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Abstract—The IoT is vulnerable to network attacks, and Intru-
sion Detection Systems (IDS) can provide high attack detection
accuracy and are easily installed in IoT Servers. However, IDS are
seldom evaluated in operational conditions which are seriously
impaired by attack overload. Thus a Local Area Network test-
bed is used to evaluate the impact of UDP Flood Attacks on an
IoT Server, whose first line of defence is an accurate IDS. We
show that attacks overload the multi-core Server and paralyze
its IDS. Thus a mitigation scheme that detects attacks rapidly,
and drops packets within milli-seconds after the attack begins,
is proposed and experimentally evaluated.

Index Terms—Internet of Things, Local Area Networks, Cy-
bersecurity, Random Neural Networks, G-Networks, UDP Flood
Attacks, Intrusion Detection and Mitigation

I. INTRODUCTION

Denial of service (DoS) disables systems or networks by
flooding them with huge streams of requests, causing repu-
tational damage, with financial and productivity losses [1].
In the last year, a 150% increase in such attacks occurred
worldwide [2], targeting the IoT, industrial control systems,
power grids and transportation systems [3]–[6], with DoS and
Botnet attacks spreading via their victims, who then become
attackers [7]–[9]. Flood attacks [10] overwhelm networks
with large numbers of forged-source address packets, causing
delayed or lost data, inaccurate or incomplete readings and
overload [11]. Thus these threats require effective Intrusion
Detection Systems (IDS).

While much of the literature on IDS evaluates them under
ideal conditions where attack traffic is treated as data, this
paper compares “ideal” results about attack detection (AD)
algorithms, with system performance measurements in a LAN
environment. Section I-A reviews related work, Section II
describes the experimental test-bed that we use and Section
II-A briefly discusses the IDS and its performance under ideal
and real-world conditions. Section III presents measurements
during different UDP Flood attacks, and summarizes improve-
ments resulting from simple attack mitigation. Finally, Section
IV concludes the paper and outlines future work directions.

A. Related Work

Using test-beds to evaluate IDSs was recommended in early
work [12], and several test-beds for cyber-physical systems,
industrial control and IoT environments have been described
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Fig. 1. Testing Environment using Ethernet for communications, with
Raspberry Pi machines acting as forwarders of normal and attack traffic, and
an Intel 8-Core Processer used as a Server to process incoming packet traffic
and run the IDS algorithm.

[13], such as real-time test-bed for cyber-physical systems
[14], power systems [15], and wind farms [16]. In [17],
a semi-physical test-bed for ICSs was proposed, while in
[18], a low-cost Smart Grid test-bed for SCIDS systems
was evaluated for TCP flood attacks. Test-beds for SCADA
systems are discussed in [19]–[21]. In [22], a test-bed using six
NetFlow tools for collecting, analyzing, and displaying data
was proposed for HTTP-GET flood attacks in a WAN. In [23],
the impact of attack datasets on IoT systems is discussed and
real-time data collection for DNS amplification is investigated,
while DoS attacks on software defined networks are discussed
in [24]. In [25], DoS attacks on an autonomous vehicle test-
bed are described. Attack datasets are reviewed in [22], [23],
while the present paper uses the MHDDoS repository [26] of
real-world DoS attacks.

II. EXPERIMENTAL SETUP

In this paper, a physical test-bed environment is constructed
to evaluate IDS algorithms in more realistic conditions, with
an arbitrary number of linked devices, multiple sources of
normal and attack traffic, and a Server that supports the UDP
Protocol for incoming traffic, runs the IDS algorithm, and
processes the incoming packets’ contents. The devices that
generate benign or attack traffic, are embodied by Raspberry
Pi 4 Model B Rev 1.2 machines (RPi1 and RPi2), each with
a 1.5GHz ARM Cortex-A72 quad-core processor and 2GB
LPDDR4− 3200 SDRAM, running Raspbian GNU/Linux 11



(bullseye), a Debian-based operating system for the Raspberry
Pi hardware. A Server with eight Intel Core i7 − 8705G
processors acts as the receiver of the packet traffic and is
responsible for detecting the attack and storing the arriving
packets. It has 16GB of RAM, a 500GB hard drive, and runs
Linux 5.15.0 − 60− generic 66−Ubuntu SMP, an Ubuntu-
based operating system. Its cores run at 3.10GHz. UDP traffic
is carried over Ethernet connections between all devices via
the Hub in Figure 1, without ACKs or error recovery [27].

A. The IDS and its Ideal Performance

The IDS used in this paper, based on the Deep Random
Neural Network (DRNN) [28], is shown in Figure 2. It learns
from the first 500 benign packets received by the Server, with
metrics xi = [x1i , x

2
i , x

3
i ] related to successive sets of packets.

The IDS predicts the expected metrics: x̂i = [x̂1i , x̂
2
i , x̂

3
i ], and

the difference between its input and the prediction yields the
decision variables yi (attack or non-attack), which are also
used to update the algorithm’s weights. The IDS uses the
DRNN [29], a Random Neural Network [30] with soma-to-
soma triggering between neurons. This IDS provides accurate
detection with different datasets [31]–[34], with the excellent
statistical performance shown in Figure 3, which reports the
Accuracy, TPR, and TNR, for a 10 second attack. This IDS
attains high accuracy both when a fixed threshold γ = 0.3 is
used, and for the best threshold γ = 0.3787, exhibiting 99.7%
Accuracy and TPR, while TNR is 98.48%. These results are
not significantly different when the attack lasts for 60 seconds.
Note that Figure 4 shows that, due to the decision delay, the
IDS may raise an alarm just after an attack ceases.
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Fig. 2. The structure of the IDS system that computes the decision variable
yi from the network traffic metrics [x1i , x

2
i , x

3
i ] with the DRNN based Auto-

Associative Random Neural Network (AAD RNN) and the postprocessing
module.

III. EXPERIMENTS WITH NORMAL AND ATTACK TRAFFIC

In Figure 5, the Server receives packets from linked devices
on port 5555, which are then passed to the buffer manager
by the network protocol, and queued for analysis at the IDS,
whose decisions are based on the average of a batch of 10
successive packets, that are being classified as normal or attack
traffic. Packets classified as “normal” are forwarded to the
packet content processor for the rest of the Server’s operations.

When there is no attack, each RPi device generates normal
IP packet traffic containing the device’s own CPU temperature
and transmits it to the Server every (1) second using UDP.
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Fig. 3. The performance of the IDS with γ = 0.3, and compared with the
best value of γ = 0.3787, is evaluated for Accuracy, TPR, and TNR, in an
experiment where RPi2 starts a UDP Flood attack lasting 10 seconds.
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Fig. 4. The IDS’s binary decisions are shown for γ = 0.3, when the RPi2
starts a UDP Flood attack lasting 10 seconds.

RPi2 is programmed to send both normal and attack traffic
via random sampling, and generates attacks from the public
repository MHDDoS [26]: each 1 second, it initiates a UDP
Flood attack with a probability of 0.10, or sends normal traffic
packet with a probability of 0.90. RPi1 only sends normal
traffic.

Port
5555

Server

IDS Packet Content

ProcessorInput
Buffer

Output
Buffer

Normal
Packets

SNMP

Attack
Packets

Buffer Manager

IDS

SNMP
Protocol

Fig. 5. Schematic organization of the Server that supports the IDS. Mitigation
is based on triggering “packet drop” decisions for all packets in the IDS Input
Buffer, when it detects a majority of attack packets among the most recent 20
packets. The IDS then resumes testing the incoming packets, and the decision
and mitigatiion process is repeated.

Figure 6, displays an intense flow of 1032 byte attack
packets during 10 seconds, while “normal” traffic typically
consists of two small packets sent each second, for each
IoT device. Figure 7 shows that the packet queue length at
the Server rises sharply infront of the IDS, with a gradual
decrease after the attack. Figure 8 shows (Above) the effect



of a 60 second attack on the Server’s intermittently paralyzed
packet processing rate (y-axis in packets/sec), and (Below)
the resulting huge input queue length. Figures 7 and 8 show
that a 10 second attack floods the packet queue, and the IDS
completes the analysis of the accumulated packets over a long
15 minute period, while for a 60 second attack, the IDS is
intermittently paralyzed and its analysis can last 5.85 hours,
since the Server’s cores are busy handling the incoming traffic.
Thus the effect of an attack typically lasts far longer than the
attacker’s activity.

Fig. 6. The difference between the normal and attack traffic on the Server
that is targeted by a UDP Flood attack.
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Fig. 7. The top figure shows the queue length infront of the IDS in a 10
second attack, and the vertical red dashed lines show the active duration of
the attack originating in the compromised device RPi2. The bottom figure
shows the delay before the packet is processed by the IDS.

We now report system measurements when a novel miti-
gation action occurs: if the IDS decides that the majority of
the 20 most recent packets are attack packets, then the input
buffer contents and all incoming packets within the next 30
seconds are dropped. This action is repeated at the end of the
30 second window. Figure 9 displays the queue length in the
input buffer when the attack mitigation is performed during a
UDP Flood attack which lasts 10 seconds: the queue length
increases until the IDS processes 20 packets and decides to
empty the buffer, and we observe that the attack is mitigated
successfully.
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Fig. 8. At the top, the effect of a 60 second UDP Flood attack on the IDS
traffic processing rate in packets per second, is shown when the attack duration
is 60 seconds. The corresponding packet queue length infront of the IDS is
shown at the bottom.
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Fig. 9. During the 10 second attack, the decision to drop packets results in
a very short packet queue length, avoiding Server and IDS paralysis.

Figure 10 shows the queue length when an attack that
lasts 60 seconds is mitigated: the buffer length increases to
22 packets, which is small compared to the value without
mitigation shown in Figure 8: the mitigation decision was
taken twice, the second time between 162 to 192 seconds after
the start of the experiment, and the Server could then operate
normally without being paralyzed.

IV. CONCLUSIONS AND FUTURE WORK

Despite the high accuracy of an IDS installed on a Server
that receives traffic from devices in a LAN network test-
bed subjected to UDP Flood attacks, we observe that while
short attacks are accurately detected, longer attacks may be
detected with greater delay due to Server overload. Thus fast
mitigation is proposed to discard attacking traffic with rapidly
taken decisions. Future work will study mitigation to optimize
the traffic that is discarded, the frequency with which the
IDS analyzes incoming traffic, as well as the minimization
of benign traffic loss, and the system’s energy consumption
[35].
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Fig. 10. The figure shows that during the attack’s 60 seconds, the mitigation
decision occurs twice, with the second mitigation occurring after a detection
that takes place between 162 and 192 seconds.
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