma-
trix renormalization group methods (DMRG [73]) – be-
ing the most powerful numerical techniques in solid-state
physics at that time – helped in proving the correctness of
DMRG. These methods also led to a more general view of
the problem [74], resulting in many algorithms that have
potential applications in various problems, in particular
solving QUBOs by finding the ground state of a quan-
tum spin glass. We have used the algorithms presented
in Ref. [75] to solve the models derived in the present
manuscript.

Neither the quantum devices nor the mentioned clas-
sical algorithms do always provide the energy minimum
and the corresponding ground state (as it is not trivial
to reach it [76]) but possibly another eigenstate of the
problem with an eigenvalue (i.e., a value of the objec-
tive function) close to the minimum. The corresponding
states are referred to as “excited states.” In contrast to
many problems of physics where it is only the true ground
state is relevant, in optimization problems the excited



7

stats are often also useful. Another important point in
interpreting the results of such a solver is the degeneracy
of the solution: the possibility of having multiple equiv-
alent optima.

In analyzing these optima, it is helpful that for up to
50 variables, one can calculate the exact ground states
and the excited states closest to them using a brute-
force search on the spin configurations with GPU-based
high-performance computers. In the present work, we
also use such algorithms, in particular those introduced
in Ref. [77] for benchmarking and evaluating our results
for smaller examples. This way we can compare the ex-
act spectrum with the results obtained from the D-Wave
quantum hardware and the variational algorithms.

III. OUR MODEL

Here we describe our model in brief. The supplemental
material provides a description of all its details. First we
formulate it as a constrained quadratic 0 − 1 program,
then we turn it into a QUBO using penalties.

A. Integer formulation of the constaints

Let us now again envise our single-track railway net-
work. First observe that it is only the leave times of trains
from station blocks that the dispatchers decide upon. Let
us denote the station blocks by s ∈ S, and the set of
trains by j ∈ J . We will formulate the problem entirely
in terms of the secondary delays: ds(j, s) stands for the
value of the secondary delay of the train j at the station
block s. The detailed description in the Supplemental
Material makes it clear that these values, along with the
original timetable and the technical data (i.e. the rail-
way network topology and time required for each train
to pass a block) determine a modified timetable. In what
follows, this description will be referred to as the delay
representation.

In order to approach a 0-1 model, we discretize the
secondary delays requiring that

ds(j, s) ∈ N, 0 ≤ ds(j, s) ≤ dmax(j), (8)

where a reasonable upper bound dmax(j) can be ob-
tained from some fast heuristics, and the time is mea-
sured in integer minutes from now on; a suitable scale
for railway problems. When formulating constraints,
it is better to work with the actual (discretized) delay
d(j, s) = dS(j, s) + dU (j, s) of train j at station block s.
At this stage we have a set of potential decision variables
with finite ranges that already facilitate the formulation
of a linear model for the problem, as done in the Supple-
mental Material.

As of constraints, we have considered the following
ones which cover the requirements of the particular rail-
way operator. In the Supplemental Material we describe
them in very detail, here we just give a brief summary:

The minimum passing time condition: ensures
that no block sections are passed by any train
faster than allowed:

d(j, ρj(s)) ≥ d(j, s)− α(j, s, ρj(s)). (9)

where ρj(s) stands for the station block section suc-
ceeding s in train j-s sequence, while α(j, s, ρj(s)) is
the largest reserve the train can achieve by passing
the blocks following s up to and together with the
next station block ρj(s) possibly faster than origi-
nally planned. This can be calculated in advance.

The single-block occupation: ensures that at most
one train can be present in a block section at a
time.

d(j′, s) ≥ d(j, s) + ∆(j, s, j′, s)

+ τ(1)(j, s, ρj(s)).
(10)

where ∆ is the difference of the leave times of trains
j and j′ from the block s, whereas τ(1) is minimum
time for train j to give way to another train going
in the same direction in the route s→ ρj(s). This
condition is to be tested in this form for the pair
of trains (j, j′) if j leaves s before j′, i.e. d(j′, s) ≥
d(j, s) + ∆(j, s, j′, s); otherwise it has to be applied
so that the order of the trains is reversed.

The deadlock condition: ensures that no pairs of
trains heading in the opposite direction will be
waiting for each other to pass the same blocks:

d(j′, ρj(s)) ≥ d(j, s) + ∆(j, s, j′, ρj(s)) + τ(2)(j, s, ρj(s)),
(11)

where τ(2)(j, s, ρj(s)) is the minimum time required
for train j to get from station block s to ρj(s). Sim-
ilarly to the previous condition, Eq. (11) is to be
applied for the pairs of trains (j, j′) so that j′ is
supposed to leave the block ρj(s) after the train
j leaves s; otherwise the order of the trains is re-
versed.

The rolling stock circulation condition: ensures
the minimal technological time R(j, j′) for a given
train set arriving as train j at its terminating
station sj,end before operaing again as train j′:

d(j′, 1) > d(j, sj,end−1)−R(j, j′). (12)

Certainly this condition has to hold for pairs of
trains (j, j′) which are operated with the same train
set according to the rolling stock circulation plan.

Having described the constraints, now we formulate the
model as a 0-1 program and define the objective function.
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B. 0-1 formulation

To turn our model into a 0-1 problem, we introduce
our final decision variables

xs,j,d =

{
1, d(j, s) = d

0, otherwise
, (13)

which take the value of 1 if train j leaves station block s
at delay d, and zero otherwise. In this way we have 0-1
variables with indices from a finite set.

As of the objective function we opt for a weighted sum
of delays:

f(x) =
∑

j∈J

∑

s∈S∗j

∑

d∈Aj,s
f(d, j, s) · xj,s,d, (14)

where f(d, j, s) are the weights. Here S∗j = Sj \ {sj,end},
where Sj stands for a sequence of station blocks the train
runs through, sj,end stands for last station of j, and Aj,s
is the respective range of delays. It is easy to see that

the weights f(d, j, s) can be chosen so that they depend
on the secondary delays only; conider the Supplemental
Material for details.

As of the constraints, let us first assume that each train
leaves each station block once and only once (recall that
we do not allow for recirculation):

∀j∀s∈Sj
∑

d∈Aj,s
xs,j,d = 1. (15)

The minimum passing time condition in Eq. (9) reads

∀j∀s∈S∗∗j
∑

d∈Aj,s


 ∑

d′∈D(d)∩Aj,ρj(s)

xj,s,dxj,ρj(s),d′


 = 0,

(16)
where D(d) = {0, 1, . . . , d−α(j, s, ρj(s))−1}, and S∗∗j =
Sj \ {sj,end, sj,end−1}.

As of the single block occupation condition, from
Eq. (10) it follows that

∀(j,j′)∈J 0(J 1)∀s∈S∗
j,j′

∑

d∈Aj,s


 ∑

d′∈B(d)∩Aj′,s

xj,s,dxj′,s,d′


 = 0, (17)

where B(d) = {d+ ∆(j, s, j′, s), d+ ∆(j, s, j′, s) + 1, . . . , d+ ∆(j, s, j′, s) + τ(1)(j, s, ρj(s))− 1} is a set of delays that
violates the block occupation condition.

Concerning the deadlock condition, for two trains heading in the opposite direction, we have from Eq. (11) that

∀j∈J 0(J 1),j′∈J 1(J 0)∀s∈S∗
j,j′

∑

d∈Aj,s




∑

d′∈C(d)∩Aj′,ρj(s)

xj,s,dxj′,ρj(s),d′


 = 0 (18)

where C(d) = {d(j, s)+∆(j, s, j′, ρj(s)), d(j, s)+∆(j, s, j′, ρj(s))+1, . . . , d(j, s)+∆(j, s, j′, ρj(s))+τ(2)(j, s, ρj(s))−1},
and J 0, J 1 are explained in Eq. (S1) of the Supplemental Material.

The rolling stock circulation condition of Eq. (12) can be formulated as

∀j,j′∈terminal pairs
∑

d∈Aj,s(j,end−1)

∑

d′∈E(d)∩Aj′,1

xj,s(j,end−1),d · xj′,s(j,′1),d′ = 0, (19)

where E(d) = {0, 1, . . . , d−R(j, j′)}.

The objective funtion in Eq. (14) together with the con-
straints in Eqs. (15) – (19) comprise a quadratic con-
strained 0-1 formulation of our model.

C. QUBO formulation: penalties

Having our problem formulated as a constrained 0-1
program, we need to make it unconstrained to achieve
a QUBO form – see Eq. (4). This is usually done with
penalty methods [78]. It has been shown in [49] that all

binary linear and quadratic programs translate to QUBO
along some simple rules. (An alternative, symmetry-
based approach [79] to constrained optimization has also
been proposed in which the adiabatic quantum computer
device is supposed to use a tailored H0 term in its dy-
namics of model in Eq. (7). As such a modification of
the actual device is not available to us, we remain using
penalty methods.)

The problems one faces with a quadratic 0-1 program
require certain specific considerations when adopting the
penalty method. Let us outline this approach with a fo-
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cus on our problem. As we have a linear objective func-
tion Eq. (14), it can be written as a quadratic function
because the decision variables are binary:

min
x
f(x) = min

x
cTx = min

x
xT diag(c)x. (20)

(A general QUBO can contain linear terms as well; how-
ever, the solver implementations accept a single matrix of
quadratic coefficients [80], so transforming linear terms
into quadratic ones is more a technical than a fundamen-
tal step.)

We need to meet the constraints set out in Eqs. (16)
– (19) to make the solution feasible. These constraints
are regarded as hard constraints. To obtain an uncon-
strained problem, we define a penalty function in the
following way. We add the magnitude of the constrains’
violation, multiplied by some well-chosen coefficient, to
the objective function.

In particular, we shall have quadratic constraints in
the form of

∑

(i,j)∈Vp

xixj = 0, (21)

excluding pairs of variables that are simultaneously 1.
We can deal with such a constraint by adding to our
objective the following terms:

Ppair(x) = ppair
∑

(i,j)∈Vp

(xixj + xjxi), (22)

where ppair is a positive constant. Additionally, from
Eq. (15), we have additional hard constraints in the form
of:

∀Vs
∑

i∈Vs

xi = 1. (23)

These constraints yield a linear expression that can be
transformed into the following quadratic penalty func-
tion:

P ′sum(x) =
∑

Vs

psum

(∑

i∈Vs

xi − 1

)2

. (24)

Next we replace the xis with x2i s in the linear terms, and
omit the constant terms as they provide only an offset to
the solution, yielding:

Psum(x) =
∑

Vs

psum


 ∑

i,j∈V×2,i6=j
xixj −

∑

i∈Vs

x2i


 . (25)

So our effective QUBO representation is

min
x
f ′(x) = min

x
(f(x) + Ppair(x) + Psum(x)) , (26)

which can be written in the form of Eq. (4). We shall
have many constraints similar in form to in Eq. (21) and

Eq. (23), so we have one summand for each constraint
in the objective. (It would also be possible to assign a
separate coefficient to each of the constraints.)

Recall that in the theory of penalty methods [78] for
continuous optimization, it is known that the solution of
the unconstrained objective will tend to a feasible opti-
mal solution of the original problem as the multipliers of
the penalties (psum and ppair in our case) tend to infinity,
provided that the objective function and the penalties
obey certain continuity conditions. As in our case both
the objective and the penalties are quadratic, this conver-
gence would be warranted for the continuous relaxation
of the problem. And even though we have a 0-1 problem,
if we had an infinitely precise solution of the QUBO, in-
creasing the parameters would result in convergence to
an optimal feasible solution.

However, somewhat similarly to the continuous case
(in which the Hessian of the unconstrained problem di-
verges as the parameters grow, making the unconstrained
problem numerically ill-conditioned), the properties of
the actual computing approach or device makes it more
cumbersome to make a good choice of multipliers.

The parameters psum and ppair have to be be chosen so
that the terms representing the constraints in this energy
do not dominate the original objective function. If the
penalties are too high, the objective is just a too small
perturbation on it, which will be lost in the noise of the
physical quantum computer or in the numerical errors
of an algorithm modeling it. If, however, the penalty
coefficients are too low, we get infeasible solutions. In
the ideal case there is a “feasibility gap” in the spectrum
of solutions.

The multipliers can be assigned in an ad hoc manner by
experimenting with the solution; however, a systematic,
possibly problem-dependent approach to their appropri-
ate assignment (as in case of classical penalty methods;
see [78]) would be highly desirable in order to make the
QUBO more reliable and prevalent.

Having a QUBO representation of the problem at
hand, let us turn our attention to the actual instances
of our model and the results obtained for them.

IV. RESULTS

In this section, we discuss certain possible situations
in train dispatching on the railway lines managed by the
Polish state-owned infrastructure manager PKP Polskie
Linie Kolejowe S.A. (PKP PLK in what follows). In
particular, we consider two single-track railway lines:

• Railway line No. 216 (Nidzica – Olsztynek section)

• Railway line No. 191 (Goleszów – Wisła
Uzdrowisko section).

Railway line No. 216 is of national importance. It is
a single-track section of the passenger corridor Warsaw
- Olsztyn, which has recently been modernized. There
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are both Inter-City (IC ) and regional trains operating
on the Nidzica – Olsztynek section of line No. 216. In
this paper, we consider an official train schedule (as for
April, 2020). The purpose of the analysis in this section
is to demonstrate the application of our methodology to
a real-life railway section.

Railway line No. 191 is of local importance. The main
train service on the No. 191 railway line is Katowice
– Wisła Głebce, operated by a local government-owned
company called “Koleje Ślaskie” (in English Silesian Rail-
ways; abbreviated KS ). There are a few Inter-City trains
of higher priority there as well. Since 2020, the traffic at
this section has been suspended due to comprehensive
renovation works (a temporary rail replacement bus ser-
vice is in operation). Our problem instances are based on
the planned parameters of the line after its commission-
ing, based on public procurement documents [81]. On
the basis of these parameters, a cyclic timetable has been
created. The aim of analyzing this case is to show the
broader application possibilities of the methodology.

A. The studied network segment

In Fig. 2(c), we present a segment of railway line No.
216 (Nidzica – Olsztynek section), and in Fig. 2(a) the
analyzed part of the real timetable is depicted in the form
of a train diagram.

In Fig. 2(c), three stations are presented. Block 1 rep-
resents Nidzica station, which has two platform edges
numbered according to the rules of PKP PLK. Block 3
represents Waplewo station, with another two platform
edges. Olsztynek station, with three platform edges, is
represented by block 5. The model involves two line
blocks with the labels 2 and 4. It is assumed that it
takes the same amount of time to get through a given
station block regardless of which track the train uses. To
leave the station, it is required that the subsequent block
is free.

As to the trains, Fig. 2(a) represents their planned
paths. Thee trains are modeled: two Inter-City trains
in red and the regional train in black. The scheduled
meet-and-pass situations take place in Waplewo and Ol-
sztynek (which might change in case of a delay). IC5320
leaves station block 5 (Olsztynek) at 13:54, has a sched-
uled stopover at station block 3 (Waplewo) from 14:02
to 14:10 to meet and pass IC3521, and finally arrives at
station block 1 (Nidzica) at 14:25. As to the opposite
direction, IC3521 leaves station block 1 at 13:53, stops
at station block 3 from 14:08 to 14:10, and arrives at
station block 5 (Olsztynek) at 14:18. These two trains
depart at the same time from station block 3 in opposite
directions. The third train considered is R90602. It is
scheduled to leave block 5 at 14:20 and stops at station
block 3 (Waplewo) from 14:29 to 14:30, so it is scheduled
to start occupying this track 19 minutes after both ICs
left. It is behind IC5320 during the whole section, and
does not meet the IC train at all, so the original schedule

is feasible and conflict free.
Now let us add a 15-minute delay to the departure

time of IC5320 from station block 5 and 5-minute delay
to that of IC3521 from station block 1. The passing times
were originally scheduled according to the maximum per-
missible speeds. The minimum waiting times at all the
considered stations are 1 minute regardless of the train
type. This introduces the following situation: the two
Inter-City trains and the regional train have a conflict
at line block 4. This schedule will be referred to as the
“conflicted diagram” – see Fig 3(a). The resolution of this
conflict requires taking a decision at station blocks 3 and
5.

Let us now turn our attention to the other example.
The line segment (a part of railway line No. 191) is pre-
sented in Fig. 2(d), while the considered train paths of
the real timetable are shown in Fig. 2(b). There are
four stations and another three stops for the passengers
modeled. Block 1 represents Goleszów station, which has
four platform edges. Block 2 represents a line block be-
tween Goleszów station and Ustroń station (which has
two platform edges and is represented by block 3). Sub-
sequently, we have three line blocks numbered 4, 5, and 6,
with two stops for passengers: Ustroń Zdrój and Ustroń
Poniwiec (with one platform edge each). Next, we have
station block 7 – Ustroń Polana, which has two platform
edges. Between this station and Wisła Uzdrowisko sta-
tion (numbered 10 with three platform edges), there are
two more line blocks (8 and 9) with one stop for passen-
gers (Wisła Jawornik). We assume that it takes exactly
the same time to get through a block regardless of the
track used.

There are six trains, two Inter-City trains in red and
four regional (KS ) trains in black, presented in Fig. 2(b).
The regional trains serve all the stops and stations, while
the Inter-City service stops only at stations. We consider
Wisła Uzdrowisko (station block 10) to be a terminus for
the Inter-City trains (however, it does not apply to the
regional trains, which go farther). In this situation, there
are no meet-and-pass situations at intermediate stations
(Ustroń and Ustroń Polana) in the original timetable.
Both Inter-City trains are served by the same train set,
and the minimum service time is R(j, j′) = 20 minutes
at the terminus for ICs (block 10); see Condition SI.4.

We analyze the following dispatching cases, selected to
demonstrate the algorithm behavior in various situations:

1. A moderate delay of the Inter-City train setting off
from station block 1; see Fig. S1(a).

2. A moderate delay of all trains setting off from sta-
tion block 1; see Fig. S1(b).

3. A significant delay of some trains setting off from
station block 1; see Fig. S1(c).

4. A large delay of the Inter-City train setting off from
station block 1; see Fig. S1(d).

The conflicted timetables of cases 1− 4 are presented in
Fig. S1.
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(a) Train diagram for the timetable of the line in Fig. 2(c).
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(b) Train diagram for the timetable of the line in Fig. 2(d).

(c) Nidzica-Olsztynek section of railway line No. 216. (d) Goleszów - Wisła Uzdrowisko section of railway line No. 191.

FIG. 2. The railway line segments and their initial (undisturbed) timetables addressed in our calculations. The train diagrams
represent train paths by connecting characteristic points of the location of trains at certain times by straight lines. The numbers
represent blocks; upper indices in parentheses refer to the tracks of sidings.

B. Simple heuristics

As a simple way of resolving conflicts, there are very
simple heuristics prevalently known and used in the
railway practice, the First Come First Served (FCFS)
and the First Leave First Served principles. A slightly
more complex one is AMCC (avoid maximum current
Cmax) [33]. All of these heuristics are used to determine
the order of trains when passing the blocks (for imple-
mentation reasons, the trains are analyzed in pairs). In
FCFS and FLFS the way is given to the train that first
arrives – or first leaves – the analyzed block section. In
practice, the decisions based on both these heuristics are
taken starting from the most urgent conflict. Next, since
passing and overtaking is possible only at stations, so-
called implied selections [34] are determined. The proce-
dure is repeated as long as all the conflicts are solved.

The AMCC is a more complex approach, whose objec-
tive is to minimize the maximum secondary delay of the
trains; this objective will be referred to as the “AMCC
objective” in what follows. This is quite an intuitive pro-
cedure, yet more sophisticated than FCFS and FLFS. To
facilitate the comparison, stations are assigned an infi-
nite capacity. Of course, solutions requiring a capacity
higher than that of the given station must be rejected.

In the example presented in Fig. 2(c), for the conflicted
timetable in Fig. 3(a), each of the heuristics returns the

same solution; this is presented in Fig. 3(b). When com-
paring the FCFS with the FLFS, observe that in the con-
flicted timetable, three trains (IC5320, IC3521, R90602)
are scheduled to occupy block 4 simultaneously, which is
forbidden.

To avoid the conflict, IC3521 is allowed to enter this
block with a 3-minute delay at 14:17 (as soon as IC5320
leaves the block), thus leaving the block at 14:25 instead
of 14:22, which results in 3 minutes of secondary delay.
Consequently, R9062 is allowed to enter the block not
earlier than 14:25, an additional 4-minute delay as com-
pared with the conflicted timetable. Thus the maximum
secondary delay is 4 minutes, and the sum of the delays
on entering the last block is 7 minutes. The maximum
secondary delay is 4 minutes; it is the lowest possible one,
so the solution is optimal with respect to the AMCC ob-
jective.

The other example – presented in Fig. 2(d) – is more
complex, yet it is still solvable by a state-of-the-art quan-
tum annealer. We do not discuss this example in detail;
we describe only the maximum secondary delays as the
objective function. This is presented in Table I for the
discussed heuristics. The upper limit used in the quan-
tum computing is set to dmax = 10 on this basis. (Ob-
serve that most of the secondary delay values are within
this limit.) The respective train diagrams are presented
in Appendix A, Figs. S2 - S4 The values of the AMCC
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(a) The conflicted diagram. All the three trains would meet in
block 4 as it can be seen from the intersecting train paths.
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(b) The solution; FCFS, FLFS, and AMCC give the same
outcome with a maximum seconday delay of 4 minutes.

FIG. 3. A possible solution of the conflict on line No. 216.

Heuristics case 1 case 2 case 3 case 4
FLFS 6 13 4 2
FCFS 5 5 5 2
AMCC 5 5 4 2

TABLE I. The maximum secondary delays, in minutes, re-
sulting from simple heuristics. Observe that for each case,
there are solutions far below dmax = 10.

objective function are presented in Table I; AMCC ap-
pears to find the optimum in these cases, thus providing
a good enough reference for comparisons, albeit with an
objective function different from that of ours. Our choice
of the objective will be more flexible, thus leaving room
for further non-trivial optimization.

C. Quantum and calculated QUBO solutions

Our approach based on QUBO concerns the objective
function set out in (26). This contains the feasibility con-
ditions (hard constraints) and the objective function f(x)
of (27). For the feasibility part, we need to determine
τ(1) (j, s), the minimum time for train j to give way to
another train going in the same direction, and τ(2) (j, s) -
the minimum time for train j to give way for the another
train going in the opposite direction (see Condition SI.2
and Condition SI.3).

As noted before, the QUBO objective function intro-
duces flexibility in choosing the dispatching policy by set-
ting the values of the penalty weights for the delays of
the trains. In this way, almost any train prioritization
is possible. To demonstrate this flexibility, we make the
penalty values proportional to the secondary delays of the
trains that enter the last station block. This is equivalent
to the secondary delay on leaving the penultimate station
block. Each train is assigned a weight wj , yielding the

form of (S38)

f(x) =
∑

wj ·
d(j, s∗)− dU (j, s∗)

dmax(j)
· xj,s∗,d, (27)

where the sum is taken over j ∈ J and d ∈ Aj,s∗ with
s∗ = s(j, end−1). Note that this objective coincides with
that of the linear integer programming approach (S28),
which will be used for comparisons.

The following train prioritization is adopted. In the
case of railway line No. 216, the Inter-City trains are as-
sumed to have a higher value of the delay penalty weight
w = 1.5, while the regional train is weighted w = 1.0. We
give the higher priority to the Inter-City train, which is
a reasonable approach resulting from the train prioriti-
zation in Poland (and in many other countries). In the
other case (line No. 191), the priorities of trains heading
towards block 10 (Wisła Uzdrowisko) are lower, weighted
0.9 for all the other trains in this direction. However,
train priorities for the trains heading in the opposite di-
rection (toward block 1 – Goleszów – and beyond the
analyzed section) have higher values: 1.0 for the regional
trains and 1.5 for the Inter-Cities. Such a policy is mo-
tivated by the reluctance of letting the delays propagate
across the Polish railway network – that regional trains
proceed toward the main railway junction in the region’s
major city (Katowice) and that the Inter-City train ser-
vice is scheduled toward the state’s capital city (Warsaw).
Observe that wj is the highest possible penalty for the
delay of train j; see (27). In both these cases, the max-
imum of wj is 1.5. Hence, the penalties for a infeasible
solution should be higher (as discussed in Section III C.
We set ppair = psum = 1.75 > 1.5.

Referring to (S5), we have the maximum secondary de-
lay dmax parameter (for simplicity, we assume that dmax
is the same for all trains and all analyzed station blocks).
It cannot be smaller than the delay value returned by the
AMCC heuristics. However, since the AMCC may not
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be optimal in terms of our objective function, we need
to leave a margin for some larger values of the maximum
secondary delay. On the other hand, since the system size
grows with dmax, it must be limited enough to make the
problem applicable to state-of-the-art quantum devices
and classical algorithms motivated by them. Specifically,
since we do not analyze the delays at the last station of
the analyzed segment of the line, we require as many
as (number of station blocks − 1) · (number of trains) ·
(dmax + 1) qubits.

In the case of railway line No. 216, we set dmax = 7,
which is considerably larger than the AMCC solution.
There are 48 logical quantum bits needed to handle this
problem instance, making it suitable for both quantum
annealing at the current state of the art, and the GPU-
based implementation of the brute-force search for the
low-energy spectrum (ground state and subsequent ex-
cited state) [77], which is possible with up to 50 quan-
tum bits. The benefit of this possibility is that it provides
an exact picture of the spectrum, which can be used as a
reference when evaluating the heuristic results of approx-
imate methods (tensor networks) or quantum annealing.
This may guide for the understanding of the results of the
bigger instances, in which the brute-force exact search is
not available.

There are many possible distinct solutions in the case
of line No. 191, making the analysis more interesting
from the dispatching point of view. We set dmax = 10:
for a justification see Table I, and observe that dmax is
considerably larger than the AMCC output. The dmax =
10 yields 198 logical quantum bits, which we were able to
embed into a present-day quantum annealer, the D-Wave
device DW-2000Q5, in most cases.

Recall that current quantum annealing devices are im-
perfect and often output excited states. The clue of our
approach is that the excited states (e.g., returned by the
quantum annealer) still represent the optimal dispatching
solutions, provided that their corresponding energies are
relatively small. The reason for this is that what really
needs to be determined is the order of trains leaving from
each station block (i.e., this is the decision to be made).
What is crucial here is to determine all the meet-and-pass
and the meet-and-overtake situations (in analogy with
the determination of all the precedence variables in the
linear integer programming approach). The exact time
of leaving block sections is of a secondary importance.
Therefore, we consider those excited states that describe
the same order of trains as the ground state, to be equiv-
alent to the actual ground state encoding the global opti-
mum. As discussed in Section III C, our QUBO formula-
tion problem ensures that those equivalent solutions are
present in the low-energy spectrum.

1. Exact calculation of the low-energy spectrum

To demonstrate the aforementioned idea, we first
present the results of the brute-force numerical calcu-

lations performed on a GPU architecture [77]. With
this approach, the low-energy spectra of the smallest
instances have been calculated exactly, providing some
guidance for the understanding of the model behavior
and parameter dependence. The method is suitable for
small (i.e., up to N ≤ 50 quantum bits) but otherwise ar-
bitrary systems. To study (hard) penalties resulting from
non-feasible solutions, apart from ppair = psum = 1.75 in
(26), we use other, higher penalties that are not equal to
each other, ppair = 2.7 and psum = 2.2.

Let us assume that the solution in Fig. 3(b) is the op-
timal one. Here the train IC3521 (w = 1.5) waits 3 min-
utes at block 3, while regional train R90602 (w = 1.0)
waits 4 minutes at block 5, causing 4 minutes of sec-
ondary delay upon leaving block 3. This adds 1.214 to
the objective. Referring to the feasibility terms in (26),
for a feasible solution P ′sum = 0, while the linear con-
straint gives the negative offset to the energy. Referring
to (25), as we have three trains for which we analyze
two stations, this negative offset is Psum = −3 · 2 · ppair.
Based on the feasibility terms set out (26), this yields
−10.5 for psum = 1.75, and −13.2 for psum = 2.2. This
results in a ground state energy of f ′(x) = −9.286 and
f ′(x) = −11.986, respectively. Finally, in the ground
state solution shown in Fig. 3(b), the IC3521 train can
leave the station block 1 with a secondary delay of 0, 1, 2,
or 3, not affecting any delays of the trains leaving block
3. All these situations correspond to the ground state en-
ergy. Hence, our approach produces a 4-fold degeneracy
of the ground state.

Low-energy spectra of the solutions and their degen-
eracy are presented in Fig. 4(b) and Fig. 4(a). All the
solutions that are equivalent to the ground state from the
dispatching point of view are marked in green. Infeasible
excited state solutions (in which some of the feasibility
conditions set out in (26) are violated) are marked in
red. In this example, we do not have feasible solutions
that are not optimal, i.e., in which the order of trains
at a station is different from the one in the ground state
solution.

In the case of line No. 191, a more detailed analysis of
the low-energy spectra of the solutions was possible due
to the generality of the brute-force simulation. The re-
sults are presented in Fig. 4. We shall find later on that
the D-Wave solutions managed to get into the “green”
tail of feasible solutions, but high degeneracy of higher-
energy states may impose some risk of the quantum an-
nealing ending up in more frequently appearing excited
states (see Fig. 6).

2. Classical algorithms for the linear (integer programming)
IP model and QUBO

We expect classical algorithms for QUBOs to achieve
the ground state of (26) or at least low excited states
equivalent to the ground state with respect to the dis-
patching problem. It is important to mention that here-
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FIG. 4. Spectra of the low-energy solutions for two penalty strategies of the brute-force (exact) solution. The black line
separates the phase in which only feasible solutions appear. Observe the mixing phase, in which both feasible and unfeasible
solutions occur. Here ppair and psum are penalties of the unconstrained problem expressed in the “logical” variables. The term

psum =
(∑

i∈Vs xi − 1
)2

, cf. (24), ensures that each train leaves a station only once, whereas ppair =
∑

(i,j)∈Vp(xixj + xjxi),
cf. (25), imposes the following: minimal passing time constrain, single block occupation constrain, deadlock constrain, and
rolling stock circulation constrain.

after we transform the original QUBO coding into the
Chimera graph coding (see Section IIC 1). This makes
the algorithm ready for processing on a real quantum
annealer.

As to a simple example of the embedding, we refer to
the problem with 4 quantum bits that has been discussed
in Section SIII C. In that case, the mapping was triv-
ial. In a case of 6 quantum bits, for instance (by setting
dmax = 2), we will have additional terms in (S41), (S42),
and (S43). Hence, the larger problems cannot be directly
mapped onto the Chimera graph, so the embedding pro-
cedure is required, as illustrated in Fig. 5. This illustrates
the basic idea of how the embedding is performed in even
larger models.

As to the model parameters, recall that for the par-
ticular QUBO, we have opted for ppair = psum = 1.75 or
ppair = 2.2 psum = 2.7 for line No. 216 and ppair = psum =
1.75 for line No. 191. Let us present the solutions of the
two state-of-the-art numerical methods, which we shall
later compare with the experimental results obtained by
running the D-Wave 2000Q quantum annealers. The first
solver is developed ‘in-house’ and is based on tensor net-
work techniques [75]. The idea behind this solver is to
represent the probability of finding a given configura-
tion by a quantum annealing processor as a PEPS tensor
network [75]. This allows an efficient bound-and-branch
strategy to be applied in order to find M � 2N candi-
dates for the low-energy states, where N is the number of
physical quantum bits on the Chimera graph. In princi-
ple, such a heuristic method should work well for rather
simple QUBO problems, i.e., those in which the Qmatrix
in (4) has some identical or zero terms; this corresponds
to the so-called weak entanglement regime. It can be
shown that this is the case in our problem [see also the
simple example of the Q matrix in (S44)]. Furthermore,
heuristic parameters such as the Boltzmann temperature
(β) can be provided, allowing one to zoom in on the low-

FIG. 5. Embedding of a simple, six-qubit problem. Left:
graph of the original problem. Right: problem embedded into
a unit cell of Chimera. Here, different colors correspond to
different logical variables. Apparently, the original problem
does not map directly onto Chimera as it contains cycles of
length 3. Therefore, two chains have to be introduced. Cou-
plings corresponding to inner-chain penalties are marked with
the same color as the variable they correspond to.

energy spectrum depending on the problem in question.
We set β = 4, which is quite a typical setting, as discussed
in [75]. Although even better solutions may potentially
be achieved by further tuning this parameter, we demon-
strated that this default setting is satisfactory from the
dispatching point of view. The second classical solver
is CPLEX [82] (version 12.9.0.0). In our work, we have
used the DOcplex Mathematical Programming package
(DOcplex.MP) for Python. In what follows "CPLEX"
refers to the QUBO solver of this package.

In order to have a fair comparison with a traditional
approach, we have also formulated our model as a linear
integer program, this is decribed in Section SII of the
Supplemental material in detail. We have implemented
the linear integer model with the PuLP package [83] and
solved with its default solver (CBC MILP Solver Version:
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2.9.0). All instances were solved to the optimal solution
in 0.03 seconds on an average computer. This was in line
with our expectations as our problems are small. Our
goal is, however, not to outperform either CPLEX or the
standard linear solver but to demonstrate the applicabil-
ity of quantum hardware; at the present state of the art,
we need the well-established solvers to produce results
for comparisons and reference.

Concerning the results of another railway line (No.
191), the values of the objective function (27) are given
Table II. We also include the values of our objective func-
tion for the FLFS, FCFS, and AMCC optimal solutions.

The agreement with the linear integer programming
approach provides the argument that the CPLEX results
refer to the ground state of the QUBO. We are inter-
ested in the results being equivalent to those of CPLEX
and the linear solver from the dispatching point of view.
These results are marked in blue in Table II. The tensor
network approach yields equivalent solutions to those of
CPLEX. However, the tensor network sometimes returns
the excited states of the QUBO, as can be observed in
case 3. This is caused by the fact that the tensor net-
work method is based on approximations. This demon-
strates that even some low-energy excited states encode
a satisfactory solution. Interestingly, the results of the
AMCC are also equivalent to those CPLEX in cases 2,3,
and 4 but different in case 1. This is due to the fact
that the AMCC needs to have a specific objective func-
tion, whereas in our approach we can choose this function
more flexibly. Specifically, in case 1, the meet-and-pass
situation of trains IC1 and Ks2 at station 10 yields the
lowest maximum secondary delay, so it is optimal from
the AMCC point of view. (Note that two trains have
secondary delays: Ks2 and Ks3 in this case). As dis-
cussed earlier, in this approach Ks2 is prioritized, as it is
the train leaving the modeled network segment and one
of the goals is to limit delays propagating further from
this segment. The train diagrams based on the CPLEX
solutions are depicted in Fig. S5.

In case 3, observe that the objective function in Ta-
ble II from the tensor network solution differs from the
minimum (yet the solution is still equivalent to the op-
timal one). To explain this, observe that there are nu-
merous possibilities of additional train delays that do not
affect the dispatching situation. An example of such a sit-
uation is a train having its stopover extended at the sta-
tion with no meet and pass or meet and overtake. Such a
situation increases the value of the objective but does not
affect the optimal dispatching solution. The number of
combinations here is relatively high, and this is why such
extended stopovers may be returned by the approximate
algorithm. This is in contrast to the exact FCFS, FLFS,
and AMCC heuristics, which do not allow for such un-
necessary delays; the exact heuristics always return f(x)
that is the minimum for the particular dispatching solu-
tion. In case 3, the FCFS with f(x) = 0.95 does not give
the optimal solution from the dispatching point of view,
as opposed to the tensor network with f(x) = 1.65.

Method case 1 case 2 case 3 case 4

QUBO approach CPLEX 0.54 1.40 0.73 0.20
tensor network 0.54 1.40 1.65 0.29

linear integer programming 0.54 1.40 0.73 0.20

Simple heuristics
AMCC 0.77 1.30 0.73 0.20
FLFS 0.54 1.71 0.73 0.20
FCFS 0.77 1.30 0.95 0.20

TABLE II. The values of the objective function f(x) for the
solutions obtained by the classical calculation of the QUBO,
linear integer programming approach, and all the heuristics.
The blue color denotes equivalence from the dispatching point
of view with the the ground state of the QUBO or the output
of the linear integer programming. The equivalence concerns
the same order of trains at each station.

3. Quantum annealing on the D-Wave machine

As described in Section IIC 2, the solver we discuss
(i.e., D-Wave 2000Q quantum annealer) is probabilistic.
In particular, as the required time to drive the system
into its ground state is unknown, the output is a sam-
ple of the low-energy spectrum from repeated annealing
processes, hence it can be regarded as a heuristic. The
solution is thus assumed to be the element of this sample
with the lowest energy (in practice, these elements are
not from the ground states but from low excited states).
The likelihood of obtaining solutions with a lower energy
(or the actual ground state) increases with the number
of repetitions.

As already mentioned, qubits on the D-Wave’s chip are
arranged into a Chimera graph topology. Furthermore,
some nodes and edges may be missing on the physical
device, making the topology different even from an ideal
Chimera graph. This requires minor embeddeding of the
problem, mapping logical qubits onto physical ones. To
this end, multiple physical qubits are chained together to
represent a single logical variable, which increases their
connectivity at the cost of the number of available qubits.
Such embedding is performed by introducing an addi-
tional penalty term that favors states in which the quan-
tum bits in each chain are aligned in the same direction.
The multiplicative factor governing this process is called
the chain strength, and it should dominate all the coef-
ficients present in the original problem. (Note that we
encounter yet another penalty term at this point.) In
this work, we set this factor to the maximum absolute
value of the coefficients of the original problem multi-
pled by a parameter that we call the chain strength scale
(css). In our experiment, css ranged from 2.0 to 9.0. An-
other parameter is the annealing time (ranging from 5µs
to 2000µs). This is the actual duration of the physical
annealing process.

In Figs. 7(c) and 7(d), we present the energies of the
best outcomes of the D-Wave machine for line No. 216
and various annealing times. The green dots denote the
feasible solutions (and equivalent to the optimal solu-
tion), while the red dots denote solutions that are not
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(a) QUBO parametrization: ppair = 2.7, psum = 2.2.
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(b) ppair = psum = 1.75.

FIG. 6. Distribution of the energies corresponding to the states (solutions), that are sampled by the D-Wave 2000Q quantum
annealer of 48 logical quantum bits instance of line No. 216. In particular, 1000 samples were taken for each annealing time,
and the strength of embedding was set to css = 2.0. This device is still very noisy and prone to errors, so the sample contains
excited states.

feasible. In general, the quality of a solution slightly
rises with the annealing time; however, in large exam-
ples the best results are for a time somewhere between
1000µs and 2000µs. This coincides with the observation
in [84], in which quantum annealing on the D-Wave ma-
chine was performed on various problems too, and it was
demonstrated that for moderate problem size the perfor-
mance (in terms of the probability of success) improves
with an annealing time of up to 1000µs. Hence, we have
limited ourselves to the annealing times of the order of
magnitude of 1000µs in analyzing larger examples.

Rather counterintuitively, setting lower penalty coef-
ficients of psum = ppair = 1.75 for the hard constraints,
resulted in samples containing more feasible solutions.
For this reason, we had kept this penalty setting for the
analysis of the larger case. The embedding strength was
set to css = 2 in this case, i.e., the lowest possible value.
This has proven to be a good choice, as demonstrated in
Fig. 8. The best D-Wave solutions are presented in the
form of train diagrams in Figs. 7(a) and 7(b).

The quality of the solutions in relation to the css
strength in the various parameter settings is presented
in Fig. 8. We observed that in our cases, the quality of
the solution degraded with an increase in css. This is un-
usual, as increasing the css strength typically yields more
solutions without broken chains that do not need to be
post-processed to obtain a feasible solution of the original
problem. This may be caused by the fact that the large
coupling of the embedding may cause the constraints to
appear as a small perturbation in the physical QUBO.
These perturbations, as discussed earlier, may be hidden
in the noise of the D-Wave 2000Q annealer.

Hence, we set css = 2.0 (the lowest possible value) for
the further investigations. Some examples of the penalty
and objective function values are presented in Table III.
Again, it appears that the higher the values of psum and
ppair, the higher the values of f(x). This may be caused
by the objective function being lost in the noise of the
D-Wave 2000Q annealer.

For railway line No. 191, finding a feasible solution is

css psum, ppair hard constraints’ penalty f ′(x) f(x)
2 1.75, 1.75 0.0 1.36
2 2.2, 2.7 0.0 1.57
4 1.75, 1.75 0.0 1.93
4 2.2, 2.7 2.2 2.07
6 1.75, 1.75 5.25 0.43
6 2.2, 2.7 6.6 0.86

TABLE III. Line No. 216, with the objective functions and
penalties for violating the hard constraints: see (S39). Output
from the D-Wave quantum annealer, for the annealing time
of 2000µs. If f ′(x) > 0, the solution is not feasible. The
psum = ppair = 1.75 policy gives lower objectives.

more difficult. Hence, we took advantage of the maximal
number of runs on the D-Wave machine, which equals
250 000 runs. The results of the lowest energies and
penalties are presented in Fig. 9. We had to skip case 3
because the higher number of feasibility constraints pre-
vented finding any embedding on a real Chimera. In-
terestingly, recall that we found the embedding for the
ideal Chimera while simulating the solution (see Sec-
tion IVC2). Hence, the failure in the case of the real
graph is possibly caused by the fact that some of the
required connections or nodes are missing from the real
Chimera. Finding the feasible solution in such a case
(while having non-zero hard constraints penalties) is a
problem for further research. One would expect that in-
creasing the ppair and psum parameters could be helpful.
However, it may aggravate the objective function to an
ever greater extent. In Fig. 9(b), the values of the ob-
jective function f(x) are much higher than the optimal
ones presented in Table II.

Although the solutions are not feasible, we select the
two in which only one hard constrain is violated (f ′(x) =
1.75); these are case 1 with an annealing time of 1400µs,
and case 2 with an annealing time of 1200µs. The train
diagrams of these solutions are presented in Fig. 10.
Note that both these diagrams can easily be modified
by the dispatcher to obtain a feasible solution. The case
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(a) The optimal solution from Fig. 7(c).
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(b) The optimal solution from Fig. 7(d).
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(d) ppair = psum = 1.75.

FIG. 7. Train diagrams of the best D-Wave solutions, the lowest energies of the quantum annealing on the D-Wave machine
(green: feasible, red: not feasible), and the optimal tensor network solution.

in Fig. 10(a) can be amended by adding the lacking 1-
minute stay of Ks3 in station 7. Here the solution would
not be optimal, and it would be different from the opti-
mal one from CPLEX, the tensor network, and FLFS, as
well as from the non-optimal yet feasible ones returned
by FCFS and AMCC. The case in Fig. 10(b) can be up-
graded by shortening the stays of Ks3 and IC2 and let-
ting them meet and pass at station 10. Here the solution
would be optimal and equivalent to those achieved with
the tensor networks and CPLEX.

The real D-Wave quantum annealing is tied to some
parameters of both the particular QUBO and the ma-
chine itself. We achieved the best results for a coupling
constant css = 2.0 for the small example in Fig. 8(a);
the same observation was made for the large example.
This was not expected as the coupling between quan-
tum bits representing a single classical bit was rather
weak. Here we probably took advantage of the possible
variations within the realization of a logical bit. This
observation demonstrates that the embedding selection
may be meaningful in searching for the convergence to-
ward proper solutions lying in the low-energy part of the
spectrum. For the small cases, we observed a feasible
solution for a relatively small number of samples (equal
to 1k). For the larger case, the number of samples had
to be increased to the maximal possible (equal to 250k)
and still we did not reach any feasible solution. The con-
clusion is that the impact of the noise amplifies strongly

with the size of the problem. The convergence of the best
obtained solution toward the optimal one with the given
sample size is complex, and an in-deep statistical analysis
of sampling the annealer’s real distribution is required.

As demonstrated in Fig 9(b), in some cases only a sin-
gle hard constraint was violated. This may suggest that
we are near the region of feasible solutions. However,
the objective function values are still far from the opti-
mal ones achieved by means of simulations (see Table II).
To elucidate the interplay between penalties, we refer to
Fig. 10, in which the solutions are not feasible but can
be easily corrected by the dispatcher to obtain feasible
ones. In Fig. 10(b), the corrected solution would be opti-
mal, while in Fig. 10(a) it would not be different from all
the other achieved solutions. Hence, the current quan-
tum annealer would rather sample the excited part of the
QUBO spectrum, which can lead to unusual solutions.
Such solutions, however, can be still be used by the dis-
patcher for some particular reason not encoded directly
in the model. Such reasons include unexpected dispatch-
ing problems, rolling stock emergency, and non-standard
requirements.

Let us also mention the characteristics of our QUBO
problems as they are important features from the point
of view of quantum methods. Table IV summarizes the
problem sizes and the densities of edges in the case of
each problem instance.



18

2 3 4 5 6 7
css

9

8

7

6

5

4

3
be

st
 so

lu
tio

n 
en

er
gy

D-Wave 2000 s
D-Wave 1000 s
D-Wave 5 s
ground state

(a) The minimal energies vs. css for ppair = 1.75, psum = 1.75.

2 3 4 5 6 7
css

12

10

8

6

4

be
st

 so
lu

tio
n 

en
er

gy

(b) The minimal energies vs. css for ppair = 2.2, psum = 2.7.

FIG. 8. Line No. 216, with the minimal energy from the
D-Wave quantum annealer, using 1000 runs. Green dots in-
dicates the feasible solutions, while the red dots denote the
unfeasible ones. In general, the energy rises as the css strength
rises. We do not observe that the different settings of ppair

and psum improve the feasibility; see Fig. 8(b).

Features line 216 line 191
case 1 case 2 case 3 case 4 enlarged

problem size (# logical bits) 48 198 198 198 198 594
# edges 395 1851 2038 2180 1831 5552

density (vs. full graph) 0.35 0.095 0.104 0.111 0.094 0.032

embedding into Chimera Chimera Chimera Ideal Chimera Chimera Pegasus
approximate # physical bits 373 < 2048 < 2048 ≈ 2048 < 2048 < 5760

TABLE IV. Graph densities for various problems. As case 3 is supposed to be the most complicated one of cases 1 − 4, it has
the largest graph density.

D. Initial studies on the D-Wave Advantage
machine

During the preparation of the present paper, a new
quantum device, the D-Wave’s Advantage_system1.1
system (with an underlying topology code-named Pega-
sus [11]) became commercially available. Hence, we per-
formed preliminary experiments with this new architec-
ture to address a slightly larger example. To that end,
we expanded our initial Goleszów – Wisła Uzdrowisko
(line No. 191) problem instance to be 3 times bigger in
size. Furthermore, we investigated nine trains in each

direction.

The conflicts were introduced by assuming delays of 20,
25, or 30 minutes of certain trains entering block section
1. The control parameters’ values psum = ppair = 1.75
and css = 2 were not changed. As a result, the prob-
lem was mapped onto a QUBO with 594 variables and
5552 connections. This new setup changed the under-
lying embedding only slightly, and we omit a discussion
of the details here. Employing a strategy similar to the
one used for our other calculations, we used the solution
found by CPLEX as a reference for comparisons.

After performing 25k runs, we reached a minimal en-
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FIG. 9. Line No. 191, with the minimal energy from
the D-Wave annealer at 250k runs, css = 2.0, and ppair =
1.75, psum = 1.75. The output does not dependent on the an-
nealing time (in the investigated range) and is still far from
the ground state.

ergy of +75.28 with an annealing time of 1400µs. Un-
fortunately, this is not a feasible solution. The CPLEX
calculations, on the other hand, resulted in an energy
of −92.43 with an objective function value f(x) = 2.07
(see Fig. 11). This is the same solution as the solution
of the linear solver obtained using COIN-OR in 0.02 sec-
onds. This solution is substantially better, and as it co-
incides with the linear solver’s output, it corresponds to
the ground state. Our preliminary experiments indicate
the need for a more detailed investigation of the new de-
vice’s behavior (and that of the current model) to deter-
mine whether obtaining solutions with the desired (bet-
ter) quality is possible. A part of this problem will likely
be eliminated simply by the technological development
of the new annealer. For an intuitive justification, we
refer to [85] and Fig. 1 therein, in which an improvement
in the performance between subsequent iterations within
one generation of Chimera-based quantum annealers was
observed.

V. DISCUSSION AND CONCLUSIONS

The NISQ era [10] is here. Early generations of quan-
tum computing hardware have become available that
may serve as a stepping stone for the development of
practically useful technologies that exhibit genuine quan-
tum advantage. However, until such “real” quantum com-
puters it is imperative to demonstrate how and which
real-world applications are amendable to be solved on
quantum computing hardware. To this end, we have
introduced a new approach to the single-track line dis-
patching problem that can be implemented on a real
quantum annealing device (D-Wave 2000Q). Namely, we
have addressed two particular real-life railway dispatch-
ing problems in Poland; many similar examples exist in
other networks, too. Specifically, we have introduced a
QUBO model of the problem that can be solved with
quantum annealing, and we have benchmarked it against
classical algorithms.

The first dispatching problem we considered (the Nidz-
ica – Olsztynek section of line No. 216) was particularly
small, and it was defined using only 48 logical quantum
bits (which we were able to embed into 373 physical quan-
tum bits of a real quantum processor). The final state
reached by the quantum annealer for this problem was
optimal for many parameter settings. This highlights
that small-sized dispatching problems are already within
reach of near-term quantum annealers. In addition, the
limited size of the problem made it possible to analyze
the QUBO with a greedy brute-force search algorithm,
which revealed details of the behavior of the spectrum
that cannot be exactly calculated for bigger instances.

Our second set of dispatching problems (the Goleszów
– Wisła Uzdrowisko section of line No. 191) was larger
and needed 198 logical quantum bits. Here, the number
of physical quantum bits depends on the number of con-
straints in each of the analyzed cases. We were able to
embed all four dispatching cases of the No. 191 railway
line into an ideal Chimera graph (2048 physical quantum
bits) using a state-of-the-art embedding algorithm. We
succeeded in solving these instances with classical solvers
for QUBOs. Meanwhile, on the physical device (whose
graph is not perfect and lacks several quantum bits and
couplings), we were able to embed only three out of the
four cases (case 3, with the highest number of conflicts,
could not be embedded). We expect that such obsta-
cles will become less restrictive as new embedding algo-
rithms are being developed for both the current Chimera
topology and the newest D-Wave Pegasus; see [86, 87].
Therefore, it is not unreasonable to expect that the range
of problems that can be embedded so that they can be
solved on physical hardware will substantially increase in
the near future. Unfortunately, the D-Wave 2000Q so-
lutions of our second problem appeared to be far from
optimal. This is attributable to the noise that is still
present in the current quantum machine.

We have successfully solved our model using several al-
gorithms for QUBOs running on classical computers, no-
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FIG. 10. The best solutions obtained from the D-Wave quantum annealer for line No. 191. For case 1 (Fig. 10(a)), the
annealing time is t = 1400. The solution is unfeasible since the stay of Ks3 at station 7 is below 1 minute. If the solution is
corrected (i.e., the stay is introduced), it looses its optimailty and reflects a dispatching situation different from those obtained
from FCFS, FLFS, AMCC, CPLEX, or the tensor network. For case 2 (Fig. 10(b)), t = 1200 is used. The solution is unfeasible
as Ks3 does not stop at station 7; hence, Ks3 and IC2 are supposed to meet and pass between stations 7 and 10. It can,
however, be amended to an optimal solution: shortening the stay of Ks3 at station 3 and shortening the stay of IC2 at station
7 (and 3 if necessary) result in a meet-and-pass situation at station 10, and this is optimal.
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FIG. 11. The CPLEX QUBO solution, coinciding with the linear solver’s solution of the 18-train problem.

tably the novel tensor network method. This introduces
additional possibilities, namely, that of QUBO modeling
and the use of quantum-motivated classical algorithms.
Although these possibilities obviously do not promise a
breakthrough in scalability, they are essential for the val-
idation and assessment of the results of real quantum
annealing. In addition, they can yield practically useful
results.In fact, hybrid quantum-classical computing is a
promising avenue of research, which has recently seen
significant development [88, 89].

We are aware that the examples of the single-track rail-
way dispatching problem discussed in the paper can be
regarded as trivial from the point of view of professional
dispatchers. This is also reflected by the efficiency of the
conventional linear solver they may use. Our intention,
however, was to provide a proof-of-concept demonstra-
tion of the applicability of quantum annealing in this
field. This goal has been achieved: we have described a
suitable model and succeeded in solving certain instances.

Due to the small size of the current quantum anneal-
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ing processors, our implementation is limited: quantum
annealing is an emerging technology. Owing to the signif-
icant efforts put into the development of quantum anneal-
ers, the addressable problem sizes are about to increase,
and the quality of the samples will also improve. With
the development of the technology, it is not far-fetched
to realize that at some point soon quantum annealers
will be able to compete with or even outperform classical
solvers.
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The present supplemental material contains details which are not necessary for the basic understanding of the
results. They are needed, however, to specify the solved model in full detail and illustrate further the soltuions.
In particular, in Section SI we describe the model’s complete notation and its constraints in a way common in the
Operations Research literature. Section SII is devoted to a linear integer programming formulation of the model which
is used for a comparison with a classical approach. Section SIII provides all the details of the quadratic unconstrained
binary (QUBO) formulaton. I Section SIV we comment further on classical algorithms for solving QUBO (or Ising)
problems. Finally, Section SV contains further computational results concerning particular railway situtations.

SI. OUR MODEL: DETAILS

In this section, we introduce the model of the railway line and the dispatching conditions. Table I provides a
comprehensive summary of the notation used.

A. Railway line

We assume a railway line M to be a set of block sections: segments that can be occupied by at most one train
at a time, as discussed in the paper. These are either line blocks or station blocks; both are also refereed to as block
sections or just blocks. The set of line blocks are denoted by L, and the set of station blocks by S. This model also
incorporates sidings or double-track sections by treating them as station blocks.

Trains can only meet and pass (M-P) or meet and overtake (M-O) at stations. We follow the buffer approach by
treating each station as a block that can be occupied by up to b trains at a time, where b is the number of tracks at
the station. The other blocks can be occupied by only one train at a time.

The set of trains is denoted by J and is split into the subset of trains traveling in a given direction J 0 and the
subset of trains going in the opposite direction J 1:

J 0 ∪ J 1 = J and J 0 ∩ J 1 = ∅. (S1)

Let j ∈ J be a particular train. Its route is a sequence of blocks Mj = (mj,1,mj,2, . . . ,mj,end), where mj,1 is the
starting block and mj,end is the ending block. Each block (from Mj) is passed by train j once and only once (i.e.,
we do not consider recirculation). Given a train j and a block mj,k, the preceding block is πj(mj,k) = mj,k−1, while
the subsequent block is ρj(mj,k) = mj,k+1. We assume that neither ρj(mj,end) nor πj(mj,1) belongs to the analyzed
network segment.

We assume that a route can be defined solely by a sequence of station blocks Sj = (sj,1, sj,2, . . . , sj,end), where M-P
and M-O may occur (i.e., there are no alternative routes between stations). Similarly to blocks in general, for a train
j and a station block sj,k, we denote the preceding station block as πj(sj,k) = sj,k−1, and the subsequent station
block as ρj(sj,k) = sj,k+1. It is convenient to assume that all train paths start and end at stations; hence we have
sj,1 = mj,1 and sj,end = mj,end.
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symbol description / explanation
Aj,s discretized set of all possible delays of train j at station s
H(t), H0, Hp time-dependent Hamiltonian of the annealing process and its

time-independent components
t ∈ [0, T ] quantum annealing time
σ̂x, σ̂z Pauli matrices
j ∈ J trains (jobs)
J 0 (J 1) trains heading in a given (opposite) direction
m ∈ M blocks (machines)
s ∈ S station blocks
l ∈ L line blocks
Mj , (Sj) the sequence of blocks (station blocks) in the route of j
sj,1, sj,k, sj,end the first, k-th, and last station block in the route of j
mj,1,mj,k,mj,end the first, k-th, and last block in the route of j
Sj = (sj,1, sj,2, . . . , sj,end) a sequence of all station blocks in j’s route
S∗j , (S∗∗j ) a sequence of station blocks in j’s route without the last (last

two) elements
Sj,j′ a common path of j and j′, ordered according to j’s path
S∗j,j′ a common path of j and j′ excluding the last block, ordered

according to j’s path
ρj(m), ρj(s) the subsequent block (station block) in j’s route
πj(m), πj(s) the preceding block (station block) in j ’s route
tout(j, s), (tin(j, s)) time of leaving (entering) station block s by train j
ttimetable
out (j, s) timetable time of leaving s by j
ptimetable(j,m), pmin(j,m) timetable and minimum time of j passing m
d(j, s) delay of j leaving s
dU (j, s) primary (unavoidable) delay of j leaving s
ds(j, s) secondary delay of j leaving s
dmax(j) maximum possible (acceptable) secondary delay for train j
τ(1)(j, ...)τ(2)(j, ...) minimum time for train j to give way to another train going in

the same (opposite) direction
x, (x) binary decision variable (vector of binary decision variables),

e.g., xj,s,d = xi is 1 if j leaves s with a delay d and 0 otherwise,
i ∈ {1, 2, . . . , n}

Q ∈ Rn×n symmetric QUBO matrix, where n is the number of logical
quantum bits.

f(x) objective function; the weighted sum of secondary delays

TABLE I: Notation summary

B. Delay representation

Ideally, the time tout(j, s) when train j leaves station block s should be the time prescribed by the timetable,
ttimetable
out (j, s). If, however, tout(j, s) > ttimetable

out (j, s), there is a delay in leaving station block s:

d(j, s) = tout(j, s)− ttimetable
out (j, s). (S2)

Primary or unavoidable delays (as defined in Section IIA) are denoted by dU (j, s). If an already delayed train
enters a railway lineM, the initial delay will appear at the first block dU (j, sj,1). The unavoidable delay propagates
along the line, thereby providing a lower bound of the overall delay. Unavoidable delays are non-negative, so we have

dU (j, ρj(s)) = max{dU (j, s)− α(j, s, ρj(s)), 0}, (S3)

where α(j, s, ρj(s)) accounts for the possible time reserve in passing the sequence of blocks, starting from the one
directly after s and ending at station block ρj(s). In the same way, the unavoidable delays are propagated due to the
minimum times of the rolling stock circulation at terminals. Importantly, all unavoidable delays can be computed
prior to the optimization.

The secondary delay dS(j, s) is denoted by

dS(j, s) = d(j, s)− dU (j, s). (S4)



3

We introduce upper bounds dmax(j) of the secondary delays as parameters of the model. Their values can either
be determined manually (maximum acceptable secondary delays of the given trains) or be obtained by using some
fast heuristics such as the first come first served (FCFS) or first leave first served (FLFS) approach (which will be
discussed later). Setting them too low, however, can result in an unfeasible model.

Having established the upper and lower bounds,

dU (j, s) ≤ d(j, s) ≤ dU (j, s) + dmax(j), (S5)

we can use the (integer) values of the delays as decision variables. The bounds ensure that these variables remains in
a finite range. In what follows, we shall call this description, in terms of the discretized delays as decision variables,
“delay representation”; it will be very convenient from the QUBO modeling point of view.

C. Dispatching conditions

Consider a train j whose path Mj consists of both station and line blocks. We assume that the leaving time of the
given block equals the entering time of the subsequent block:

tout(j,m) = tin(j, ρj(m)). (S6)

(This is a slight simplification as there is a finite time in which the train is located in both blocks.) For each train
j ∈ J and each block m ∈ Mj , two kinds of passing times are assigned: a nominal (timetable) ptimetable(j,m) and a
minimum pmin(j,m). Note that the latter can be smaller or equal to ptimetable(j,m) (as there can be a reserve).

We address common dispatching conditions, including: the minimum passing time condition, the single block
occupation condition, the deadlock condition, the rolling stock circulation condition at the terminal, and the capacity
condition.

Condition SI.1. The minimum passing time condition. The leaving time from the block section cannot be
lower than the sum of the entering time and the minimum passing time:

tout(j,m) ≥ tin(j,m) + pmin(j,m). (S7)

For subsequent station blocks s = mj,k and ρj(s) = mj,l, we have

tout(j, ρj(s)) ≥ tout(j, s) +
l∑

i=k+1

pmin(j,mj,i) = tout(j, s) +
l∑

i=k+1

ptimetable(j,mi)− α(j, s, ρj(s)), (S8)

where α(j, s, ρj(s)) is the time reserve mentioned before. In the delay representation, this condition takes the simple
form

d(j, ρj(s)) ≥ d(j, s)− α(j, s, ρj(s)). (S9)

(Compare this with (S3), where we have an equal sign for the lower limit.)

Condition SI.2. The single block occupation condition. Let j and j′ be two trains heading in the same
direction and sharing their routes between station s and subsequent station ρj(s). If train j leaves station block s at
time tout(j, s), the subsequent (tout(j

′, s) ≥ tout(j, s)) train j′ can leave this block at a time for which the following
equation is fulfilled:

tout(j
′, s) ≥ tout(j, s) + τ(1)(j, s, ρj(s)), (S10)

where τ(1)(j, s, ρj(s)) is the time required for train j to give way to train j′ on the route between station block s and
subsequent station block ρj(s). In the delay representation we have:

d(j′, s) + ttimetable
out (j′, s) ≥ d(j, s) + ttimetable

out (j, s) + τ(1)(j, s, ρj(s)) (S11)

or

d(j′, s) ≥ d(j, s) + ttimetable
out (j, s)− ttimetable

out (j′, s) + τ(1)(j, s, ρj(s)). (S12)
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Hence, taking ∆(j, s, j′, s) = ttimetable
out (j, s)− ttimetable

out (j′, s), we get

d(j′, s) ≥ d(j, s) + ∆(j, s, j′, s) + τ(1)(j, s, ρj(s)). (S13)

As mentioned before, the condition in (S13) needs to be tested for tout(j
′, s) ≥ tout(j, s), i.e., d(j′, s) ≥ d(j, s) +

∆(j, s, j′, s); otherwise trains must be investigated in the reversed order.
The actual form of τ(1)(j, s, ρj(s)) depends on the dispatching details of the particular problem. We assume that

all the time reserves are realized on stations. Consequently, τ(1)(j, s, ρj(s)) is delay independent, which makes the
problem tractable.

Condition SI.3. The deadlock condition. Assume that two trains j and j′ are heading in opposite directions
on a route determined by subsequent station blocks s and ρj(s) in the path of train j. In the path of j′, these are
reversed, so j goes s→ ρj(s), while j′ goes ρj(s)→ s. Assume for now that the train j will enter the common block
section before j′. (This condition must also be checked in the reverse order.) Let τ(2)(j, s, ρj(s)) be the time required
for train j to get from station block s to ρj(s). Given this, the deadlock condition can be stated as follows:

tout(j
′, ρj(s)) ≥ tin(j, ρj(s)), (S14)

i.e.,

tout(j
′, ρj(s)) ≥ tout(j, s) + τ(2)(j, s, ρj(s)). (S15)

In the delay representation,

d(j′, ρj(s)) + ttimetable
out (j′, ρj(s)) ≥ d(j, s) + ttimetable

out (j, s) + τ(2)(j, s, ρj(s)) (S16)

and

d(j′, ρj(s)) ≥ d(j, s) + ttimetable
out (j, s)− ttimetable

out (j′, ρj(s)) + τ(2)(j, s, ρj(s)). (S17)

Hence, taking ∆(j, s, j′, ρj(s)) = ttimetable
out (j, s)− ttimetable

out (j′, ρj(s)), we get:

d(j′, ρj(s)) ≥ d(j, s) + ∆(j, s, j′, ρj(s)) + τ(2)(j, s, ρj(s)). (S18)

Again, condition (S18) needs to be tested for tout(j
′, ρj(s)) ≥ tout(j, s); otherwise trains must be investigated in the

reversed order.
Further, similarly to Condition SI.2, the form of τ(2)(j, s, ρj(s)) depends on the dispatching details resulting from

the formulation of the problem. Again, as all time reserves are assumed to be realized at stations, τ(2)(j, s, ρj(s)) is
delay independent, which makes the problem more tractable.

As mentioned before, the particular form of the τs are problem dependent; we propose the following approach to this.
Suppose that train j departs from station s to subsequent station ρj(s), passing the blocks mk,mk+1, . . . ,ml−1,ml,
where s = mk and ml = ρj(s). The subsequent train proceeding in the same direction is allowed to leave at least
after

τ(1) (j, s) = max
i∈{k+1,...,l−1}

(
ttimetable
in (j,mi+1)− ttimetable

in (j,mi)
)
. (S19)

The subsequent train proceeding in the opposite direction is allowed to leave at least after

τ(2) (j, s) =
∑

i∈{k+1,...,l−1}

(
ttimetable
in (j,mi+1)− ttimetable

in (j,mi)
)
≡ ttimetable

in (j, ρj(s))− ttimetable
out (j, s). (S20)

Referring to the minimum and maximum delay conditions – see (S5) – there are pairs of trains for which either
Condition SI.2, or Condition SI.3, is always fulfilled. This observation simplifies our QUBO representation of the
problem.

Condition SI.4. Rolling stock circulation condition at the terminal. If train j with a given train set assigned
terminates at a station where the next train j′ of the same train set starts its course (after turnover), i.e., sj,end = s1,j′ ,
the following condition arises:

tout(j
′, sj′,1) > tin(j, sj,end) + ∆(j, j′), (S21)

where ∆(j, j′) is the minimum turnover time. In the delay representation, we have

d(j′, 1) + ttimetable
out (j′, 1) > d(j, sj,end−1) + ttimetable

out (j, sj,end−1) + τ(2) (j, sj,end−1)) + ∆(j, j′). (S22)

Hence, taking R(j, j′) = ttimetable
out (j′, 1)− ttimetable

out (j, sj,end−1)− τ(2) (j, sj,end−1))−∆(j, j′), we get

d(j′, 1) > d(j, sj,end−1)−R(j, j′). (S23)
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Condition SI.5. The capacity condition. Here we include the buffer approach of handling stations in our model.
Suppose we have a station block s, capable of handling up to b trains at a time. Let {j1, j2, . . . , jb+1} ⊂ J be any
b+ 1-tuple of trains. No time t may exist for which all the conditions below are simultaneously fulfilled:

tin(j1, s) ≤ t ≤ tout(j1, s)

. . .

tin(jb+1, s) ≤ t ≤ tout(jb+1, s). (S24)

In the delay representation,

d(j1, πj1(s)) + ttimetable
out (j1, πj1(s)) + τ(2) (j1, πj(s)) ≤ t ≤ d(j1, s) + ttimetable

out (j1, s)

. . .

d(jb+1, πj1(s)) + ttimetable
out (jb+1, πjb+1

(s)) + τ(2) (jb+1, πj(s)) ≤ t ≤ d(jb+1, s) + ttimetable
out (jb+1, s). (S25)

As a consequence of Condition SI.5, many new constraints may arise. These may make the calculations more
complex, even exceeding the capacity of the current quantum computers. In our particular problem instances, we will
temporarily ignore this condition, but we will verify the solutions against it.

Finally, it is worth observing that Conditions SI.1 - SI.5 refer to station blocks only; line blocks do not appear. As
we have a single-track line, there is no need to analyze line blocks in the optimization algorithm: the decisions are
made at the stations. The leaving time from the ending (station) block does not have to be analyzed either.

SII. LINEAR INTEGER PROGRAMMING APPROACH

Before proceeding to the QUBO approach we describe a linear integer programming formulation, too. This is in the
line with the standard treatment of railway dispatching problems; meanwhile, it is formulated so that it is compares
easily with the QUBO approach. It will therefore be used as a reference for comparisons.

Similarly to the model in [1], we opt for using precedence variables as it is very suitable for a single-track railway
model. We introduce the binary decision variables yj,j′,k so that they have a value of 1 if the train j occupies the
particular part of the track (denoted by k) before train j′, and are zero otherwise.

Train delays will be represented with discrete decision variables d(j, s) that fulfil (S5). (The discretization is not
necessary, but it is practical for the comparison with the QUBO results, as the discretization is required there and
our particular problem instances were found to be tractable with a standard solver.)

Note that the ordering of the train departures is uniquely described by the precedence variables (ys), but for each
configuration there is still some freedom in determining the value of the delay variables (ds). For the solution to be
valid, the values of the ys and ds should be consistent; this will be ensured by the constraints.

The constraints are the following. The constraints in (S9), and (S23) are linear; hence, they can directly be included
in the model. The single block occupation condition, see (S13), is expressed in terms of the precedence and delay
variables:

d(j′, s) +M · (1− yj,j′,s) ≥ d(j, s) + ∆(j, s, j′s) + τ(1)(j, s, ρj(s)), (S26)

where yj,j′,s determines the order of trains j and j′ leaving station s, and M is an arbitrary large number. For two
trains j and j′ heading in opposite directions, the deadlock condition is to be prescribed. For trains with a common
path between subsequent stations k → {s, ρj(s)}, the requirement in (S18) takes the following form:

d(j′, s) +M · (1− yj,j′,k) ≥ d(j, s) + ∆(j, s, j′ρj(s)) + τ(2)(j, s, ρj(s)), (S27)

where yj,j′,k determines which train enters the common path first.
Finally, as to the objective function, the weighted sum of secondary delays (or the total weighted tardiness in the

scheduling terminology) will be minimized, which is also inherently linear:

min
∑

j

d(j, sj,end−1)− dU (j, sj,end−1)

dmax(j)
wj , (S28)

where wj is the weight reflecting the train’s priority.
Although the defined linear model is suitable for the given railway environment, our intention is to use a solver

that inputs QUBOs. For this purpose, an integer program is not a good choice; hence, we construct an alternative
quadratic model with binary decision variables.
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SIII. QUBO FORMULATION OF OUR MODEL

We construct a QUBO model that can be solved either by quantum annealers or by classical algorithms inspired
by them. After presenting a constrained 0-1 representation, we employ a penalty method to move the constraints to
the effective objective function to get an unconstrained problem. This is maybe the most challenging step, not only
in our present work, but also in logical programming using QUBOs.

A. 0-1 program representation

As a step toward a QUBO model, we formulate our problem entirely in terms of binary decision variables. We
achieve this by the discretization of time, i.e., the discretization of the delay variables. Hence, we need to set a delay
resolution step. We opt for a resolution of one minute as this is reasonable from train timetabling point of view (and
the generalization is straightforward). Given such a representation, (S5) can be rewritten into the following form:

d(j, s) ∈ Aj,s = {dU (j, s), dU (j, s) + 1, . . . , dU (j, s) + dmax(j)}, (S29)

where Aj,s is a discretized set of all possible delays of train j at station s.
For the QUBO representation, we introduce the binary decision variables

xs,j,d ∈ {0, 1}, (S30)

which take the value of 1 if train j leaves station block s at delay d, and zero otherwise. These variables will also be
referred to as “QUBO variables.” Their vector is x ∈ {0, 1}n. Each variable is assigned a logical quantum bit. Hence
solving the problem requires n of these bits. The number n depends on the size of the system and is dependent on
the number of trains and stations and the value of the maximum secondary delay.

We assume that each train leaves each station block once and only once:

∀j∀s∈Sj
∑

d∈Aj,s
xs,j,d = 1. (S31)

Remark SIII.1. Observe that Conditions SI.2 and SI.3 (the single block occupation condition and the deadlock
condition) refer to the subsequent stations in train j path – s and ρj(s). (Recall that ρj(sj,end) does not exist in
our model.) Time of entering of ρj(s) is computed from xs,j,d and τ(1)(j, s, ρj(s)), but it does not refer to xρj(s),j,d.
Hence we do not need to investigate the leaving time from the last block of the train’s path. We assume that the
arrival time at this block can be computed from the leaving time from the penultimate block and the passing time.
(Of course, our goal is to reduce the number of QUBO variables in the analysis.) Here, delays at the end of the route
are investigated on leaving the penultimate station of the analyzed route.

Let Sj,j′ be the sequence of blocks in the common route of trains j and j′. If both these trains are traveling in the
same direction, the order of blocks in Sj,j′ is straightforward. Alternatively, we need to regard the block sequence of
train j as the reversed sequence of blocks of train j′. Therefore, we introduce S∗j,j′ = Sj,j′ \ {sj,end} for Conditions
SI.2 and SI.3. Condition SI.2 states that two trains traveling in the same direction are not allowed to appear at the
same block section. In particular, from (S13) it follows that

∀(j,j′)∈J 0(J 1)∀s∈S∗
j,j′

∑

d∈Aj,s


 ∑

d′∈B(d)∩Aj′,s

xj,s,dxj′,s,d′


 = 0, (S32)

where B(d) = {d+ ∆(j, s, j′, s), d+ ∆(j, s, j′, s) + 1, . . . , d+ ∆(j, s, j′, s) + τ(1)(j, s, ρj(s))− 1} is a set of delays that
violates Condition SI.2.

Assume now that two trains j and j′ are heading in opposite directions. From (S18) it follows that

∀j∈J 0(J 1),j′∈J 1(J 0)∀s∈S∗
j,j′

∑

d∈Aj,s




∑

d′∈C(d)∩Aj′,ρj(s)

xj,s,dxj′,ρj(s),d′


 = 0 (S33)

where C(d) = {d(j, s)+∆(j, s, j′, ρj(s)), d(j, s)+∆(j, s, j′, ρj(s))+1, . . . , d(j, s)+∆(j, s, j′, ρj(s))+τ(2)(j, s, ρj(s))−1}.
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We do not need to examine delays when leaving the ending station of the train’s path; see Remark SIII.1. For the
minimum passing time – Condition SI.1 – we introduce S∗∗j = Sj \ {sj,end, sj,end−1}. From (S9) we have:

∀j∀s∈S∗∗j
∑

d∈Aj,s


 ∑

d′∈D(d)∩Aj,ρj(s)

xj,s,dxj,ρj(s),d′


 = 0, (S34)

where D(d) = {0, 1, . . . , d− α(j, s, ρj(s))− 1}.
Following the the rolling stock circulation (Condition SI.4) we have, from (S23),

∀j,j′∈terminal pairs
∑

d∈Aj,s(j,end−1)

∑

d′∈E(d)∩Aj′,1

xj,s(j,end−1),d · xj′,s(j,′1),d′ = 0, (S35)

where E(d) = {0, 1, . . . , d−R(j, j′)}.
The objective of the algorithm is to schedule trains so that secondary delays are minimized. The general objective

function can be written in the following form:

f(d, j, s) = f̂
(
d̂, j, s

)
, (S36)

where d̂ = d(j,s)−dU (j,s)
dmax(j)

. As discussed in Section IIA, primary delays (dU ) are unavoidable, so they are not relevant
for the objective. Recall that upper bounds of the secondary delays dmax(j) have been introduced as parameters,
see (S5). Thus we require f̂(d̂, j, s) to obey the following conditions:

f̂(d̂, j, s) =





0 if d̂ = 0,

maxd̂∈[0,1] f̂(d̂, j, s) if d̂ = 1,

is non-decreasing in d̂ if d̂ ∈ (0, 1).

(S37)

This non-decreasing property reflects that higher delays cannot contribute to a lower extent to the objective. Finally,
our objective function will be linear:

f(x) =
∑

j∈J

∑

s∈S∗j

∑

d∈Aj,s
f(d, j, s) · xj,s,d, (S38)

where f(d, j, s) are the weights.
Apart from the constraints discussed above, the penalty function can be chosen deliberately, which adds some

relevant flexibility to the model. By selecting the appropriate f̂(d̂, j, s), various dispatching policies can be represented.
This ensures freedom of choice in striving for the best suited dispatching solution. Let us mention just a few of them:

1. For a quasi-minimization of the maximum secondary delays, one may opt for a strongly increasing convex
function in d̂, such as an exponential or geometrical.

2. To minimize the number of delayed trains, one may opt for the step function d̂.

3. To minimize the sum of delays, one may opt for a linear function in d̂.

4. Subsequent trains can be assigned various weights for the delays on which their priorities depend.

5. A subset of stations can be selected as the only relevant stations from the point of view of delays. For practical
reasons, we analyze delays on penultimate stations – see Remark SIII.1.

For our particular dispatching problems, we select the policies set out in Points 3− 5.

B. A remark on the penalty coefficients

To get some hint of how to determine the coefficients of the summands that warrant feasibility, let us first consider
a direct search solution of a QUBO of the form in (4). This amounts to evaluating the objective function with all
possible values of the decision variables. In our effective QUBO in (26), the total matrix Q is a sum of the terms
in (22) and (25) and the original objective function of (20). So we have a sum of three QUBOs, and the objective
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function value is linear in the matrix of QUBOs. Hence, the objective value will be the sum of the original objective
function value and the values of the summands representing the constraints.

The feasibility terms have a negative minimum −L because of the omitted 0th order terms when using (25) (instead
of (24) if the solution is feasible). For each element of the outer sum in (25), the value psum contributes to L, hence
L = psum · (the number of linear constraints). The value

f ′′(x) = Ppair + Psum − L (S39)

will be zero if the solution is feasible, and non-zero otherwise. We will call it the hard constraints’ penalty.
If there is solution in which the “cost” of violating some hard constraints is lower than the particular objective

function value, the effective QUBO may yield a minimum that is unfeasible. A way to avoid this is to ensure that
the lowest violation of any hard constraint has a larger contribution to f ′(x) than a violation of all soft constraints
(encoded in the objective f(x)) of a given feasible (not necessarily optimal) solution. Such a solution can be obtained
by some fast heuristics.

This suggests that one should assign high coefficients to the hard constraints. If one employs a direct search
algorithm calculating the values of the objective very accurately, this approach can work out easily. However, the
numerical accuracy is always limited, and other inaccuracies of the minimum search can also appear. In the case
of a quantum annealer, this is due to the noise of the system. What we get in reality is not the guaranteed to be
absolute minimum but a set of samples: vectors for which the effective objective function is close to the minimum. If
the coefficients are too high, the original objective function is just a small perturbation over the feasibility violations.
Hence, while obtaining strictly feasible solutions, the actual minimum can be lost in the noise. Therefore finding the
appropriate values of psum and ppair amounts to finding the values that address both the criteria of both feasibility
and optimality to a suitable extent.

C. A simple example

Let us demonstrate our approach in a simple example. Consider two trains j ∈ {1, 2}, two stations s ∈ {1, 2}, and
a single track between them. The passing time value (scheduled and minimum) between the stations is 1 (minute)
for both trains. Train j = 1 is ready to depart from station s = 1 (heading to s = 2) at the same time as train j = 2
is ready to depart from station s = 2 (heading to s = 1). Under these circumstances, a conflict appears on a single
track between the stations.

Let the initial delay of both trains be d = dU = 1. As one of the trains needs to wait a minute to meet and pass
the other one, the maximum acceptable secondary delay is dmax = 1; see (S29). Taking the QUBO representation as
in (S30) (i.e., xs,j,d), we have the following 4 quantum bits: x1,1,1, x1,1,2 (train 1 can leave station 1 at delay 1 or 2),
x2,2,1, and x2,2,2 (train 2 can leave station 2 at delay 1 or 2). The linear constraints express that each train departs
from each station once and only once, so (S31) takes the form

x1,1,1 + x1,1,2 = 1 and x2,2,1 + x2,2,2 = 1. (S40)

Referring to (25), the optimization subproblem is as follows:

Psum = −psum
(
x21,1,1 + x21,1,2 − x1,1,1x1,1,2 − x1,1,2x1,1,1 + x22,2,1 + x22,2,2 − x2,2,1x2,2,2 − x2,2,2x2,2,1

)
, (S41)

with the optimal value equal to −L = −2psum.
The quadratic constraint is that the two trains are not allowed to depart from the stations at the same time, i.e.,

x1,1,1x2,2,1 = 0 and x1,1,2x2,2,2 = 0. Using (22), the optimization subproblem takes the following form:

Ppair = ppair (x1,1,1x2,2,1 + x2,2,1x1,1,1 + x1,1,2x2,2,2 + x2,2,2x1,1,2) , (S42)

with the optimal value equal to 0. Note that since we have only two stations in this simple example, the minimum
passing time condition does not appear (S∗∗ = ∅).

Finally, a possible objective function is

f(x) = x1,1,2w1 + x2,2,2w2 = x21,1,2w1 + x22,2,2w2, (S43)

where the secondary delay of train 1 is penalized by w1 and the secondary delay of train 2 is penalized by w2.
Let the vector of decision variables be denoted by x = [x1,1,1, x1,1,2, x2,2,1, x2,2,2]T . The QUBO problem can thus

be written in the form of (4), so

Q =



−psum psum ppair 0
psum −psum + w1 0 ppair
ppair 0 −psum psum

0 ppair psum −psum + w2


 . (S44)



9

As the solution is parameter dependent, we can use various trains prioritization policies. For the sake of demonstra-
tion, assume that train j = 2 is assigned a higher priority than train j = 1. This implies the assignment of different
penalty weights. We set w1 = 0.5 and w2 = 1.

As discussed in Section III C, to ensure that the calculated solution is feasible, we require that the following
conditions are met: psum > max{w1, w2} and ppair > max{w1, w2}. We propose ppair = psum = 1.75, so matrix Q to
takes following form:

Q =



−1.75 1.75 1.75 0
1.75 −1.25 0 1.75
1.75 0 −1.75 1.75

0 1.75 1.75 −0.75


 . (S45)

The optimal solution is x = [0, 1, 1, 0]T (train 2 goes first) with f ′(x) = −3. Another feasible solution (not optimal) is
x = [1, 0, 0, 1]T (train 1 goes first) with f ′(x) = −2.5. The other solutions are not feasible: for example, x = [1, 0, 1, 0]T

is not feasible as the two trains are expected to depart from the stations at the same time, with f ′(x) = 0. Observe
that the classical heuristics (such as FCFS and FLFS) do not make a difference between the two feasible solutions,
as both trains enter the conflict segment at the same time and need the same time to pass it. Also, both solutions
have the same value of the secondary delay.

Having formulated our model as a QUBO problem, it is ready to be solved on a physical quantum annealer or by
a suitable algorithm.

SIV. CLASSICAL ALGORITHMS FOR SOLVING ISING PROBLEMS

An additional benefit of formulating problems in terms of Ising-type models is that the existing methods developed
in statistical and solid-state physics for finding ground states of physical systems can also be used to solve a QUBO
on classical hardware. Notably, variational methods based on finitely correlated states (such as matrix product states
for 1D systems or projected entangled pair states suitable for 2D graphs) have had a very extensive development in
the past few decades. A quantum information theoretic insight into density matrix renormalization group methods
(DMRG [2]) – being the most powerful numerical techniques in solid-state physics at that time – helped in proving
the correctness of DMRG. These methods also led to a more general view of the problem [3], resulting in many
algorithms that have potential applications in various problems, in particular solving QUBOs by finding the ground
state of a quantum spin glass. We have used the algorithms presented in [4] to solve the models derived in the present
manuscript.

Both quantum computers and the mentioned classical algorithms may not provide the energy minimum and the
corresponding ground state (as it is not trivial to reach it [5]) but another eigenstate of the problem with an eigenvalue
(i.e., a value of the objective function) close to the minimum. The corresponding states are referred to as “excited
states.” Another important point in interpreting the results of such a solver is the degeneracy of the solution: the
possibility of having multiple equivalent optima.

In analyzing these optima, it is helpful that for up to 50 variables, one can calculate the exact ground states and the
excited states closest to them using a brute-force search on the spin configurations with GPU-based high-performance
computers. In the present work, we also use such algorithms, in particular those introduced in [6] for benchmarking
and evaluating our results for smaller examples. This way we can compare the exact spectrum with the results
obtained from the D-Wave quantum hardware and the variational algorithms.

SV. FURTHER EXAMPLES OF SOLUTIONS

In this Section we present all the solutions of the dispatching problems on line No. 191 obtained by our algorithms.
Both the CPLEX and tensor network approaches (which are based on QUBO) allow for rather arbitrary decisions
on train prioritization. These approaches focus on the train delay propagation on subsequent trains, as illustrated
by the comparison of all the solutions of case 1. Provided Ks2 is delayed, an additional delay of Ks3 would happen
(which we call a “cascade effect”). Furthermore, the tensor network output in Fig. S6 demonstrates the degeneracy
of the ground state and the solutions in the low excited state, which, however, do not have a relevant impact on the
dispatching situation. (In our cases all CPLEX solutions ar the same as these of the linear solver.)

Note that the simple heuristics (FCFS, FLFS) sometimes return trouble-causing solutions. This situation suggests
a solution in which one train needs to have a time-consuming stopover on a particular station; see Figs. 2(c),3(b).
(Such problems sometimes appear in real-life train dispatching too.) Finally, if the problem is easily solvable, as in
case 4, all the methods analyzed in the paper give the same solution. This serves as a quality test of our method.
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(a) Case 1 – single conflict, observe that the additinal delay
of Ks2 will propagate to the delay of Ks3.
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(b) Case 2 – two conflicts, simillar to Fig. 1(a), but with no
impact of Ks2 on Ks3.
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(c) Case 3 – multiple conflicts.
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(d) Case 4 – conflict that is straightforward to resolve.

FIG. S1: The conflicted timetables, various types of conflicts.
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(a) Case 1 – “cascade effect”; the delay of Ks2 causes a
further delay of Ks3.
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(b) Case 2 – optimal solution reached rather “at random”:
probably it is reached because the peoblem is relativelly

simple.
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(c) Case 3 – a problematic solution with undesirably long
waiting times of certain trains; observe the stopover of Ks2.
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(d) Case 4 – optimal solution according to all methods.

FIG. S2: The FCFS solutions, some with a trouble-causing stopover of a particular train.
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(a) Case 1 – optimal solution is reached “at random,” as is its
duplicate in Fig. 3(b), which is an undesired solution.
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(b) Case 2 – duplicate of the solution in Fig. 3(a) causing an
stopover of Ks3.
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(c) Case 3 – no unacceptable stopovers.
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(d) case 4 – optimal solution according to all methods.

FIG. S3: The FLFS solutions, some with a trouble-causing stopover of a particular train.
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(a) Case 1 – “cascade effect,” the delay of Ks2 causes further
a delay of Ks3.
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(b) Case 2 – no unacceptable stopovers.
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(c) Case 3 – no unacceptable stopovers
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(d) Case 4 – optimal solution according to all methods.

FIG. S4: The AMCC solutions. The minimization of the maximal secondary delays from AMCC excludes unacceptably long
stopovers such as those in Figs. 2(c) and 3(b). However, these solutions do not exclude the propagation of smaller delays

among several trains (“cascade effect”); see Fig. 4(a).
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(a) Case 1 – no “cascade effect” (Ks2 does not delay Ks3): a
consequence of the pioritization of Ks2.
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(b) Case 2 – no uncacceptable stopovers.
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(c) Case 3 – no unacceptable stopovers.
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(d) Case 4 – optimal solution according to all methods.

FIG. S5: The CPLEX solutions: exact ground states of the QUBOs. There are no unacceptably long stopovers. Further, the
trains’ prioritization and the delay propagation to subsequent trains are taken into account. The solutions are the same as

these of the linear solver.
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(a) Case 1 – ground state of the QUBO; the degeneracy of the
ground state is reflected by a stay of IC1 both at block 3 and at

block 7.
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(b) Case 2 – ground state of the QUBO.
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(c) Case 3 – excited state of the QUBO; notice the slightly
longer stay of IC1 at block 7.
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(d) Case 4 – excited state of the QUBO; notice the slightly
longer stay of Ks3.

FIG. S6: The tensor network solutions; although the exact ground states were not always achieved, the solutions are
equivalent from the dispatching point of view with to in Fig. S5.


