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A B S T R A C T   

Electrocardiogram (ECG) signals have been widely used to diagnose heart arrhythmias. In order to detect these 
arrhythmias using ECG signals, many machine learning methods have been presented. In this article, a novel 
Discrete Wavelet Concatenated Mesh Tree (DW-CMT) and ternary chess pattern (TCP) based ECG signal 
recognition method is presented. The proposed ECG signal recognition method consists of 4 main steps: pre- 
processing using DW-CMT, feature extraction using TCP, feature selection, and classification. In the pre- 
processing step, 15 sub-bands of an ECG signals are generated. By using TCP, features are extracted from the 
sub-bands of the ECG signal. The extracted features are concatenated in the feature concatenation phase. In order 
to select distinctive features, the neighborhood component analysis (NCA) based feature selection method is used 
and the 128 most distinctive features are selected. In order to demonstrate the strength of the extracted and 
selected features, conventional classifiers which are linear discriminant analysis (LDA), k-nearest neighbor (k- 
NN), support vector machine (SVM) are used. To test the success of the proposed method, the MIT-BIH dataset 
and St. Petersburg dataset were used. The 96.60% maximum classification accuracy is achieved for the MIT-BIH 
dataset using k-NN and 97.80% accuracy is achieved using SVM for St. Petersburg ECG dataset. The obtained 
results clearly prove the success of the proposed method.   

1. Introduction 

Cardiovascular diseases lead to the death of many people worldwide 
[1–4]. These diseases include heart attacks, strokes and heart failure. 
Human life can be extended with the detection and treatment of these 
diseases. In the diagnosis and treatment of these diseases, as with other 
diseases, additional tests such as biomedical signal and image analysis 
are used along with the findings of the doctor [5,6]. In the cardiovas-
cular system of elder people, blood vessels lose their elasticity, the 
muscle wall of the left ventricle thickens and resulting in diastolic 
dysfunction. The most widespread forms of conduction disorders and 
arrhythmias seen in elderly people are the atrial premature beats (APB), 
premature ventricular contraction (PVC), left bundle branch block 
(LBBB), and right bundle branch block (RBBB). The diagnosis of 

arrhythmias needs careful analysis by expert cardiologists of the ECG 
signals and this procedure is time-consuming and cumbersome. There-
fore, recently many computer-aided diagnosis (CAD) techniques have 
been utilized to automate arrhythmia detection. Using these CAD 
techniques, the source and condition of the disease are determined and 
the course of the disease diagnosis is significantly improved [3,7]. 
Electrocardiogram (ECG) signals are used to diagnose cardiovascular 
arrhythmia. Basic conditions for instance rhythm, frequency, spread, 
and extinction of the heart are analyzed by using ECG signals. Consid-
ering these criteria, the following results are obtained with ECG mea-
surement [4,8].  

• Conduction disorders of the heart  
• Thickening and enlargement of the heart wall 
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• Effects of pacemaker on the heart  
• Effects of heart and other drugs on the heart  
• Effects of non-cardiac diseases on the heart  
• Coronary failure  
• Myocardial infarction 

Especially in case of emergency, the ECG signals are valuable for 
doctors in diagnosis. In order to develop an intelligent decision support 
system for the cardiologists, valuable knowledge can be extracted by 
using machine learning and artificial intelligence techniques for the 
diagnosis hence ECG signal based learning methods have become a hot- 
topic research area for biomedical engineering, computer science, and 
medicine [9]. There are many studies in the literature on the interpre-
tation of ECG signals using these methods. Hasan and Bhattacharjee [10] 
proposed a method using one dimensional deep convolutional neural 
network. In their study, three dataset were used for experimental results 
(PTB diagnostic ECG database [11], MIT-BIH arrhythmia database [12], 
St.-Petersburg arrhythmia database [13]). They reported accuracy rates 
of 98.24%, 97.70% and 99.71% for PTB diagnostic ECG database [11], 
MIT-BIH arrhythmia database [12], St.-Petersburg arrhythmia database 
[13], respectively. Baloglu et al. [14] presented an approach based on 
convolutional neural network. Physiobank (PTB) ECG database [15] was 
used and they attained an accuracy rate of 99.78%. Sannino and Pietro 
[16] used deep neural network to detect arrhythmia using ECG signals. 
They utilized MIT-BIH arrhythmia database for this purpose. The ac-
curacy rate was calculated as 99.68%. Mathews et al. [17] presented a 
deep learning methodology for arrhythmia detection. MIT-BIH 
arrhythmia database was used. They reported an accuracy rate of 
96.94%. Rahhal et al. [18] used deep neural network. In their study, 
accuracy rate was obtained as 99.83 using MIT-BIH arrhythmia data-
base. Tripathy et al. [19] applied Stockwell transform and hybrid clas-
sification scheme for arrhythmia detection. The accuracy rate was 
calculated as 98.78% using Beth Israel Deaconess Medical Center 
(BIDMC) CHF database [20]. Vafaie et al. [21] proposed an arrhythmia 
detection system. Their system was based on genetic-fuzzy method. 
They reported an accuracy rate of 98.67%. Daamouche et al. [22] pro-
posed a method using Wavelet transform, particle swarm optimization, 
support vector machine. In their study, Accuracy rate was obtained as 
90.90%. Marinho et al. [23] and Li et al. [24] applied machine learning 
techniques to detect arrhythmia with ECG signals. They used MIT/BIH 
arrhythmia database. Marinho et al. [23] and Li et al. [24] attained 
accuracy rates of 94.30%, 97.50%, respectively. Ibtehaz et al. [25] 
presented an arrhythmia detection method using machine learning 
techniques. They used two dataset (MIT/BIH arrhythmia database, 
Creighton University Ventricular Tachyarrhythmia database [26]) for 
this purpose. They achieved accuracy rate of 99.19%, 99.16% for MIT/ 
BIH arrhythmia database, Creighton University Ventricular Tachyar-
rhythmia database, respectively. Bhagyalakshmi et al. [27] used genetic 
BAT optimization algorithm and support vector neural network. MIT/ 
BIH arrhythmia database was utilized for experimental results. Accuracy 
rate was obtained as 96.96%. Andersen et al. method [28] applied a 
method based on convolutional neural networks and recurrent neural 
networks. MIT-BIH AF database [29], MIT-BIH arrhythmia database and 
MIT-BIH NSR database were used. They attained accuracy rates of 
97.80%, 87.40% for MIT-BIH AF and MIT-BIH arrhythmia database, 
respectively. 

In this study, a novel ECG signal recognition method is proposed. The 
main objective of the proposed method is to develop a cognitive and 
high accurate ECG signal recognition method by using 17 classes of the 
MIT-BIH dataset. In order to achieve this objective, two novel methods 
are presented. These methods are called discrete wavelet concatenated 
mesh tree (DW-CMT) and ternary chess pattern (TCP). DW-CMT is uti-
lized for signal decomposition and TCP is used for feature extraction. In 
the feature selection phase, neighborhood component analysis (NCA) is 
used to select distinctive features. Hence, the contributions and nov-
elties of the proposed DW-CMT and TCP based method are as follows:  

• In this study, a novel wavelet-based signal decomposition method 
called as DW-CMT is employed. This preprocessing method consists 
of two stages. In the first stage, 5 levels discrete wavelet transform 
(DWT) with haar filter is applied and 5 wavelet coefficients are ob-
tained. Then, couple of these sub-bands are concatenated and 
(

5
2

)

= 10 signals are generated in the second phase. 

• A novel feature extractor which is called TCP is applied to decom-
posed ECG signals. This method is inspired by the chess game and 
movements of the rook, bishop, and knight chessmen are utilized as 
patterns. In this view, a game-based method is firstly used in an ECG 
signal recognition method to the best of our knowledge.  

• By using the proposed DW-CMT and TCP, a novel highly accurate 
and cognitive ECG signal recognition method is developed.  

• Utilizing distinctive features extracted by the proposed approach, k- 
NN achieved 96.60% accuracy for MIT-BIH dataset and SVM ach-
ieved 97.80% accuracy for St. Petersburg ECG dataset.  

• Since the proposed approach is based on cognitive technique, there is 
no need to use a meta-heuristic optimization method to increase the 
performance of the proposed framework. 

Hence, two novel models, which are DW-CMT and the improved 
chess pattern named as TCP, have been developed in this study. The 
main objective of this work is to denote the feature extraction abilities of 
these methods. Therefore, a new hand-crafted learning model has been 
suggested and this model has been tested on the widely used two ECG 
datasets. In the classification phase, shallow classifiers have been uti-
lized to illustrate the high discriminative attributes of the generated 
features. The results clearly denote the success of this model, and it is a 
general ECG signal classification model since it attained high perfor-
mance on both used datasets. 

2. The proposed ECG recognition method 

In this section, the proposed approach is explained step by step. The 
proposed ECG recognition method consists of preprocessing, feature 
extraction, feature concatenation, feature selection, and classification. 
Graphical representation of the proposed DW-CMT and TCP-based 
method is shown in Fig. 1. 

The steps of the proposed method are explained in the subsections. 
The proposed DW-CMT-based novel signal decomposition and TCP- 
based feature extraction approach are given in Section 2.1 and 2.2. 

2.1. Signal decomposition with DW-CMT 

Pooling methods and frequency transformations have been widely 
used to extract low, middle, and high-level features. However, these 
methods are not so effective. Hence, we proposed DW-CMT to create 
multilevel signal decomposition. As we know from the literature [30], 
the multilevel DWT is a good preprocessing method for ECG signal 
decomposition and for denoising as well. Therefore, a one-dimensional 
DWT-based novel concatenated mesh tree called DW-CMT is proposed. 
In the implementation, five levels of DWT are applied to the raw ECG 
signal and five low sub-bands are obtained in the first level of DW-CMT. 
Then, a couple of these bands are concatenated and 10 concatenated 
sub-bands are obtained in the second level of the proposed DW-CMT as 
shown in Fig. 2. 

The steps of the proposed DW-CMT based decomposition method are 
given as follows. 

Step 1: Apply 5 levels DWT to raw ECG signal with Haar filter. In this 
work, we mimicked Tuncer et al.’s [30] model. They used five low sub- 
bands and reached high classification accuracy. In this work, our main 
purpose is to develop a new and efficient wavelet-based decomposition 
model using these wavelet subbands. 

[L1,H1] = DWT(signal) (1) 
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[L2,H2] = DWT(L1) (2)  

[L3,H3] = DWT(L2) (3)  

[L4,H4] = DWT(L3) (4)  

[L5,H5] = DWT(L4) (5)  

where DWT is 1D-DWT transform, signal represents raw ECG signal, Ls 
are low pass filter and Hs define low pass and high pass filters. 

Step 2: Construct first level of the DW-CMT by using low pass filters. 
Step 3: Concatenate all couples of the first level and obtain second 

level. Algorithm 1 shows the construction of the second level. 

Algorithm 1.. Pseudo code of the construction of the second level of 
the proposed DW-CMT.  

Input: Low pass filter coefficients of the ECG signal (L1,L2,L3,L4,L5).  
Output: Second level components (L6,L7,L8 ,L9,L10 ,L11 ,L12 ,L13,L14,L15)  
1: count = 6; // Define counters  
2: for i = 1 to 4 do 

(continued on next column)  

(continued ) 

3: for j = i + 1 to 5 do 
4: Lcount = concat(Li,Lj); // Concatenation couple of low pass filter coefficients.  
5: count = count + 1;  
6: end for j 
7: end for i  

As seen from Algorithm 1, firstly 5 level DWT is applied on the 
original ECG signal and L1, L2, L3, L4 and L5 sub-bands. Then, these sub- 
band are concatenated by using Lines 2–7 of the Algorithm 1. By using 
DW-CMT, 15 novel signal components of the original signal are obtained 
from the raw ECG signal and then, feature extraction process is applied 
to these signals and the original signal as well. The all of the signals 
(nodes) of the proposed DW-CMT are used for feature extraction. 

2.2. Feature extraction 

A novel ternary chess pattern (TCP) is proposed as a feature 
extractor. It is well known from the literature that micro patterns such as 
local binary pattern (LBP) [31] and ternary pattern (TP) are effective 

Fig. 1. The graphical representation of the proposed framework.  

Fig. 2. ECG signal decomposition with the proposed Discrete Wavelet Concatenated Mesh Tree (DW-CMT).  
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feature extractor for signals and images. Therefore, we proposed a novel 
descriptor TCP which is inspired by chess game. It uses 5 × 5 sized 
overlapping blocks and rook, knight, and bishop movements. To show 
rook, bishop, and knight movement, the minimum block size is taken as 
5 × 5. Therefore, a 5 × 5 sized overlapping block is used to define these 
chessmen movements. Then features are extracted from the 16 signals 
(original and 15 novel signal components) by using the proposed TCP. 
Actually, TCP feature extraction was applied to all nodes of the DW- 
CMT. As seen from Fig. 1, there are 5 sub-bands from the decomposi-
tion of DWT (Nodes L1-L5) and then, a couple of these sub-bands are 

concatenated and 
(

5
2

)

= 10 signals are generated in the second phase. 

Hence, we obtained a total of 15 signals (nodes). The proposed feature 
extraction algorithm is given as Algorithm 2 and Step 4 represents the 
whole feature extraction process. 

Step 4: Extract features by using Algorithm 2. 

Algorithm 2.. Pseudo code of the proposed feature extraction process.  
Input: Signal (signal), nodes of the signal (L1,L2,⋯,L15) with size of L.  
Output: Feature (feature) with size of 1536x16 = 24576.  
1: feature(1 : 1536) = TCP(originalsignal); // Feature extraction from original ECG 

signal with the proposed TCP.  
2: for i = 1 to 15 do 
3: feature(1536xi+1 : 1536x(i+1)) = TCP(Li);//Feature extraction from each node 

of the DW-CMT decomposition with TCP. By using this code, the extracted features 
are concatenated.  

4: end for i  

As seen from the Algorithm 2, TCP extracts features from the raw 
signal and node of the DW-CMT. TCP(.) defines procedure of the TCP 
and it is shown in Algorithm 3. TCP extracts 1536 features from each 
signal. Since the DW-CMT signal decomposition method is used, 15 sub- 
bands of DW-CMT are extracted. TCP extracts feature from the original 
signal and sub-bands of the DW-CMT. In the proposed TCP and DW- 
CMT-based feature extraction, 24,576 features are obtained by using 
the extracted features concatenation. 

The proposed ternary chess pattern method uses bishop, knight and 
rook movements to create pattern on the 5 × 5 size of block. The main 
purpose of the presented TCP function is to illustrate feature extraction 
ability of a game-based function and this function is an improved version 
of the Tuncer’s et al. [32] feature extraction function. Graphical outline 
of the proposed chess-based pattern is shown in Fig. 3. 

As seen in Fig. 3, B, K, R, and center values represent bishop, knight, 
rook, and center values respectively. To extract binary features from a 
block, the ternary function is chosen. By using the ternary function, two 
type bits are extracted and these are called upper and lower. A mathe-
matical description of the ternary-based bit extraction is given as Eqs. 
(6) and (7). 

terupper(pi, pc) = bitupper =
{

1, pi − pc > t
0,Otherwise (6)  

terlower(pi, pc) = bitlower =
{

1, pi − pc < − t
0,Otherwise (7)  

where terupper(, .) is upper ternary bit generation function, terlower(, .) is 
lower ternary bit generation function,bitupper is upper bit, bitlower repre-
sents lower bit, t is threshold value. pi is ith value of the block and pc is 
center value of the used 5 × 5 sized block. The extracted lower and upper 
bits are used to calculate decimal values. Eqs. (6) and (7) clearly dem-
onstrates that the most important problem of the ternary-based binary 
feature extraction function is to determine the threshold value. In order 
to automatically calculate the threshold-point of the ternary function, a 
linear standard deviation-based threshold value searching strategy is 
used. We selected 10 multipliers, which are 0.1, 0.2, …, 1 to find the 
optimal threshold point. According to the results, 0.5 × SD(signal) (SD(.) 
is standard deviation function) was calculated as the optimum threshold 
value and it defines as mathematically in Eq. (8). 

t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
signali − signal

)2
√

2
(8)  

where signal is average value of the signal and N is length of the signal. 
By using TCP, 6 feature values are calculated by using a 5 × 5 sized 

overlapping block. These are called upper rook, lower rook, upper 
bishop, lower bishop, upper knight, and lower knight. By using these 6 
values, 6 feature signals are constructed, and histograms of these signals 
are utilized as features. Therefore, the proposed TCP extracts 256x6 =

1536 features from an image and Fig. 4. explains the proposed TCP by 
using a numerical example. 

As seen from the Fig. 4, the threshold value is selected as 20. By using 
this threshold values, 6 feature values are calculated and these values 
are 8-bits. According to Fig. 4, center value is 350. Ternary bits (upper 
and lower bits) of the 343 are calculated using 343 − 350 = − 13. Since 
− 20 ≤ − 13 ≤ 20, upper and lower bits of 343 were calculated as 0. 
Ternary valules is calculated by using the extracted bits and ternary 
signals (upper bishop, lower bishop, upper knight, lower knight, upper 
rook and lower rook). These signals are coded by using 8-bits and his-
tograms of these signals are utilized as feature vector. Therefore, the 

B5 K5 R5 K6 B6

K1 B1 R1 B2 K2

R8 R4 Center R2 R6

K3 B4 R3 B3 K4

B7 K7 R7 K8 B8

Fig. 3. Rook, bishop and knight values on the 5 × 5 size of block.  Fig. 4. An example about the proposed ternary chess pattern.  
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histograms of these signals have 28 = 256 values. Histograms of each 
feature value are concatenated and as a result 1536 features are ob-
tained. The proposed TCP procedure is given in Algorithm 3. 

Algorithm 3.. Pseudo code of the proposed TCP procedure.  
Procedure: TCP(signal) 
Input: Signal (signal) with size of L.  
Output: Feature (feat) with size of 1536.  
1: for i = 1 to L-24 do 
2: block = signal(i : i+24); // Divide signal into 25 sized block  
3: matrix = reshape(block, 5 × 5); // Reshape block into 5 × 5 sized matrix.  
4: Assign rook, bishop, knight and center value in the matrix. 
5: Calculate binary features using Eqs. 9–15. Ternary function generates lower and 

upper bits. An example about it is shown in Fig. 4. 
6: Convert binary values to decimal values. decvalue =

∑8
i=1biti*28− i  

7: Create 6 feature signals by using calculated decimal values. 
8: end for i 
9: Extract histograms of the feature signals. 
10: Concatenate histograms and obtained 1536 sized feature.   

2.3. Feature selection 

In this phase, an NCA-based feature selection method is used. NCA is 
one of the most preferred feature reduction and selection methods for 
classification and regression. NCA generates weights of the features by 
using the distance of the features and target. By using NCA, non-negative 
features are calculated. These weights show the most distinctive fea-
tures. According to NCA, the biggest weight belongs to the distinctive 
feature and the smallest weight belongs to the most redundant feature. 
NCA also uses the gradient descent method. The steps of this phase are 
given below. 

Step 5: Normalize the extracted features using minimum maximum 
normalization. The mathematical notation of the min–max normaliza-
tion is shown as Eq. (9). 

X =
feature − min(feature)

max(feature) − min(feature)
(9)  

where min(.) and max(.) are minimum and maximum functions 
respectively and X is normalized feature. 

Step 6: Apply NCA to features to generate weights of the features. 

weight = NCA(X, y) (10) 

where X is the input feature matrix, and y is the target (actual output) 
vector. Since we used a supervised feature selection approach, NCA uses 
normalized functions and actual outputs (y) together. Besides, it uses 
optimizers such as Stochastic Gradient Descend (SGD) to calculate op-
timum features from the whole feature set. In this study, SGD is used to 
calculate the optimal feature weights. 

Step 7: Sort weights descending. 

[w, indices] = sort(weight) (11)  

where w is the sorted weights, indices is indices of the sorted weights, 
sort(.) is the sorting function. The calculated indices are used to select 
the most discriminative features. 

Step 8: Select most distinctive 128 features using indices which are 
calculated by Eq. (11). 

By using NCA, the weights of each feature are calculated. Then, the 
generated features are sorted by descending and the most valuable 
indices are calculated in the training phase. The calculated indices are 
stored in order to use in the testing phase. To test this model, the stored 
indices that are calculated in the feature selection phase of the training 
are utilized. 

Algorithm 4.. Pseudo code of the most distinctive 128 feature 

selection.  
Input: Normalized feature (X) with size of 24,576 and indices. 
Output: Feature (featS) with size of 128.  
1: for i = 1 to 128 do 
2: feats(i) = X(indices(i) );
3: end for i   

2.4. Classification 

In the classification phase, 128 selected features are utilized as input 
of the classifiers namely k-NN, LDA, and cubic SVM classifiers. The 
hyperparameters of the employed classifiers are given as follows. For k- 
NN, k is selected as 1, and the distance metric is city block (Manhattan 
Distance). SVM is an optimization-based conventional classifier and 
polynomial kernel function with order 3, kernel scale auto, and coding 
one-vs-all are used as the parameters of the cubic SVM. Since LDA is a 
linear classifier, it is a non-parametric classifier. We executed these 
classifiers on the MATLAB Classification Learner Toolbox. 10-fold cross- 
validation is used during the experiments. 

3. Results and discussions 

The key objective of ECG signal recognition is to create a scheme to 
diagnose heart arrhythmias. In order to carry out the experiments, a 
personal computer (PC) was used for the implementation of the pro-
posed approach. This PC has 16 gigabytes of random access memory, an 
Intel Core i7-7700 microprocessor with 3.60 GHz, and Windows 10.1 
operating system. The experiments were implemented using the MAT-
LAB 2018a environment. The proposed DW-CMT and TCP based 
methods are evaluated using three different classifiers namely k-NN, 
SVM, and LDA. 

3.1. ECG datasets 

MIT-BIH dataset is widely used in the literature for arrhythmia 
detection. This dataset was completed in 1980 and it was the first 
dataset for arrhythmia detection. It is a heterogeneous dataset and 
consists of 1000 ECG signal fragments of 10 s duration obtained from 45 
subjects belonging to 17 cardiac arrhythmias. Therefore, each ECG 
signal has 3600 samples. In this study, it was chosen to present 
comparative results and was performed in 17 classes for experimental 
results. The specifications of the dataset are given in Table 1 [12]. 

Moreover, we used St. Petersburg dataset [15] with 4 classes to verify 
the proposed framework. The classes of this dataset are called as normal, 
APC, PVC and RBBB. This dataset is a homogenous dataset and there are 

Table 1 
The specifications of the utilized ECG dataset.  

Arrhythmia Observations 

Normal sinus rhythm 283 
Atrial premature beat 66 
Atrial flutter 20 
Atrial fibrillation 135 
Supraventricular tachyarrhythmia 13 
Pre-excitation (WPW) 21 
Premature ventricular contraction 133 
Ventricular bigeminy 55 
Ventricular trigemini 13 
Ventricular tachycardia 10 
Idioventricular rhythm 10 
Ventricular flutter 10 
Fusion of ventricular and normal beat 11 
Left bundle branch block beat 103 
Right bundle branch block beat 62 
Second-degree heart block 10 
Pacemaker rhythm 45  
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1000 instances in each class. 

3.2. Performance evaluation 

Accuracy, recall, precision, F1-score and geometric mean were 
considered to evaluate the performance of the proposed approach 
[33,34]. The explanations of these metrics are mathematically given in 
Eqs. 12–16. 

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(12)  

Recall =
TP

TP+ FN
(13)  

Precision =
TP

FP+ TP
(14)  

F1 − score =
2TP

2TP+ FP+ FN
(15)  

Geometric mean =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
TP

TP+ FN
×

TN
FP+ FN

√

(16)  

where TP, TN, FP and FN are true positives, true negatives, false posi-
tives and false negatives respectively. 

3.3. Experimental results 

In this research, a new feature engineering model is proposed using 
two ECG datasets to detect arrhythmias. To highlight the feature gen-
eration ability of the developed model, three shallow classifiers have 
been used. Moreover, we have not conducted any fine-tuning process for 
these classifiers to attain high classification accuracy. Therefore, the 
comprehensive classification results have been presented in this work. 
Moreover, two ECG signal datasets have been used to depict the general 
classification ability of the developed model. 

To clearly evaluate the proposed cases, each case was executed 1000 
times. The obtained results were listed in Table 2. Table 3 also demon-
strates that the proposed k-NN achieved 96.60% maximum accuracy; 
95.92 ± 0.27%, 97.75 ± 0.39%, 94.52 ± 0.44%, 96.11 ± 0.35% and 
97.69 ± 0.41% average accuracy, recall, precision, F1-score and geo-
metric mean respectively. 

The results of the cubic SVM classifier are listed in Table 3. The 
proposed SVM is achieved 95.7% of maximum accuracy, 94.80 ± 0.35%, 
89.90 ± 0.58%, 86.65 ± 0.74%, 93.43 ± 0.56% and 94.99 ± 0.65% 
average accuracy, recall, precision, F1-score and geometric mean 
respectively 

The results of the LDA are shown in Table 4. Table 4 clearly shows 
the proposed LDA classifier achieved 88.34 ± 0.40%, 89.90 ± 0.56%, 
86.65 ± 0.70%, 88.25 ± 0.55% and 88.93 ± 0.67% accuracy, recall, 
precision, F1-score and geometric mean respectively. 

Since we used the histogram-based TCP technique as a textural 
feature extractor, k-NN achieved high classification accuracies for the 
proposed approach. The k-NN algorithm is a statistical supervised 
classification. The idea is that given a new test data t, the algorithm 
obtains the k-nearest neighbors from the training set based on the 

distance between t and the training set [35]. According to the experi-
mental results, k-NN achieved the highest accuracy rate which proves 
the hypothesis. 

We also tested the proposed DW-CMT and TCP based ECG classifi-
cation approach with the St. Petersburg ECG dataset. Obtained results 
are listed in Table 5. As it can be seen from the Table 6 that the proposed 
method is also effective on the St. Petersburg ECG dataset as well. But in 
this dataset SVM achieved the best performance. Table 5 clearly shown 
that the best resulted classifier is SVM because it achieved 97.80% and 
97.79% classification accuracy and geometric mean by using St. 
Petersburg dataset. 

In order to present the performance of the proposed DW-CMT and 
TCP-based ECG signal recognition method, the proposed method was 
compared to other state-of-art methods. The comparative results were 
listed in Table 6. As seen from Table 6, to the best of our knowledge, the 
proposed method achieved better results than all available ones in the 
literature. Although ensemble and deep learning methods are not used 
in the proposed framework, a better score was achieved than from 
previous studies. Besides, 10-fold cross-validation was used to obtain 
test results instead of holdout validation. 

As can be seen from Table 6, the proposed model attained high 
classification accuracy using a simple classifier (1NN) with less features. 
This situation clearly denotes the success of the presented DW-CMT +
TCP model. For instance, Yildirim et al. [38] presented a deep model to 
classify ECG signals and they reached 91.30% classification accuracy 
and their model has also high time complexity. Plawiak et al. [39] 
proposed a frequency components based model and they used genetic 
algorithm to tune hyperparameters of the used classifiers and they 
reached 94.60% accuracy. Tuncer et al. [40] suggested a DWT based 
model and reached 95% classification accuracy using 256 features. 
Hammad et al. [41] achieved 98% accuracy with GA-based deep 
learning model and k-NN. Alickovic and Subasi [42] achieved 99.93% 
accuracy with MSPCA + AR Burg and SMO SVM. But these two studies 
used less number of classes. In this model, we attained 96.60% classi-
fication accuracy by using 128 features. 

The computational complexity of the proposed technique was also 
Table 2 
The classification performance of the k-NN for MIT-BIH dataset.  

Statistical 
moments 

Accuracy Recall Precision F1- 
score 

Geometric 
mean 

Minimum  94.90%  96.15%  91.97%  94.22%  95.81% 
Average  95.92%  97.75%  94.52%  96.11%  97.69% 
Maximum  96.60%  98.51%  95.18%  96.69%  98.47% 
Standard 

deviation  
0.27%  0.39%  0.44%  0.35%  0.41%  

Table 3 
The classification performance of the SVM for MIT-BIH dataset.  

Statistical 
moments 

Accuracy Recall Precision F1- 
score 

Geometric 
mean 

Minimum  93.40%  92.76%  89.26%  91.39%  92.11% 
Average  94.80%  89.90%  86.65%  93.43%  94.99% 
Maximum  95.70%  96.94%  94.39%  95.13%  96.83% 
Standard 

deviation  
0.35%  0.58%  0.74%  0.56%  0.65%  

Table 4 
The classification performance of the LDA for MIT-BIH dataset.  

Statistical 
moments 

Accuracy Recall Precision F1- 
score 

Geometric 
mean 

Minimum  87.00%  88.13%  84.28%  86.56%  86.86% 
Average  88.34%  89.90%  86.65%  88.25%  88.93% 
Maximum  89.60%  92.03%  88.95%  90.01%  91.30% 
Standard 

deviation  
0.40%  0.56%  0.70%  0.55%  0.67%  

Table 5 
The classification performances of the DW-CMT and TCP based method for St. 
Petersburg dataset.  

Classifier Accuracy Recall Precision F1-score Geometric mean 

SVM  97.80%  97.80%  97.80%  97.80%  97.79% 
k-NN  97.12%  97.12%  97.15%  97.14%  97.10% 
LDA  96.37%  96.38%  94.42%  96.40%  96.33%  
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calculated. 
DW-CMT based signal decomposition: DW-CMT method uses 1D- 

DWT [43] and it generates 15 frequency sub-bands. Therefore, the 
computational complexity of this phase is calculated as O(15L). (L is 
length of the signal). 

TCP based feature extraction: TCP extracts features from each sub- 
band. 73 operations (25 of them are used to assign values, 48 of them 
are used to feature extraction) are used in each 5 × 5 sized block and it 
uses 6 histogram extractions. Therefore, complexity of it is calculated as 
O(73*(L − 24)+256*6 ) = O(73L − 216) ≅ O(L) for each signal. It ex-
tracts features to 16 signals. Therefore, it was found as O(16L). 

Feature Reduction: NCA [44] is utilized as feature selection method 
in this article. TCP based method extract 24,576 features. Therefore, it is 
calculated as O(24576k) where k is cost of the NCA. 

Classification: In the classification, 128 features are classified using 
10-fold cross validation. Hence, the computational complexity of the 
classification is calculated as O(128*10*m) = O(1280m) where m is cost 
of the classifier. 

The total computational cost of the proposed method was calculated 
as O(31L+24576k+1280m) = O(L+k+m). 

3.4. Discussion 

The abilities of the feature extraction methods have so far been 
shown in many practical classification problems. Usually feature 
extraction affects the performance of the classifier on a wide variety of 
problems. None of the previous studies in the literature have been used 
the DW-CMT and TCP as feature extraction for the ECG signals, and that 
could be one of the crucial reasons why the proposed method achieves 
the best result. Therefore, in this paper, the performance of the classi-
fiers is improved with the DW-CMT and TCP-based ECG signal recog-
nition. To assess the effect of DW-CMT and TCP-based ECG signal 
recognition method on the classification performance, a comparison 
with the state-of-the-art is realized by employing the publicly available 
data set containing different ECG signals. In the proposed framework, 
DW-CMT and TCP are employed for feature extraction in the ECG signal 
analysis. The proposed arrhythmia classification approach is a hand- 
crafted and multileveled method and achieved a 96.60% classification 
rate for the MIT-BIH dataset by using k-NN and 97.8% for St. Petersburg 
dataset by using SVM classifier. To achieve this accuracy rate, deep 
learning methods for instance 1D-CNN, LSTM were used in the litera-
ture. In the deep methods, many parameters should be set. In this 
method, there is no need to set many parameters. Moreover, meta-
heuristic optimization techniques have been used to tune hyper-
parameters of the used classifiers. In this work, we have not utilized an 
optimization technique for hyperparameters tuning. In this respect, the 
classification ability of the created features is highlighted. Computa-
tional complexity of the proposed TCP based arrhythmia classification 
method is calculated by using big Onotation. According to big O nota-
tion, constant coefficients are ignored. Therefore, the computational 

complexity of the proposed TCP based arrhythmia classification method 
is calculated as O(L+k+m).According to the achieved results in the 
recognition of ECG signals, the followings should be emphasized: 

• There is no metaheuristic optimization method to increase perfor-
mance of the system. Therefore, the proposed TCP based arrhythmia 
classification method is naïve.  

• A novel game based highly accurate method is presented.  
• The proposed method is a lightweight method. Because there is no 

need optimize millions of parameters as deep learning method. Also, 
the computational complexity of the proposed method is low.  

• Performance of the 3 different classifiers are tested in ECG signals 
classification and the experimental results are shown in Table 2–6. 
The proposed approach achieved 96.60% classification rate for MIT- 
BIH dataset by using k-NN and 97.8% for St. Petersburg dataset by 
using SVM classifier. According to this result, this method achieved 
highest classification accuracy among all of the selected state-of-art 
methods.  

• LDA achieved the lowest performance among the classifiers. Even the 
LDA is the worst among the classifiers in this experiment, it achieved 
89.60% maximum accuracy.  

• The used MIT-BIH ECG dataset is a heterogeneous dataset, but the 
proposed method resulted successfully by using this dataset.  

• The proposed DW-CMT and TCP based ECG classification method 
was tested on two different datasets and it achieved successful results 
for both. These results clearly have shown the success of the pro-
posed framework. 

4. Conclusions and future directions 

In this study, a novel preprocessing and feature extraction method is 
presented. These methods are called DW-CMT and TCP respectively. By 
using these methods, a novel ECG signal recognition method is pre-
sented. The main aim of the proposed DW-CMT and TCP-based ECG 
signal recognition method is to diagnose 17 arrhythmias using a 
cognitive method with a high success rate. The proposed DW-CMT and 
TCP-based methods were also tested on St. Petersburg dataset and 
achieved high classification results. Since TCP uses game rules, it is an 
effective feature extractor. In order to present the effectiveness of the 
proposed method, two different datasets are employed, and a 96.60% 
classification rate is achieved with the MIT-BIH dataset by using k-NN, 
and 97.8% classification accuracy is achieved with St. Petersburg 
dataset by using the SVM classifier. The proposed method was compared 
to 5 state-of-art methods and it has the best success rate. The advantages 
of the proposed method can be summarized as follows. A novel wavelet- 
based preprocessing method and a game-based feature extractor are 
presented. The proposed method achieved high success rates and it 
accomplished the best result compared to the results of the previous 
studies. Moreover, the proposed technique is a naive method. 

In future works, the proposed method can be used for image pro-
cessing. Because it is suitable for images too. Novel deep networks can 
be presented using DW-CMT and TCP. In this study we used 2-level DW- 
CMT, more levels can be used to construct a cognitive network instead of 
other operations for instance minimum, maximum and average pooling 
methods. Also, novel heart disease monitoring systems and applications 
can be developed by using the proposed method. In these applications 
and systems, the training sets can be stored in a cloud and testing can be 
applied by using this training set on a mobile device or a computer. 
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Table 6 
The comparison with the stae-of-the-art by using MIT-BIH dataset.  

Study Features Classifier Accuracy 
(%) 

Pławiak [36] Frequency component 
of the ECG signal 

Evolutionary single 
SVM  

90.20 

Pławiak [37] Frequency component 
of the ECG signal 

Genetic based 
ensemble classifier  

91.40 

Yildirim et al.  
[38] 

Raw ECG signal 1D-CNN  91.30 

Plawiak et al.  
[39] 

Frequency component 
of the ECG signal 

Deep genetic 
ensemble of classifiers  

94.60 

Tuncer et al.  
[40] 

5-levels DWT and 1D- 
HLP with 256 features 

1NN  95.00 

The Proposed 
method 

DW-CMT + TCP with 
128 features 

1NN  96.60  
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