
Knowledge-Based Systems 231 (2021) 107419

a
c
t
d
m

C
K

z
(
(
X
s

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A novel approach based on genetic algorithm to speed up the discovery
of classification rules on GPUs
Mohammad Beheshti Roui a, Mariam Zomorodi a,b,∗, Masoomeh Sarvelayati a,
Moloud Abdar c, Hamid Noori a, Paweł Pławiak b,d, Ryszard Tadeusiewicz e, Xujuan Zhou f,
Abbas Khosravi c, Saeid Nahavandi c,g, U. Rajendra Acharya h,i,j

a Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi, Iran
b Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krakow, Poland
c Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
d Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
e Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology,
Krakow, Poland
f School of Management and Enterprise, University of Southern Queensland, Australia
g Harvard Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
h Department of ECE, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599 489, Singapore
i Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
j Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan

a r t i c l e i n f o

Article history:
Received 1 April 2020
Received in revised form 17 August 2021
Accepted 18 August 2021
Available online 21 August 2021

Keywords:
Data mining
Machine learning
Rule discovery
Genetic algorithm
GPU programming
Classification rules

a b s t r a c t

This paper proposes a new approach to produce classification rules based on evolutionary computation
with novel crossover and mutation operators customized for execution on graphics processing unit
(GPU). Also, a novel method is presented to define the fitness function, i.e. the function which
measures quantitatively the accuracy of the rule. The proposed fitness function is benefited from
parallelism due to the parallel execution of data instances. To this end, two novel concepts; coverage
matrix and reduction vectors are used and an altered form of the reduction vector is compared with
previous works. Our CUDA program performs operations on coverage matrix and reduction vector in
parallel. Also these data structures are used for evaluation of fitness function and calculation of genetic
operators in parallel. We proposed a vector called average coverage to handle crossover and mutation
properly. Our proposed method obtained a maximum accuracy of 99.74% for Hepatitis C Virus (HCV)
dataset, 95.73% for Poker dataset, and 100% for COVID-19 dataset. Our speedup is higher than 20% for
HCV and COVID-19, and 50% for Poker, compared to using single core processors.

© 2021 Published by Elsevier B.V.
1. Introduction

Nowadays, machine learning methods including evolutionary
lgorithms are extensively used in data mining tasks [1]. Data
lassification is one of the data processing operations which helps
o understand the data better and predict the unseen data. The
ata discrimination can be performed accurately using advanced
achine learning and evolutionary algorithms (EAs) [2,3]. Genetic

∗ Corresponding author at: Department of Computer Science, Faculty of
omputer Science and Telecommunications, Cracow University of Technology,
rakow, Poland.

E-mail addresses: mbr@mail.um.ac.ir (M. Beheshti Roui),
omorodi@pk.edu.pl (M. Zomorodi), m.sarvelayati@mail.um.ac.ir
M. Sarvelayati), m.abdar1987@gmail.com (M. Abdar), hnoori@um.ac.ir
H. Noori), plawiak@pk.edu.pl (P. Pławiak), rtad@agh.edu.pl (R. Tadeusiewicz),
ujuan.Zhou@usq.edu.au (X. Zhou), abbas.khosravi@deakin.edu.au (A. Khosravi),
aeid.nahavandi@deakin.edu.au (S. Nahavandi), aru@np.edu.sg (U.R. Acharya).
ttps://doi.org/10.1016/j.knosys.2021.107419
950-7051/© 2021 Published by Elsevier B.V.
algorithm (GA) is one of the widely used evolutionary algorithms
which helps to provide near optimal solutions for problems.

Decision tree based algorithms have been used in rule mining
for many years. One of the limitations of the decision tree is
that, few leaves in a tree have similar class probabilities. Other
classification algorithms such as neural networks do not give the
rules in a symbolic and understandable forms [4].

The implementation of GA algorithms for various data mining
tasks is simple and it is also compatible with different sizes of
data and complex problems. It is a very successful algorithm
used to solve nondeterministic polynomial time (NP)-complete
problems and it can also be parallelized in many parts. These
advantages of GA has made it a popular method in data mining
and machine learning [5,6]. On the other hand, the process of
rule generation using GA is time consuming in serial processors,
which is affected by population size, dataset size, and number of
attributes in the dataset. The application of GAs in rule generation

https://doi.org/10.1016/j.knosys.2021.107419
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107419&domain=pdf
mailto:mbr@mail.um.ac.ir
mailto:zomorodi@pk.edu.pl
mailto:m.sarvelayati@mail.um.ac.ir
mailto:m.abdar1987@gmail.com
mailto:hnoori@um.ac.ir
mailto:plawiak@pk.edu.pl
mailto:rtad@agh.edu.pl
mailto:Xujuan.Zhou@usq.edu.au
mailto:abbas.khosravi@deakin.edu.au
mailto:saeid.nahavandi@deakin.edu.au
mailto:aru@np.edu.sg
https://doi.org/10.1016/j.knosys.2021.107419

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

i
s
o

I
r
i
h
m
1
a
s
t

w
T
m
g
d
r
G
t

a
a
G

T
b
p
I
p
P

2

t
G

2

a
c

s to implement classification rules by searching the space of pos-
ible rules and finding the ones that have an acceptable accuracy
n a given dataset.
Classification includes two major phases, training and testing.

n the training phase and according to the training dataset, a se-
ies of rules (a population in GA) are generated. The testing phase
s employed to evaluate each rule (an individual in GA), which
as been generated in the training phase. This work used two
edical datasets to predict Hepatitis C Virus (HCV) and COVID-
9 disease. Evaluating the accuracy of individuals in GA demands
ccess to all data instances to generate the rules [7]. Therefore,
erial processing of GA is highly time consuming depending on
he number of mentioned factors.

Avoiding serial processing and taking parallel execution is a
ell-known approach to speed up the execution of a program.
he parallel processing demands a capable processor such as
ulti-core or multi-processor. General-purpose computing on
raphics processing units (GPGPU)s as single instruction, multiple
ata (SIMD) multi-processors, are vastly used for problems that
equire data parallelism to speed up the operation. In addition,
PUs are able to execute GA based on three mentioned factors at
he same time [8].

In this paper, GA is used to discover the classification rules
nd a novel GA approach is implemented with compute unified
rchitecture (CUDA) as a programming environment on NVIDIA’s
PUs.
The main contributions of this work are as follows:

• Designed the serial code to discover the classification rules
using GA.

• Implemented a new approach for parallel code of GA for
execution on GPU and then we used coverage matrix for rule
evaluation which is applied to calculate the fitness value of
the rules in parallel.

• Proposed a reduction scheme based on coverage matrix to
produce a new data structure called reduction vector. The
aim of this operation is to produce a new evaluation metric
for rules. Fitness function benefits from reduction vector to
measure the confusion matrix parameters in parallel for all
rules.

• Defined a new data structure called average coverage for
each rule to be used in genetic operators, crossover, muta-
tion, and improve their implementation on GPU.

• Presented a new crossover scheme based on average cover-
age of the rules.

• Suggested a novel mutation scheme depending on average
coverage of the rules.

• Evaluated the speedup on each part of GA and the whole
algorithm is performed separately.

he rest of this paper is structured as follows. In Section 2
ackground of related topics are discussed to facilitate the com-
rehension of this article. Related works are provided in Section 3.
n Section 4, our proposed approach for rule discovery on GPU is
resented. The experimental results are described in Section 5.
aper concludes in Section 6 and future works are outlined.

. Background and problem statement

In this section a summary of background on the use of GA for
he classification rule discovery and execution of parallel GA on
PU is presented.

.0.1. GA for classification
During the first step, a random population of rules is gener-

ted. In rule generation, a set of if-then rules are encoded into a

hromosome. In the second step, the quality of each individual

2

(rule) is evaluated using the fitness function. Then, GA operators
select two parent individuals and combine them into an offspring
individual, based on the fitness value. Although selection as a
term can be used for both feature and rule selection [9,10],
this work is using it as rule selection. The individuals improve
to higher fitness value while GA iterates through the following
steps [7].

a. Encoding: There are two approaches (Michigan and Pitts-
burgh) for encoding rules into a GA chromosome. In Michi-
gan approach which we used in this work, each chromo-
some represents a single rule and in Pittsburgh approach
each chromosome represents a set of rules. A rule consists of
a conjunction (a logical AND) on the values of n conditions,
where n is the number of attributes of each instance (record)
in dataset [11]. Fig. 1 illustrates the genotype of an individ-
ual in Michigan approach. Attri, Opi and Vali denotes the ith
predictor attribute, a comparison operator and the jth value
of the domain of Attr, respectively. Activei is a bit used as a
flag to indicate whether the ith condition is active ("1") or
inactive (‘‘0’’) [7]. Michigan encoding is vastly employed in
applications with the purpose of rule discovery. Michigan-
based discovery of rules can be performed using different
methods such as particle swarm optimization (PSO) [12],
association rules [13,14] and classification [15].

b. Data classification: in classification process the dataset is
divided into training and testing datasets. The data mining
discovers rules by accessing the values of the attributes and
also the class of each instance in training dataset. Accu-
racy of extracted rules depends on the number of correct
predictions in each class of data within testing dataset [16].

c. Fitness function: It measures the quality of individuals ac-
cording to confusion matrix. The parameters of this matrix
are derived by comparing individuals with every instance of
training dataset. Assuming that r is number of individuals
(population size), |inst| the number of instances used for
training, |Atrr| is number of attributes and i is number of it-
erations; the time complexity of GA is O(r×|inst|×|Atrr|×i).
Hence, with large number of individuals in each generation
of GA, data instances, attributes, and iterations of GA, serial
processing is highly time consuming [17,18].

d. Selection: Selection can be performed using different meth-
ods such as data proportionate and ranking. proportionate
selection is usually implemented by a biased roulette-wheel
and ranking selection usually starts with sorting the rules
in a fitness-based fashion, which can be performed either
in increasing or decreasing order. The better the ranking of
a rule, the higher its probability of being selected and this
work employs a ranking-based selection.

e. Crossover: Crossover or recombination is a GA operator and
is employed to combine the genes of two individual parents
into an offspring individual. According to the fitness value,
the parents are selected and recombined with one of three
possible methods that can be a single-point, multi-point or
uniform crossover [7].

f. Mutation: Mutation is an operator that performs its opera-
tion on a single individual at a time. Unlike crossover, which
recombines genetic materials between two or more parents,
mutation replaces the value of a gene with a randomly-
generated value [7].

2.0.2. CUDA environment
GPUs are known as single instruction multiple data (SIMD)

processors. Therefore, data parallelism of programs is crucial for
utilization and more efficient processing on GPUs. On the other
hand, NVIDIA proposed CUDA architecture to programmers to

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

e
c
t

o
s
b
o

p
b
d
o
t

l
i
i
a

t
i
p
i
s

2

t
a
D
b
q
G

b
m
m
n
c
a
H
g

3

s
l

3

i
o

Fig. 1. An individual genotype of Michigan encoding.
xploit the capabilities of this vendor’s GPUs for parallel pro-
essing. The CUDA programming model provides the execution of
housands of concurrent threads which execute a kernel [19,20].

The number of threads required to execute a program depends
n its input size. The kernel execution configuration defines a
pace of parallel threads which is called grid. Grid includes some
locks that are batches of parallel threads. Each block executes
n a streaming multiprocessor (SM) of GPU [19,21].
Although the execution configuration of a kernel affects the

erformance, but for the sake of simplicity, in this work we used
locks with a constant number of 32 × 32 threads. Typically,
atasets used for classification included less than 32 number
f attributes. Therefore, using blocks with 32 × 32 number of
hreads is a reasonable configuration for the execution of kernels.

Although memories can cause lack of performance due to
oading or storing delays, different types of memories cause var-
ous amount of delays [22]. For the sake of simplicity, this work
s based on default memory access, which is dynamic random
ccess memory (DRAM) access.
Data parallelism and configuration of kernels are also impor-

ant. The method of transferring data between central process-
ng unit (CPU) and GPU is another factor used to increase the
erformance [23]. This work employed multiple techniques to
mprove the performance of GA execution on GPUs by using
pecial operations on defined data structures.

.1. Problem statement

The problem that we address in this paper is the implemen-
ation of rule discovery using GA on GPU. It is difficult to find
n optimal solution in a reasonable time using a big dataset.
uring the execution of GA, numerous comparisons are required
etween training instances and conditions of each rule. This re-
uires many memory operations and increases the run time of
A.
In other words, by implementing GA on GPU best rules can

e produced for big datasets with many classes and features. The
ain contribution is the use of special data structures for imple-
enting fitness function and genetic operators. We introduced a
ew data structure called the average coverage which is used in
rossover and mutation operators to rank the rules. The proposed
verage coverage vector leads to better crossover and mutation.
ence, it increased the accuracy of rules generated in progressive
eneration of GA.

. Related work

This section presents the works carried out in the field of clas-
ification rule discovery with evolutionary algorithms, machine
earning algorithms and parallel execution of GA.

.1. Classification rule discovery

Evolutionary algorithms have been widely used in rule min-
ng discovery of classification rules. One of the earliest works
f using GA for rule mining is proposed in [24]. In this work
3

comprehensible IF-THEN rules were discovered using GA and
applied to medical data sets. In their system each individual
corresponds to a single rule. Data mining by evolutionary learning
(DMEL) used an initial set of first-order rules and then rules of
higher order are produced iteratively using GA [4]. In [25] non-
random population is initialized, containing all possible encoded
operators. Comprehensible and interesting rules in [26] and GA-
based approach in [27] are used to calculate the fitness value
of individuals. In general, fewer the number of conditions in
a rule, more comprehensible it is. An adaptable representation
of individuals or chromosomes combined with suitable genetic
operators and better fitness function has been used in [28]. Also,
GA has been used to improve the classification rules in [29] and
the improved rules have been used to diagnose the liver disease.

Developing classification rules for disease prediction using
evolutionary algorithms have been investigated in [30] and [29].
In [30], random rules are produced and then using particle swarm
optimization (PSO) algorithm, the rules are improved through the
steps of the algorithm and then the particles of the last generation
are selected as the best rules. In [29], initial rules produced by
Boosted C5.0 classification algorithm have been optimized by GA.
Both works have been implemented on single-processor platform.
Authors have improved this work in [12] by applying modified
encoding of rules and fitness function. In addition, different sizes
of particles have been taken into account in this work.

Goyal and Soraj [31], have introduced few issues and chal-
lenges in the field of classification rule discovery using GA. Ini-
tializing the size of first population, size of each chromosome,
low quality dataset and different condition types are some of the
challenges and issues that affected the process of GA and accuracy
of prediction.

In [32], Saif et al. have presented a parallel GA execution
method based on empire establishment algorithm. In this method,
the population is divided into subpopulations and GA is executed
for each subpopulation separately. After dividing the general
population and executing GA, a summation of fitness within each
subpopulation is calculated and the subpopulation with greater
fitness value is replaced with the subpopulation with smaller
fitness value.

Al-Maqaleh and Shahbazkia in [33], changed GA in order to
perform rule discovery in data mining. The most important mod-
ification in their work is on fitness function. The fitness function
calculated the fitness using three parameters namely confidence,
coverage and complex.

Shobha and Anandhi [34], have proposed an adaptive GA for
rule discovery with high accuracy of prediction. Chromosomes
of the adaptive GA contained only one type of condition. By
using particular dataset, population and just one type of operator
for conditions, their accuracy of prediction improved for the
presented adaptive GA.

The machine learning algorithms have also been applied
widely for the classification of medical datasets [1,35–40]. In [39],
an approach based on neural network has been proposed for the
medical classification problem. The authors have used integrated
Newton–Raphson’s Maximum Likelihood and Minimum Redun-
dancy (MLMR) preprocessing model to reduce the classification

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

t
r
t

f
o
(
l
p
a
d

3

b
o
T
a
a
t
p
t
k
p
c
a
o
a
r
e
i
o
p
u
e
i
s
o
t

n
m
l

p
t
a
t
s

a
t
p
a

p
c
t
b
h
t
m
m
u
e
p
t
c

U
c
c

s
c
m

I
s
e

4

i
w
e

ime. Two classifiers have been proposed with evolutionary algo-
ithms in [41]. But, an ensemble of classifiers constructed yielded
he diagnosis accuracy of 95% for Parkinson’s disease.

In addition, [42] and [43] can make more examples of dif-
erent optimization methods in order to solve rule classification
f association problems. In [42], the Reinforcement Learning GA
RL-GA) employed to solve a Capacitated Vehicle Routing Prob-
em (CVRP). The RL-GA designed in a way to adaptively set
arameters for a GA. [43] also uses a Whale Optimization (WO)
pproach to achieve a fine trade-off between intensification and
iversification in rule association problems.

.2. Parallel GA

A parallel genetic programming algorithm which learns rule-
ased classification is provided in [44]. Each individual consists
f a rule based decision list which represents the whole classifier.
he rule evaluation phase is parallel using GPU. A review of GA
nd parallel genetic algorithms (PGA) is provided in [45]. The
uthors introduced different types of PGA implementation and
he parts of GA which can be implemented in parallel. [46],
resented an analysis using GA on multi-core CPUs and GPUs. In
his work, fitness is implemented on GPU which included two
ernels. A work on discovering interesting rules using PGA is
resented in [47]. It focused on implementing PGA using multi-
ore processors and each thread calculated the fitness value of
unique individual. In [48], CUDA is used to implement GA

n GPU. In another work by [49], GPU is used to evaluate the
ssociation rules and data structures like coverage kernel and
eduction kernel applied to several operations on the rules. Cov-
rage kernel checks the coverage of each rule over the dataset
nstances and reduction kernel computes the reduction operation
n the outcome of the coverage kernel. In [50], the population is
artitioned into several nodes and they were evolved in parallel
sing efficient distributed genetic algorithm for classification rule
xtraction (EDGAR) method. In [51], the population is divided
nto subpopulations and the fitness is calculated inside each
ubpopulation using multi-core processors. In this work genetic
perators are applied on subpopulations based on the average of
heir fitness values.

In [52], authors have reviewed different rule discovery tech-
iques based on evolutionary algorithms and presented different
odels, rule representations, and fitness functions used in the

iterature.
In [53], Cano et al. have exploited GPUs to solve classification

roblems using GA. Their work evaluated each part of GA in
erms of execution time and then time-consuming parts of GA
re executed in parallel using CUDA. The results indicated that
he performance of parallel execution improved significantly over
erial execution.
Franco et al. [17] have focused on parallel execution of evalu-

tion part of GA. The evaluation part comprised the implemen-
ation of two kernels. The first kernel gathered the evaluation
arameters and the second kernel used a reduction algorithm to
ggregate the gathered parameters.
In [8], Cano et al. have used GPU to implement the evaluation

art of GA in order to improve the performance of fitness exe-
ution. The execution configuration included three-dimensional
hread/blocks. The space of these thread/blocks has been formed
y individuals, instances of data and attributes. In [54], Cano et al.
ave presented a high performance and efficient implementa-
ion of Pittsburgh rule-based classifier. The proposed evaluation
odel is scalable and executed on multiple GPUs and imple-
ented using CUDA. Fitness function evaluated the individuals
sing two kernels. The first kernel calculated the coverage of
ach condition on every instance of data. The second kernel ex-
loited the amount of coverage of each chromosome to compute
he parameters of confusion matrix. Finally, the fitness value is
alculated with the parameters of confusion matrix.
4

4. The proposed approach

Our proposed approach is based on rule discovery using ge-
netic algorithm (GA) which is implemented on GPU. First we
discuss our approach for rule encoding and then a new method
is proposed using genetic algorithm and its implementation on
GPU. A novel approach for calculating the fitness of each rule is
proposed. Also, we customized genetic operators for the purpose
of this work. To address parallelism and achieve speedup in the
algorithm, GPU utilization is described in each step. Fig. 2 shows
the flowchart of the proposed GA-based rule discovery.

Before we proceed with our rule discovery approach on GPU,
we introduced few notations which are used in the rest of the
paper. These notations are summarized below:

Rr
c : Rule r of class c for the current population. r is used to

refer to the rule numbers sequentially.
C: number of classes in the dataset.
vyx: value of feature x in instance number y.
popc : Current population of genetic algorithm for class c.
popc = {R1

c , R
2
c , . . . , R

|popc |
c }

|popc |: population size for class c .
pop_size =

∑C
(i=1) |popi|

nless specifically stated, the population size is the same for all
lasses and its number for each class is indicated as SP. In this
ase, pop_size = C × SP which indicates current population of
genetic algorithm.

4.1. Rule encoding

Fig. 3 depicts the employed encoding of rules that is based on
what demonstrated in Fig. 1. The difference between the encoding
of Fig. 1 and Fig. 3 is that Vali parameter in Fig. 1 is divided into
two parameters namely LV and UV; each of them represents the
upper and lower value of the original Vali. Each rule consists of n
sections; where n is the number of features in the dataset. Each
ection is one of the conditions of the rule. The structure of each
ondition is shown in Fig. 3 which consists of four elements. The
eaning of each element is as follows:

RA: indicates the activeness of each condition in the rule.
RC: represents the type of the operator between the rule and
its equivalent in the dataset. The operators are applied be-
tween the value of the specific condition and its equivalent
attribute in the dataset.
LV: means the lower bound value to be compared with the
corresponding attribute.
UV: implies the upper bound value to be compared with the
corresponding attribute.

n genetic metaphor, rules are chromosomes. So each chromo-
ome is a rule from a given class which is based on the rule
ncoding of Fig. 3.

.2. Fitness evaluation

Rule fitness evaluation is performed in three different steps
n this work which is one of the most important sections and
e intend to take advantage of parallelism. The steps of the
valuation are coverage, reduction, and confusion calculation. Each

step of the evaluation is described below:

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

4

c
d
t

I

Fig. 2. Detailed representation of the proposed approach.
Fig. 3. The employed Michigan-based encoding of rules.
.2.1. Coverage
The goal of this step is to find the level of coverage for each

ondition in the rule according to the corresponding feature in the
ataset. Considering the conditions arranged in the GA encoding,
he rule is defined as:

f (Condition1) and (Condition2) and . . .

...and(Conditiona) then class = c

The comparison of each condition with the respective feature of
data instance in dataset should be accomplished for all rules and
for the whole population of GA and all generations. So in order
to utilize GPU for comparing the conditions, first we put each
rule in a matrix called coverage matrix, and then the comparison
with features of each data instance is performed in parallel for
each element of the matrix. This matrix is filled with zeroes and
ones, depending on the result of comparison between the rule
5

and dataset. The structure of the coverage matrix is represented
in Eq. (1).

CMr
c =

⎡⎢⎣ cv0,0 ... cv0,|attr|
...

...
...

cv|inst,0 ... cv|inst|,|attr|

⎤⎥⎦
|inst|×|attr|

| cvy,x =

{
0 : if(crx⌊⌋vy,x)
1 : if(crx⌈⌉vy,x)

(1)

In this matrix:

r: is the rule number that this matrix belongs to.
c: represents the class number of r.
x: is the feature number in the data set.
y: is the instance number in the data set.
|inst|: is number of instances in the data set.

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

S
o

k
a
z
F

t

f
o
a
t

4

s
t
t
T
o
a

m

p

|attr|: is number of features in the data set.
cvyx: is ‘1’ if condition x of rule r , matches feature x of data
instance number y and otherwise it is zero.
crx : is the value or range of values for condition x of rule r .

The operators ⌊⌋ and ⌈⌉ mean mismatch and match conditions of
rules with the features in the datasets respectively. Elements of
CMr

c are indicated by their column and row numbers and their
value can also be declared as follows:

CMr
c [i][j] = 1; if the value of attribute j of the rule r fits the

value of attribute j of the ith instance of data in dataset, otherwise
it is ‘0’. In addition, the coverage of inactive conditions is equal
to ‘1’.

Each thread is responsible for the calculation of a specific cvy,x.
o this step takes advantage of GPU and comparison operations
n the matrix elements are performed in parallel.
Fig. 4 illustrates the execution configuration of the coverage

ernel on GPU. The configuration of the coverage kernel contains
ttributes, data instances and rules as grid dimensions x, y and
, respectively. Each block contains 32 × 32 threads as shown in
ig. 4.
A specific rule number is accessed by the third dimension

hrough the block number.
In coverage kernel, first each part of the rule is evaluated for

eature activeness. If it is ‘1’, then the type of the comparison
perator is extracted and then the value of the rule is compared
gainst the values in the dataset. If the result of comparison is
rue, cv(y,x) becomes ‘1’ and otherwise it is set to ‘0’.

.2.2. Reduction
This step aims to give a score to each rule based on the values

tored in its coverage matrix and also to execute the rule evalua-
ion process in parallel. To this end, coverage matrix is used and
he values in each row of this matrix are summed up in parallel.
he summation is performed according to the Eq. (2). This stage
f our algorithm is called reduction. It leads to the formation of
vector for each rule in the population called reduction vector.

RV r
c =

⎡⎢⎣ rv0
...

rv|inst|

⎤⎥⎦
|inst|×1

| rvy =

|attr|∑
x=0

cvy,x (2)

Algorithm 1 The reduction algorithm applied on each coverage
atrix.

Input: CMr
c , |attr|, |inst|, pop_size

Output: RV r
c

1: function Coverage_ Reduction(CMr
c , |attr|, |inst|, pop_size)

2: Initialize: RV r
c

3: for i = 0 to |inst| do
4: for a = 0 to |attr| do
5: rvi = rvi + cvi,a
6: end for
7: end for
8: return RV r

c
9: end function

In order to take advantage of parallelism, the summation is
erformed in the following steps:

1. Each of two consecutive elements in each row are added
and the result is stored in the first element. This process is
performed for all pairs in parallel.

2. This same process is repeated for the elements that have
the results of the previous stage.

3. Operation continues until the summation of all elements is
done. Finally, the summation is copied to the first element
6

of the reduction vector. As the elements of the coverage
matrix are zero or one, it is clear that elements of the
reduction vector follow the following formula:

0 ≤ rvi ≤ |attr| (3)

The total number of reduction stages is log |attr|
2 . As stated

earlier |attr| is the number of attributes in the data set. This
also indicates that the speedup obtained in this stage is in the
order of O(log |attr|

2), while sequential code executes this part in
O(|list| × |attr|) which is a significant improvement.

of reduction stages = log |attr|
2 (4)

Algorithm 1 presents the reduction step using sequential code
and Listing 1 shows the same part using parallel programming in
CUDA. The reduction used in this work is also known as ‘‘pre-fix
scan’’ or ‘‘pre-fix sum’’ and it is available in one of NVIDIA doc-
uments [55] as "Example 3. The Up-Sweep (Reduce)". Although
NVIDIA did not share any CUDA code for this type of pre-fix sum,
We provided the code in Listing 1 and it is based on Algorithm
2 that is presented in [55]. According to Algorithm 2, the inner
loop as a ‘‘for all’’ statement must be coded as a ‘‘for’’ with an
‘‘if’’ statement inside in order to check the index of the iterator
and prevent the index to exceed over the number of attributes.
Therefore, an "if statement is needed inside the inner for loop of
the Listing 1 and this will cause an inevitable divergent execution
on GPU.

Algorithm 2 The up-sweep algorithm presented by NVIDIA.

1: for i = 0 to loga−1
2 do

2: for all k = 0 to a − 1 by 2i+1 in parallel do
3: x[k + 2i+1

− 1] = x[k + 2i
− 1] + x[k + 2i

+ 1 − 1]
4: end for
5: end for

As an example, the reduction step for an 8-element reduc-
tion vector is represented in Fig. 5. The numbers stored in each
element of the reduction vector shows how fit the rule is with
respect to the instances of the dataset. Having the maximum
value equal to |attr| in each row, implies that the rule completely
covers all instances in the dataset.

4.2.3. Confusion
This final step at fitness evaluation is responsible to produce

the value of fitness function, based on the parameters in the
confusion matrix.

Confusion matrix construction
We have four parameters in the confusion matrix and its cal-

culation is based on the reduction matrix obtained in the previous
stage.

First we calculate the following parameters for each data
instance using Eqs. (5) to (8) which are based on the values
obtained for the reduction vector elements:

m(tp,y) =

{
1 : if(((rvy ∈ RV r

c) = |attr|) & (c = class of y))
0 : otherwise

(5)

m(fp,y) =

{
1 : if(((rvy ∈ RV r

c) = |attr|) & (c ̸= class of y))
0 : otherwise

(6)

m(tn,y) =

{
1 : if(((rvy ∈ RV r

c) ̸= |attr|) & (c ̸= class of y))
0 : otherwise

(7)

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419
Fig. 4. Configuration of coverage kernel.
Listing 1: Parallel implementation of Reduction Vector (RV) GPU using CUDA
1 __global__ void GPU_RV(int ∗CM, int Attr , in t Inst , in t PopSize)
2 {
3 in t Row = (blockIdx . x∗blockDim . x) + threadIdx . x ;
4 in t Col = (blockIdx . y∗blockDim . y) + threadIdx . y ;
5
6 i f ((Row < Ins t∗PopSize) && (Col < Attr))
7 {
8 for (in t a = 0;a <= log2f (Attr) ; a++)
9 {

10 i f ((2 ∗ (in t)powf(2 , a)∗Col) + (in t)powf(2 , a) < Attr)
11 {
12 CM[Row∗Attr + (2 ∗ (in t)powf(2 , a)∗Col)] += CM[Row∗Attr + (2 ∗ (in t)powf(2 , a)∗Col) + (in t)powf(2 , a)] ;
13 }
14 __syncthreads () ;
15 }
16 }
17 }
Fig. 5. An example of reduction on an instance of coverage matrix of chromosome r .
7

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

m

r
a
i
e

T

F

*
n

i
c
i

a

4

t
s
c
f

4

c
p
a

4

m
c

w
i

a

(fn,y) =

{
1 : if(((rvy ∈ RV r

c) ̸= |attr|) & (c = class of y))
0 : otherwise

(8)

The above parameters are calculated for all elements of the
eduction matrix and then the parameters of the confusion matrix
re obtained using Eqs. (9) to (12). According to fitness calculation
n [7], Eqs. (13) to (15) are used to measure the fitness value of
ach rule.

P =

∑
y

m(tp,y) (9)

FP =

∑
y

m(fp,y) (10)

TN =

∑
y

m(tn,y) (11)

FN =

∑
y

m(fn,y) (12)

Precision =
TP

TP + FP
(13)

True Positive Rate =
TP

TP + FN
(14)

itness = Precision × True Positive Rate (15)

* TP: true positive, FP: false positive, TN: false negative, FN: false
egative.
To prevent race condition between threads which want to

ncrease the parameter of confusion matrix simultaneously, in-
rease of these parameters is performed using atomic operation
n CUDA.

Using TP, FP, TN, and FN, we obtained the accuracy, precision,
nd other relevant factors of the rules.

.3. Selection

The selection phase of our GA approach sorts rules according
o their fitness and then the first 50 of most qualified rules are
elected for crossover. Mutation operator uses this sorted list and
hooses the low fitness rules and provides them the opportunity
or reproduction.

.4. Genetic operators

We propose two novel approaches for genetic operators in-
luding mutation and crossover, which are customized for our
roblem. First, we introduced a concept named average coverage
s follows:

.4.1. Average coverage
It is defined as a vector for each rule in the algorithm. Each ele-

ent of this vector shows the average coverage for the respective
ondition in the rule. Its definition is as Eq. (16).

ACr =
[
ac0 ac1 ... ac|attr|

]
1×|attr| | acx =

∑|inst|c
n=0 cvn,x

|inst|c
(16)

here cvy.x is the element of coverage matrix of Eq. (1) and |inst|c
s number of instances in class c .

The average coverage vector (AC) is used in genetic operators
nd it leads to better choices for the next generation rules.
8

Table 1
Experimental setup of this work.
Component 1st system 2nd system

CPU Intel Core i7-4790K Intel Core i7-6700K
Main Memory 16 GB 16 GB
PCIE Version 3.0/2.0 x16 3.0/2.0 x16
GPU Geforce GTX 970 NVIDIA Geforce GTX 1070
GPU Architecture Series Maxwell Pascal
GPU DRAM capacity 4 GB 8 GB
Number of CUDA cores 1664 1920
Number of SMs 13 15
Operating System Windows 10 Ubuntu Desktop 18.1
CUDA Toolkit Version 8.0 10.1

4.4.2. Proposed crossover
Using the above idea of having the average coverage of all

conditions in a rule, the crossover between two rules with fitness
higher than the average, is defined as follows:

Rule crossover: For rules r and r ′ if r has higher fitness than r ′

then the condition x′ of r ′ is replaced with its peer condition x of r ,
if and only if the average coverage of x is higher than the average
coverage of x′. Fig. 6 shows the crossover operation between two
chromosomes, where ↑↓ means crossover operator between two
corresponding conditions in the rule.

4.4.3. Proposed mutation
Mutation is performed on the rules with lower fitness in order

to improve their chances. Therefore, the idea of mutation in this
work is to replace the conditions of lower coverage with some
random conditions for the lower half of the rules.

Hence, for each cr rule, the ACr vector is calculated and ele-
ments with the value below 1 are replaced with another random
condition. In order to increase the chances for the rules with
lower fitness to be improved, the mutation operator is applied
on the lower fitness half of the population.

Fig. 7 shows an example of mutation operation applied on
a chromosome. We notice that mutation is performed on the
first and last genes because their ac parameter is less than 1. In
the next section, we showed the results based on our proposed
approach for generating discovery rules on GPU.

5. Experimental results

In this section our results obtained using three datasets are
presented. Two of them, Hepatitis C Virus (HCV) [56] and
Poker [57] are acquired from the University of California, Irvine
(UCI) machine learning repository and the third one COVID-19
is available on Kaggle [58]. We preprocessed this dataset and the
preprocessed version along with the preprocessing method is also
available on Kaggle [59]. In addition, the implemented code of the
proposed PGA is provided in [60].

5.1. Experimental setup

We run our algorithms on two different systems. Hardware
and software specifications of these systems used during our
experiments are presented in Table 1. In CUDA environment, CPU
and GPU are called ‘‘host’’ and ‘‘device’’, respectively. Parallel
portions of an application are executed on the device (GPU) as
kernels while serial parts of the code are executed on the host
(CPU). According to Table 1, there are one host (CPU) and one
device (GPU) for each system. As mentioned earlier, the serial
and parallel execution are performed using CPU and GPU, respec-
tively. Hence, the speedup results are reported individually based

on the system executed the proposed PGA.

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

T
D

H
d
H
i
p

v
T
e
T
h
t
c
v
a
a
F
e

Fig. 6. Illustration of crossover of two chromosomes r and r ′ .
Fig. 7. An example of performing mutation on chromosome z.
able 2
etails of datasets used.
Dataset Classes |attr| |inst|

HCV 4 28 1385
Poker 10 10 1025010
COVID-19 3 22 300

5.2. Results

Our primary goal is to test our algorithm on big datasets.
ence, we used Hepatitis C Virus (HCV), and COVID-19 medical
atasets. The third non-medical dataset is Poker hand dataset.
CV and Poker datasets are obtained from UCI machine learn-
ng repository. The characteristics of these three datasets are
resented in Table 2.
Table 3 shows the best chromosomes of each class achieved

ia the proposed PGA. As an example for COVID-19 dataset in
able 3, people with the age greater than 37 along with sev-
ral specific symptoms are classified into class of ’death state’.
he mentioned symptoms are rhinorrhea, respiratory symptoms,
eadache, weakness and chest pain. As an example of interpreta-
ion of rules in Table 3, although the best chromosomes for each
lass of COVID-19 dataset are indicating many attributes with the
alue equal to ‘0’, the condition for such attributes does not mean
don’t-care term. Following the previous example of COVID-19,
ttributes with the index greater than ‘4’ represent a symptom.
or instance, a4 represents ‘‘fever’’ symptom and the patient can
ither have or not have fever and that means a4 can be equal

to ‘1’ or ‘0’, respectively. However, in some classes, a symptom
can be reported as ‘seen’ in a proportion of patients, while there
exist some cases not having such symptom. Following to such
cases with the probability of having or not having a symptom, the
value of the attributes should be greater or equal to ‘0’. Therefore,
having a condition with a value that is greater or equal to ‘0’
defines a ‘‘don’t-care’’ term on the related attribute.

We tested our method on HCV medical dataset with 28 at-
tributes and 414 instances, categorized as test-set, based on the
70–30 principle. The mentioned 414 instances are 30% of the
total instances inside HCV data and they are randomly selected,
whereas the rest of the instances with the number of 971 are

selected as training set. It is a new dataset with many records,

9

and hence makes it a good choice to test the classification per-
formance of our algorithm on GPU. Also, we have used another
new COVID-19 dataset. The original version of the employed
COVID-19 dataset of this work was provided in Kaggle and had
a lot of issues such as having many missing values and merged
attributes. Attributes such as ‘‘symptoms’’ included any symp-
tom that has been seen in a patient. For example, a patient
with ‘‘fever’’, ‘‘cough’’ and ‘‘fatigue’’ had one attribute (column)
as ‘‘fever-cough-fatigue’’. Such merging of attributes made the
dataset impossible to train. Therefore, we preprocessed and mod-
ified the original dataset and separated all reported symptoms
into different attributes. To see the effect of using GPU on larger
datasets, we used Poker dataset consisting of 1025010 instances
and 10 classes. We observed that our algorithm performed well
on all datasets with best accuracy of 99.74%, 100%, and 95.73%
using HCV, COVID-19, and Poker datasets respectively.

We tested our algorithm on different population sizes and
iterations. The training set included 70% of the instances and the
next 30% are chosen as the test set (We changed the default
numbers in Poker dataset). Fig. 8 illustrate the accuracy obtained
for different population sizes with different number of iterations
of GA for each dataset using 1st system. This figure presents the
accuracy for various rules of each class, iterations and datasets. In
addition, Table 4 provides more details about Fig. 8. The results
illustrated in Fig. 8 shows a spike on SP = 4 for COVID-19. Table 4
also shows that the proposed PGA has higher accuracy using
10000 iterations for SP = 4 on COVID-19 compared to subsequent
number of SPs (SP = 8, SP = 16). Such event might occur based on
two subjects knows as (1) the quantity of the instances inside the
dataset and (2) the quality of the randomness caused by heuristic
mutation. The mentioned subjects are explained as follows:

1. As an example, for deceased patients there are only 4
instances that two of them are selected to train and the
rest are used to test the generated rules. Therefore, any
miss-predictions may lead to a serious loss of accuracy.

2. Mutation is a random process responsible for some changes
in prediction by random selection of conditions. In this
particular case, a set of random conditions over 10000
iterations may have caused that predictions be true with

a high probability.

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

P
o
a
s
o
p

b

Table 3
Best Chromosomes of each class in employed datasets.

Dataset Class Best Chromosome

HCV

No Fibrosis (a2 ≥ 22), (a3 ≥ 1), (a6 ≥ 1), (a7 ≥ 1), (a8 ≥ 1), (a9 ≥ 1), (a13 ≥ 93013),
(a16 ≥ 39), (a13 ≥ 93013), (a18 ≥ 39), (a19 ≥ 29), (a20 ≥ 29), (a21 ≥ 11),
(a22 ≥ 53), (a13 ≥ 93013), (a23 ≥ 254), (a25 ≥ 5), (a27 ≥ 3),

Few Septa (a1 ≥ 1), (a4 ≥ 1), (a6 ≥ 1), (a7 ≥ 1), (a9 ≥ 1), (a12 ≥ 10), (a13 ≥ 93131),
(a15 ≥ 39), (a17 ≥ 39), (a18 ≥ 39), (a19 ≥ 12), (a23 ≥ 577), (a26 ≥ 7141),
(a27 ≥ 3)

Many Septa (a0 ≥ 32), (a2 ≥ 22), (a4 ≥ 1), (a5 ≥ 1), (a6 ≥ 1), (a7 ≥ 1), (a10 ≥ 3019),
(a13 ≥ 95026), (a14 ≤ 127), (a17 ≥ 39), (a22 ≥ 197)

Cirrhosis (a2 ≥ 22), (a3 ≥ 1), (a4 ≥ 1), (a5 ≥ 1), (a8 ≥ 1), (a9 ≥ 1), (a11 ≥ 3816957),
(a12 ≥ 10), (a14 ≥ 39), (a15 ≥ 39), (a16 ≥ 39), (a18 ≥ 39), (a21 ≥ 7), (a22 ≥ 46),
(a24 ≥ 3537), (a25 ≥ 11754), (a25 ≥ 5)

Poker

Nothing in hand (a0 ≥ 1), (a1 ≥ 1), (a2 ≥ 1), (a3 ≥ 1), (a5 ≥ 1), (a7 ≥ 12)

One pair (a0 ≥ 1), (a2 ≥ 1), (a3 ≥ 1), (a4 ≥ 1), (1 ≤ a5 ≤ 12), (a6 ≤ 1), (a7 ≥ 1), (a8 ≥ 1)

Two pairs (a0 ≥ 2), (a2 ≥ 1), (a3 ≤ 12), (a4 ≥ 1), (2 ≤ a5 ≤ 11), (a6 ≤ 1), (a7 ≤ 12),
(a8 ≥ 2), (a9 ≥ 4)

Three of a kind (a0 ≥ 1), (a1 ≤ 10), (a3 ≤ 6), (2 ≤ a5 ≤ 10), (a7 ≤ 3), (a8 ≤ 1), (a9 ≥ 4)

Three of a kind (a0 ≥ 1), (a1 ≤ 10), (a3 ≤ 6), (2 ≤ a5 ≤ 10), (a7 ≤ 3), (a8 ≤ 1), (a9 ≥ 4)

Straight (a1 ≤ 12), (a5 ≥ 9), (a6 ≥ 1), (a7 ≥ 3), (a9 ≤ 12)

Flush (a1 ≥ 1), (a3 ≥ 1), (a4 ≥ 1), (a5 ≥ 1), (a7 ≥ 1), (a8 ≥ 1), (a9 ≥ 1)

Full house (a0 ≥ 1), (a1 ≥ 1), (a3 ≥ 1), (a5 ≥ 1), (a8 ≥ 1), (a9 ≥ 1)

Four of a kind (a0 ≥ 1), (a1 ≥ 1), (a3 ≥ 1), (a4 ≥ 1), (a5 ≥ 1), (a9 ≥ 1)

Straight flush (a0 ≥ 1), (a2 ≥ 1), (a3 ≥ 1), (a4 ≥ 1), (a5 ≥ 1), (a7 ≥ 1), (a8 ≥ 1), (a9 ≥ 1)

Royal flush (a0 ≥ 1), (a1 ≥ 1), (a2 ≥ 1), (a3 ≥ 1), (a4 ≥ 1), (2 ≤ a9 ≤ 12)

COVID-19

Infected (a0 ≤ 76), (a2 ≥ 0), (0 ≤ a3 ≤ 11), (a4 ≥ 0), (a12 = 0), (a14 = 0), (a15 ≥ 0),
(a16 ≥ 0), (a17 ≥ 0), (a18 ≥ 0), (a21 = 0)

Discharged or Recovered (8 ≤ a0 ≤ 73), (a1 ≥ 0), (2 ≤ a2 ≤ 3), (a3 ≥ 1), (a4 ≥ 0), (a6 = 0), (a10 ≥ 0),
(a11 ≥ 0), (a13 = 0), (a17 ≥ 0)

Deceased (a0 ≥ 37), (a6 = 0), (a9 = 0), (a11 ≥ 0), (a12 = 0), (a14 = 0), (a15 = 0),
(a16 ≥ 0), (a17 ≥ 0), (a18 ≥ 0), (a19 = 0), (a20 = 0), (a21 ≥ 0)
Table 4
Average accuracy on both datasets and for different SP and iteration numbers
using 1st system.
Data set SP Number of iterations

100 500 1000 3000 5000 10000

HCV

4 0.23 2.31 12.69 16.22 47.29 67.41
8 53.71 18.15 42.05 72.58 80.96 87.56
16 61.38 72.21 91.81 90.36 94.84 97.87
32 86.64 89.89 97.10 98.78 99.74 99.51

Poker

4 79.39 80.04 80.31 89.26 76.65 80.96
8 88.64 88.04 90.87 89.99 82.45 83.99
16 91.48 91.87 90.27 90.87 92.22 95.73
32 91.57 89.55 91.22 90.34 89.86 91.05

COVID-19

4 43.65 33.33 70.24 48.81 33.33 94.67
8 65.87 66.67 60.71 61.11 83.33 83.33
16 82.94 83.33 94.44 61.11 83.33 83.33
32 66.27 77.78 99.60 94.44 83.33 100.00

Similar to Fig. 8, Fig. 9 depicts the accuracy of the proposed
GA using 2nd system. Both Fig. 8 and Fig. 9 show the accuracy
f the best discovered rules, number of rules of each class (SP)
nd number of iterations. In general, the results of both figures
how that the accuracy improved with the increase in the number
f iterations and rules of each class (SP). Furthermore, Table 5
rovides more details about the illustrated results in Fig. 9.
In this work, the speedup of each part of the PGA is defined

ased on Eq. (17). In (17), X represents an individual step of the
PGA that can be coverage, reduction or confusion.

Speedup X =
Serial Execution Time X (17)

Parallel Execution Time X

10
Table 5
Average accuracy on both datasets and for different SP and different iteration
numbers using 2nd system.
Data set SP Number of iterations

100 500 1000 3000 5000 10000

HCV

4 11.00 11.44 21.70 51.13 51.40 50.17
8 14.63 23.78 43.09 83.83 81.40 83.75
16 40.52 67.54 71.17 87.77 95.08 93.87
32 81.23 93.00 87.80 95.07 90.34 99.29

Poker

4 68.80 83.28 86.98 84.17 83.33 83.33
8 88.69 81.35 85.58 88.33 85.83 87.78
16 95.71 94.25 90.12 90.38 91.67 94.17
32 91.30 88.60 91.75 89.60 91.01 94.17

COVID-19

4 27.78 60.32 56.74 55.55 66.67 60.32
8 59.13 81.35 66.67 61.11 83.33 83.33
16 72.22 83.33 83.33 83.33 83.33 88.89
32 88.89 83.33 83.33 94.84 99.60 99.69

Table 6 provides the results of speedup for different parts of the
algorithm using 1st system. This figure shows that the speedup
obtained by using the GPU of the 1st system is higher in the
reduction stage than in the other stages of algorithm. According
to the reduction scheme, all reduction operations in all rows of
the reduction vector are executed in parallel. Each operation is a
summation which is performed in the order of log |attr|

2 .
Fig. 10 illustrates the average speedup of each kernel of the

PGA based on the different number of SPs for each dataset using
1st system. The results show almost the same speedup for differ-
ent number of SPs for HCV and Poker. The reason for such event is
that HCV and Poker both contain large amount of data. According
to the large amount of data within these datasets, the program

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419
Fig. 8. Accuracy of discovered rules for each dataset, based on the population size and number of iterations.
Fig. 9. Accuracy of discovered rules for each dataset, based on the population size and number of iterations.
e

s
k

becomes architectural dependent. To prove the architectural de-
pendency of our PGA, NVIDIA GTX 1070 with more architectural
capabilities is employed to test the speedup of the PGA. Therefore,
the primary reason of employing the 2nd system is to show that
the speedup of the proposed PGA is scalable beyond the number
of SP equal to 4.

Table 7 provides the results of speedup versus evaluation
part, population size, dataset and number of iterations using 2nd
system. Similar to Fig. 10, Fig. 11 illustrates the average speedup
of each evaluation part using 2nd system and based on population
size, dataset and number of iterations using. Fig. 11 proves that
the proposed PGA is scalable for the number of SPs greater than
4. According to Fig. 10 and Fig. 11, it can be noted from the
results that the speedup rises with the growth of population size,
number of attributes and number of data instances. For instance,
in Poker dataset, speedup of reduction section is higher than the
speedup of reduction for HCV dataset. In addition, the results
indicate higher speedup due to increase in the number of rules
in each class (SP).

According to Section 2.0.1, time complexity of coverage is a
member of O(r × |inst| × |Atrr| × i) in case of serial execution.
Hence, the ideal speedup of coverage kernel is expected to be
equal to (r × |inst| × |Atrr|), because each thread is assigned to
an individual element in Fig. 4.
11
According to Section 4.2.2, time complexity of reduction is
O(|inst|×|Atrr|) in a serial execution. Therefore, the ideal speedup
of reduction is equal to |inst|×|Atrr|

log |Attr|
2

. In addition, there is no specific

xpected speedup for confusion in parallel execution based on
the atomic transactions needed to be performed in this kernel.
However, both Fig. 10 and Fig. 11 show that all achieved speedups
for each kernel is lower than its related ideal speedup.

Such outcome is caused by the type of the kernels. A kernel is
memory-bound if it spends most of its time on executing memory
instructions. A kernel is compute-bound if most of the operations
are ALU instructions [61].

Although reduction is the kernel with higher computational in-
tructions performing addition operations, it is a memory bound
ernel based on the studies presented in [62]. Therefore, coverage

and confusion are also memory bound kernels, since both of them
have less computational operations compared to reduction.

In a memory bound kernel, performance is saturated after a
certain size of input data due to bandwidth and limitations of
other architectural memory resources. Since all of the kernels in
the proposed approach are memory bound, increasing the size
of the input data may not have any noticeable effect on speedup.
Fig. 10 and Fig. 11 also show that increasing the number of SPs for
all of the datasets has the least effect on the speedup of coverage
and confusion kernels using both systems. However, there is a

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

T
S
S

able 6
peedup (%) on both datasets for SP and different iteration numbers using 1st
ystem.
Data set SP PGA step Number of iterations

100 500 1000 3000 5000 10000

HCV

4
CM 6.54 5.81 6.22 4.90 5.12 4.69
RV 17.70 21.71 19.51 19.09 19.21 18.86
Conf. 0.15 0.35 0.34 0.36 0.32 0.31

8
CM 5.59 6.40 4.99 5.03 4.70 4.35
RV 20.74 19.03 19.74 19.02 19.08 19.61
Conf. 0.40 0.34 0.48 0.49 0.62 0.60

16
CM 6.42 5.33 6.62 5.91 4.30 5.76
RV 20.91 20.41 19.40 21.28 20.99 20.84
Conf. 1.13 0.64 0.75 0.74 0.79 0.79

32
CM 5.84 6.75 6.36 6.04 6.29 6.81
RV 20.6 22.07 20.41 22.74 22.11 23.06
Conf. 1.25 1.09 1.08 0.93 1.08 1.02

Poker

4
CM 5.38 4.92 4.98 5.21 4.20 4.76
RV 49.76 50.21 50.96 51.28 50.95 50.61
Conf. 0.99 0.80 0.83 0.81 0.80 0.82

8
CM 3.52 3.38 5.08 4.31 3.38 4.77
RV 49.97 51.03 51.18 51.74 55.37 52.45
Conf. 1.00 0.88 0.86 0.82 0.86 0.82

16
CM 4.88 4.73 5.10 4.31 4.62 4.19
RV 52.37 57.15 52.15 53.16 53.21 48.19
Conf. 1.10 0.99 0.88 0.90 0.89 0.79

32
CM 3.86 5.15 3.98 4.15 3.95 4.89
RV 51.35 51.80 53.78 50.22 48.16 56.30
Conf. 1.19 1.07 1.09 0.95 0.95 1.12

COVID-19

4
CM 0.14 0.88 1.14 1.00 1.17 1.00
RV 6.82 8.25 8.38 8.13 8.63 10.00
Conf. 0.06 0.00 0.00 0.00 0.20 0.00

8
CM 1.45 4.00 2.67 2.33 1.88 1.50
RV 9.27 9.57 14.00 12.91 15.11 13.80
Conf. 0.00 0.10 0.33 0.17 0.17 0.17

16
CM 3.08 2.64 3.30 2.33 3.00 2.55
RV 17.00 20.21 16.76 17.38 17.56 18.13
Conf. 0.11 0.25 0.33 0.43 0.29 0.29

32
CM 1.91 4.21 4.00 4.14 3.93 4.29
RV 22.00 19.96 21.58 21.35 22.12 19.61
Conf. 0.10 0.50 0.40 0.40 0.67 0.56

CM = Coverage Matrix; RV = Reduction Vector; Conf. = Confusion Matrix.

slight increase on speedup of reduction on HCV and Poker using
2nd system in Fig. 11 compared to the speedup gained using 1st
system in Fig. 10. In addition, the speedup of reduction applied
on COVID-19 using both systems have an expected behavior since
the COVID-19 dataset is a small dataset and it causes the reduction
not to exceed limits of the architectural resources.

Table 8 shows a comparison between the accuracy of our work
and other related state of the art. The proposed PGA of our work
has 14.04% higher accuracy on HCV dataset compared to [63] that
employs Decision Tree as its method. In addition, for Poker Hand
dataset, our PGA provides 44.67%, 22.17% and 1.73% of higher
accuracy compared to PANFIS [64],Bottom-up Pittsburgh [65] and
ANN [66], respectively.

Table 8 also shows the accuracy result compared with MoMAC
algorithm, which is a more up-date work. Since MoMAC was
applied to different datasets than those are used in this work,
Breast Cancer dataset [67] is employed in order to make the
comparison between the proposed PGA and MoMAC possible. The
results show that the proposed approach in this work has 3.32%
higher accuracy compared to MoMAC employing Breast Cancer

dataset.

12
Table 7
Speedup (%) on both datasets for SP and different iteration numbers using 2nd
System.
Data set SP PGA step Number of iterations

100 500 1000 3000 5000 10000

HCV

4
CM 7 10.5 6.58 8.67 8.44 8.11
RV 33.15 32.46 34.67 31.77 31.62 34.33
Conf. 2.33 0.8 0.67 0.5 0.67 0.67

8
CM 9.71 9.65 9.81 9.33 8.69 9
RV 38.5 37.73 39.33 37.5 37.45 37.45
Conf. 0.71 0.5 0.5 0.88 0.86 0.88

16
CM 9.97 12.08 12.25 11.7 11.82 12.1
RV 35.89 40.29 38.53 40.41 40.22 41.23
Conf. 2 1.33 1.78 1.4 1.27 1.3

32
CM 11.25 12.87 10.65 10.51 10.83 10.29
RV 44.85 47.1 43.46 43.46 43.99 43.97
Conf. 1.93 2.17 1.71 1.86 1.67 1.67

Poker

4
CM 9.13 9.19 9.01 8.32 9.42 8.85
RV 103.13 107.75 106.3 107.09 107.66 111.51
Conf. 1.38 1.16 1.21 1.19 1.13 1.19

8
CM 8.44 8.35 7.79 7.99 7.68 8.37
RV 108.68 109.11 110.45 111.95 110.17 112.16
Conf. 1.51 1.23 1.21 1.22 1.2 1.24

16
CM 9.03 9.06 8.61 8.52 9.17 8.83
RV 110.39 112.12 111.06 111 114.56 113.81
Conf. 1.84 1.75 1.61 1.56 1.65 1.66

32
CM 10.28 10.39 10.86 10.42 10.64 10.27
RV 137.55 137.29 145.24 143.15 142.32 137.18
Conf. 2.82 2.5 2.48 2.5 2.45 2.37

COVID-19

4
CM 2 1.33 1.5 2 2 1.75
RV 12.5 17.75 13.6 17 13.4 13.6
Conf. 0 0.33 0 0.25 0 0.25

8
CM 6.5 3.4 3 3.75 3.2 2.8
RV 18.86 22.67 22.67 26.8 26.8 22.33
Conf. 0.25 0.25 0.2 0.25 0.25 0.33

16
CM 7.2 4.71 4.43 4.29 3.75 4.43
RV 36.5 34.25 34.13 33.88 38.57 33.63
Conf. 0.75 0.8 0.4 0.4 0.4 0.4

32
CM 4.13 8 7 6.2 7.63 7
RV 42.1 41.92 44.92 44.83 41.38 41.38
Conf. 0.2 0.8 1.4 1 0.67 0.67

CM = Coverage Matrix; RV = Reduction Vector; Conf. = Confusion Matrix.

Table 8
Accuracy comparison between the proposed PGA and other states of the art.
Method Dataset Accuracy (%)

Decision Tree [63] HCV 85.7
PANFIS without active learning [64] Poker Hand 51.06
Bottom-up Pittsburgh with entropy [65] Poker Hand 73.56
Artificial Neural Network (ANN) [66] Poker Hand 94.00
MoMAC [68] Breast Cancer 92
Proposed PGA HCV 99.74
Proposed PGA Poker Hand 95.73
Proposed PGA Breast Cancer 95.32

5.3. K-fold validation

All of the accuracy results provided in Tables 4 and 5 are based
on the accuracy achieved from 10 executions in average using
70/30 validation method. K-Fold validation is also used to confirm
the results obtained from 70/30. In this case, K is considered as
equal to 10 that is known as 10-Fold validation. Table 9 shows
the accuracy results of the performed 10-Fold validation using 1st
system.

As a statistic analysis of the proposed GA, standard deviations
of the 10 folds for each individual execution are provided in
Table 10. Each cell in Table 10 represents the standard deviation
of the accuracy results obtained from the execution of 10 folds

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419
Fig. 10. The speedup of each kernel in average, based on the different number of SPs for each dataset using 1st system.
Table 9
Average accuracy for different SPs and number of iterations using 1st system,
based on 10-Fold validation.
Data set SP Number of iterations

100 500 1000 3000 5000 10000

HCV

4 2.315 10.21 8.11 35.40 45.89 57.91
8 11.23 29.91 44.06 69.44 78.78 88.04
16 44.01 75.88 84.03 91.62 92.07 92.46
32 81.65 94.05 97.32 97.85 98.25 99.11

Poker

4 78.09 75.23 75.56 81.50 78.78 79.26
8 84.38 80.19 81.25 83.02 79.21 83.02
16 88.81 85.84 88.76 87.76 89.08 89.56
32 92.07 90.68 93.07 92.87 93.72 94.65

COVID-19

4 65.68 68.77 59.14 69.51 69.88 73.09
8 62.09 66.29 69.75 73.33 73.33 76.66
16 83.33 90.00 86.66 90.00 86.66 86.66
32 86.66 90.00 89.88 93.33 96.67 99.96

based on the number of SPs and iterations. The results show there

is less variance between the accuracy of each fold while using

more iterations and larger sizes of SPs. Therefore, the results in

Table 10 proves that having more iteration and larger sizes of the

SPs leads to higher and more stable accuracy results.
13
Table 10
Standard deviations of the accuracy based on different SP sizes, different number
of iterations and 10-Fold validation using 1st system.
Data set SP Number of iterations

100 500 1000 3000 5000 10000

HCV

4 3.79 11.77 4.67 9.06 11.92 14.92
8 10.73 8.26 11.93 12.62 8.63 7.25
16 17.10 11.69 7.64 5.30 5.15 6.23
32 7.27 4.38 1.94 3.72 1.45 1.10

Poker

4 8.31 8.57 5.55 10.85 6.20 6.25
8 4.38 6.98 4.32 7.53 8.17 6.95
16 6.42 6.65 5.26 5.53 4.77 4.32
32 4.22 4.46 3.80 4.16 3.77 1.18

COVID-19

4 10.16 22.72 19.31 23.59 17.98 13.48
8 10.27 15.19 17.77 13.34 13.34 15.28
16 16.67 15.28 16.33 15.28 16.33 16.33
32 16.33 15.28 15.47 13.34 10.00 0.11

5.4. Improved kernel utilization

According to [69], the parallel reduction kernel proposed in
this work has the potential to execute in GPU having more uti-
lization. The proposed reduction kernel provided in Listing 1
can be optimized using shared memory and removing divergent

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

1
c
i
o
a
t

6

c
O
W
p

Fig. 11. The speedup of each kernel in average, based on the different number of SPs for each dataset using 2nd system.
branches from the code [69]. Listing 2 shows another reduc-
tion kernel considering non-divergent branches along with using
shared memories for each block executing in GPU.

The results of the improved reduction kernel using 1st system
are provided in Table 11. According to Table 11, up to 3.95
speedup can be obtained by executing the improved reduction
kernel. Since the number of iterations does not affect the speedup
of the execution and it only influences the accuracy, Table 11
does not contain the results for different number of iterations.
Table 11 shows the speedup obtained by employing the improved
reduction kernel does not depend on the size of SPs. Instead of
Lines 6 to 16 in Listing 1, Lines 10 to 17 of Listing 2 calculate each
reduction step using the defined shared memory (sdata) and non-
divergent branches by modifying the ‘‘for’’ loop and ‘‘if’’ in lines
0 and 12, respectively. The added statements are responsible for
alculating each reduction step and also comparing the thread
ndices with the number of attributes. Therefore, the speedup
btained by the new code depends on the number of attributes
nd this is why the results vary by changing datasets not changing
he size of SP.

. Conclusion and future works

In this work we proposed a new efficient approach for dis-
overing classification rules on GPU based on genetic algorithm.
ur results are promising in terms of accuracy and speed up.
e obtained accuracy up to 99.74% and 95.73% for HCV and
oker datasets respectively. We obtained maximum speedup of
14
Table 11
Speedup of executing the improved reduction kernel (Listing 2) compared to the
basic reduction kernel (Listing 1) using 1st system.

Dataset Size of SP

4 8 16 32

HCV 3.89 3.92 3.90 3.95
Poker 2.04 2.05 2.05 2.05
COVID-19 2.38 2.55 2.70 2.86

23.06%, 22.12%, and 57.15% for HCV, COVID-19, and Poker data
respectively using our proposed algorithm.

It can be noted from our results (Table 4) that, the accuracy
increase is proportional to population increase for most of the
cases in both (HCV and Poker) databases. The reduction step has
benefited most in speed due to the parallel execution. Since the
calculation of the addition operations in the reduction vector is
performed using parallel threads, we can observe a lot of speed up
in this part. The search space of possible rules is huge and hence
GA is an effective method for rule discovery. The problem with
sequential GA is that all operations in each GA iteration have to
be performed, one by one, for all training instances in the dataset.
This process can be done in parallel using GPU and so number of
instances have little impact on the run time of GA.

The parallel execution has reduced the number of steps and
thus increased the speed of calculations. The main disadvantage
of this work, is that it is likely that the algorithm may fall into lo-
cal optima using GA producing rules. Selecting good measures in

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419

S

A

D

c
t

R

Listing 2: Parallel implementation of the improved Reduction Vector (RV) using CUDA
1 template < int BLOCK_SIZE> __global__ void GPU_CoverageReduction_NoDivegence (in t ∗g_iRV , in t ∗g_oRV)
2 {
3 in t Row = (blockIdx . x∗blockDim . x) + threadIdx . x ;
4 in t Col = (blockIdx . y∗blockDim . y) + threadIdx . y ;
5
6 __shared__ in t sdata [BLOCK_SIZE] [BLOCK_SIZE] ;
7 sdata [threadIdx . x] [threadIdx . y] = g_iRV [(Row ∗ BLOCK_SIZE) + Col] ;
8 __syncthreads () ;
9

10 for (in t a = BLOCK_SIZE / 2;a > 0;a >>= 1)
11 {
12 i f (threadIdx . x < a)
13 {
14 sdata [threadIdx . x] [threadIdx . x] += sdata [threadIdx . x] [threadIdx . x + a] ;
15 }
16 __syncthreads () ;
17 }
18 i f (Col == 0)
19 {
20 g_oRV[Row] = sdata [threadIdx . x] [0] ;
21 }
22 }
-

the fitness function is an important factor to avoid this problem.
In future, we propose to use other GPU platforms and choose the
best performing architecture. Also, using powerful GPUs, we in-
tend to use genetic algorithm in combination with deep learning
to find optimal values for deep network parameters and perform
classification task using them. It is worth to compare the speedup
between using GPU to produce rules by an evolutionary algorithm
like the one in this work and use GPU to run a deep network with
parameters set by an evolutionary algorithm.

CRediT authorship contribution statement

Mohammad Beheshti Roui: Conceptualization, Methodology,
oftware, Writing.Mariam Zomorodi: Conceptualization, Method

ology, Supervision, Writing - original draft. Masoomeh Sarve-
layati: Methodology, Writing, Software. Moloud Abdar: Data
curation, Investigation, Writing - review & editing. Hamid Noori:
Validation. Paweł Pławiak: Writing - review & editing, Investi-
gation. Ryszard Tadeusiewicz: Supervision, Writing - review &
editing. Xujuan Zhou: Writing - review & editing. Abbas Khos-
ravi: Supervision. Saeid Nahavandi: Supervision. U. Rajendra
charya: Supervision, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] M. Abdar, W. Ksia̧żek, U.R. Acharya, R.S. Tan, V. Makarenkov, P. Pław-
iak, A new machine learning technique for an accurate diagnosis of
coronary artery disease, Comput. Methods Programs Biomed. 179 (2019)
104992, http://dx.doi.org/10.1016/j.cmpb.2019.104992, https://doi.org/10.
1016/j.cmpb.2019.104992.

[2] F. Pourpanah, R. Wang, X. Wang, Y. Shi, D. Yazdani, mBSO: A multi-
population brain storm optimization for multimodal dynamic optimization
problems, in: 2019 IEEE Symposium Series on Computational Intelligence,
SSCI, IEEE, 2019, pp. 673–679.

[3] F. Pourpanah, R. Wang, C.P. Lim, D. Yazdani, A review of the family of
artificial fish swarm algorithms: Recent advances and applications, 2020,
arXiv preprint arXiv:2011.05700.

[4] W.H. Au, C.C. Chan, X. Yao, A novel evolutionary data mining algorithm
with applications to churn prediction, IEEE Trans. Evol. Comput. 7 (6)
(2003) 532–544, http://dx.doi.org/10.1109/TEVC.2003.819264, URL: https:
//ieeexplore.ieee.org/abstract/document/1255389/.
15
[5] P. Pławiak, M. Abdar, U. Rajendra Acharya, Application of new deep
genetic cascade ensemble of SVM classifiers to predict the Australian credit
scoring, Appl. Soft Comput. 84 (2019) 105740, http://dx.doi.org/10.1016/j.
asoc.2019.105740, URL: https://doi.org/10.1016/j.asoc.2019.105740.

[6] P. Pławiak, M. Abdar, J. Pławiak, V. Makarenkov, U.R. Acharya, DGHNL:
A new deep genetic hierarchical network of learners for prediction of
credit scoring, Inform. Sci. 516 (2020) 401–418, http://dx.doi.org/10.1016/
j.ins.2019.12.045, URL: https://www.sciencedirect.com/science/article/pii/
S0020025519311569.

[7] A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms, Springer Science & Business Media, 2013.

[8] A. Cano, A. Zafra, S. Ventura, Speeding up the evaluation phase of GP clas-
sification algorithms on GPUs, Soft Comput. 16 (2) (2012) 187–202, http:
//dx.doi.org/10.1007/s00500-011-0713-4, URL: https://www.researchgate.
net/publication/216316010.

[9] F. Pourpanah, Y. Shi, C.P. Lim, Q. Hao, C.J. Tan, Feature selection based
on brain storm optimization for data classification, Appl. Soft Comput. 80
(2019) 761–775.

[10] J. Gholami, F. Pourpanah, X. Wang, Feature selection based on improved
binary global harmony search for data classification, Appl. Soft Comput.
93 (2020) 106402.

[11] M. Muntean, C. Rotar, I. Ileanǎ, H. Vǎlean, Learning classification
rules with genetic algorithm, 2010, pp. 213–216, http://dx.doi.org/
10.1109/ICCOMM.2010.5509117, URL: https://ieeexplore.ieee.org/abstract/
document/5509117/.

[12] M. Zomorodi-moghadam, M. Abdar, Z. Davarzani, X. Zhou, P. Pławiak, U.R.
Acharya, Hybrid particle swarm optimization for rule discovery in the
diagnosis of coronary artery disease, Expert Syst. (2019) http://dx.doi.org/
10.1111/exsy.12485.

[13] S. Dehuri, A. Jagadev, A. Ghosh, R. Mall, Multi-objective genetic algorithm
for association rule miningusing a homogeneous dedicated cluster of
workstations, 2006.

[14] P. Kumar, A.K. Singh, Efficient generation of association rules from numeric
data using genetic algorithm for smart cities, in: Security in Smart Cities:
Models, Applications, and Challenges, Springer, 2019, pp. 323–343.

[15] M.V. Fidelis H S Lopes A A Freitas, Discovering comprehensible classi-
fication rules with a genetic algorithm, Ieeexplore.Ieee.Org (2000) 805–
810, http://dx.doi.org/10.1109/CEC.2000.870381, https://doi.org/10.1109/
CEC.2000.870381.

[16] B. M. Al-Maqaleh, H. Shahbazkia, A genetic algorithm for discovering
classification rules in data mining, Int. J. Comput. Appl. 41 (18) (2012)
40–44, http://dx.doi.org/10.5120/5644-8072.

[17] M.A. Franco, N. Krasnogor, J. Bacardit, Speeding up the evaluation of
evolutionary learning systems using GPGPUs, in: Proceedings of the
12th Annual Genetic and Evolutionary Computation Conference, GECCO
’10, 2010, pp. 103–110, http://dx.doi.org/10.1145/1830483.1830672, URL:
https://www.researchgate.net/publication/220742154.

[18] C. Lemnaru, M. Cuibus, A. Bona, A. Alic, R. Potolea, A distributed method-
ology for imbalanced classification problems, in: Proceedings - 2012 11th
International Symposium on Parallel and Distributed Computing, ISPDC
2012, 2012, pp. 164–171, http://dx.doi.org/10.1109/ISPDC.2012.30, URL:
https://ieeexplore.ieee.org/abstract/document/6341508/.

[19] NVIDIA, Cuda C Programming Guide, Technical Report September, 2015,
pp. 1–261, URL: www.nvidia.com.

http://dx.doi.org/10.1016/j.cmpb.2019.104992
https://doi.org/10.1016/j.cmpb.2019.104992
https://doi.org/10.1016/j.cmpb.2019.104992
https://doi.org/10.1016/j.cmpb.2019.104992
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb2
http://arxiv.org/abs/2011.05700
http://dx.doi.org/10.1109/TEVC.2003.819264
https://ieeexplore.ieee.org/abstract/document/1255389/
https://ieeexplore.ieee.org/abstract/document/1255389/
https://ieeexplore.ieee.org/abstract/document/1255389/
http://dx.doi.org/10.1016/j.asoc.2019.105740
http://dx.doi.org/10.1016/j.asoc.2019.105740
http://dx.doi.org/10.1016/j.asoc.2019.105740
https://doi.org/10.1016/j.asoc.2019.105740
http://dx.doi.org/10.1016/j.ins.2019.12.045
http://dx.doi.org/10.1016/j.ins.2019.12.045
http://dx.doi.org/10.1016/j.ins.2019.12.045
https://www.sciencedirect.com/science/article/pii/S0020025519311569
https://www.sciencedirect.com/science/article/pii/S0020025519311569
https://www.sciencedirect.com/science/article/pii/S0020025519311569
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb7
http://dx.doi.org/10.1007/s00500-011-0713-4
http://dx.doi.org/10.1007/s00500-011-0713-4
http://dx.doi.org/10.1007/s00500-011-0713-4
https://www.researchgate.net/publication/216316010
https://www.researchgate.net/publication/216316010
https://www.researchgate.net/publication/216316010
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb10
http://dx.doi.org/10.1109/ICCOMM.2010.5509117
http://dx.doi.org/10.1109/ICCOMM.2010.5509117
http://dx.doi.org/10.1109/ICCOMM.2010.5509117
https://ieeexplore.ieee.org/abstract/document/5509117/
https://ieeexplore.ieee.org/abstract/document/5509117/
https://ieeexplore.ieee.org/abstract/document/5509117/
http://dx.doi.org/10.1111/exsy.12485
http://dx.doi.org/10.1111/exsy.12485
http://dx.doi.org/10.1111/exsy.12485
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb14
http://dx.doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
http://dx.doi.org/10.5120/5644-8072
http://dx.doi.org/10.1145/1830483.1830672
https://www.researchgate.net/publication/220742154
http://dx.doi.org/10.1109/ISPDC.2012.30
https://ieeexplore.ieee.org/abstract/document/6341508/
http://www.nvidia.com

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419
[20] W. Hwu, Programming massively parallel processors, 2017, Edition, D
Kirk - Special and undefined 2009. http://dx.doi.org/10.1016/c2015-0-
02431-5. URL: http://www.academia.edu/download/30841796/10.1.1.188.
691.pdf{#}page=108.

[21] W.M.W. Hwu, GPU Computing Gems Jade Edition, 2012,
http://dx.doi.org/10.1016/C2010-0-68654-8, URL: https://books.
google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=
PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=
Uzx{_}Kr8r72lyP1DEO9z182TPllI.

[22] W.M.W. Hwu, GPU Computing Gems Emerald Edition, 2011, http://dx.doi.
org/10.1016/C2010-0-65709-9.

[23] M. Harris, How to overlap data transfers in CUDA C/C++, Nvidia (2015) 1,
URL: http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-
cuda-cc/.

[24] M.V. Fidelis, H.S. Lopes, A.A. Freitas, Discovering comprehensible clas-
sification rules with a genetic algorithm, in: Proceedings of the 2000
Congress on Evolutionary Computation, CEC 2000, vol. 1, IEEE, 2000,
pp. 805–810, http://dx.doi.org/10.1109/CEC.2000.870381, https://doi.org/
10.1109/CEC.2000.870381.

[25] K.K. Gündoǧan, B. Alataş, A. Karci, Mining classification rules by using
genetic algorithms with non-random initial population and uniform op-
erator, Turk. J. Electr. Eng. Comput. Sci. 12 (1) (2004) 43–52, URL: https:
//journals.tubitak.gov.tr/elektrik/abstract.htm?id=6712.

[26] J. Vashishtha, D. Kumar, S. Ratnoo, K. Kundu, Mining comprehen-
sible and interesting rules: A genetic algorithm approach, Int. J.
Comput. Appl. 31 (1) (2011) 39–47, http://dx.doi.org/10.5120/3792-
5221, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.
4592{&}rep=rep1{&}type=pdf.

[27] X.J. Shi, H. Lei, A genetic algorithm-based approach for classification rule
discovery, in: Proceedings of the International Conference on Information
Management, Innovation Management and Industrial Engineering, ICIII
2008, vol. 1, 2008, pp. 175–178, http://dx.doi.org/10.1109/ICIII.2008.289,
URL: https://ieeexplore.ieee.org/abstract/document/4737521/.

[28] T. Shobha, R.J. Anandhi, Classification rule discovery using variant genetic
algorithm, in: 2nd International Conference on Circuits, Controls, and
Communications, CCUBE 2017 - Proceedings, 2018, pp. 222–225, http://
dx.doi.org/10.1109/CCUBE.2017.8394151, URL: https://ieeexplore.ieee.org/
abstract/document/8394151/.

[29] M. Hassoon, M.S. Kouhi, M. Zomorodi-Moghadam, M. Abdar, Rule op-
timization of boosted C5.0 classification using genetic algorithm for
liver disease prediction, in: 2017 International Conference on Com-
puter and Applications, ICCA 2017, 2017, pp. 299–305, http://dx.doi.org/
10.1109/COMAPP.2017.8079783, URL: https://ieeexplore.ieee.org/abstract/
document/8079783/.

[30] A.H. Alkeshuosh, M.Z. Moghadam, I. Al Mansoori, M. Abdar, Using PSO
algorithm for producing best rules in diagnosis of heart disease, in: 2017
International Conference on Computer and Applications, ICCA, IEEE, 2017,
pp. 306–311.

[31] P. Goyal, Genetic algorithms for classification rule discovery : Issues and
challenges, Int. J. Adv. Res. Comput. Commun. Eng. 5 (6) (2016) 514–518,
http://dx.doi.org/10.17148/IJARCCE.2016.56110.

[32] S.M. Saif, H. Shah-Hosseini, M.R. Feizi, Empire establishment algorithm, in:
ICCTD 2009 - 2009 International Conference on Computer Technology and
Development, vol. 1, 2009, pp. 295–299, http://dx.doi.org/10.1109/ICCTD.
2009.71, URL: https://ieeexplore.ieee.org/abstract/document/5359676/.

[33] B. M. Al-Maqaleh, H. Shahbazkia, A genetic algorithm for discovering
classification rules in data mining, Int. J. Comput. Appl. 41 (18) (2012) 40–
44, http://dx.doi.org/10.5120/5644-8072, URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.259.1812{&}rep=rep1{&}type=pdf.

[34] T. Shobha, R.J. Anandhi, Adaptive strategy operators based GA for rule
discovery, Int. J. Inf. Technol. (2019) http://dx.doi.org/10.1007/s41870-019-
00303-z.

[35] M. Abdar, V.N. Wijayaningrum, S. Hussain, R. Alizadehsani, P. Plawiak,
U.R. Acharya, V. Makarenkov, IAPSO-AIRS: A novel improved machine
learning-based system for wart disease treatment, J. Med. Syst. 43 (7)
(2019) http://dx.doi.org/10.1007/s10916-019-1343-0, URL: https://www.
researchgate.net/publication/333023902.

[36] R. Alizadehsani, M. Abdar, M. Roshanzamir, A. Khosravi, P.M. Kebria,
F. Khozeimeh, S. Nahavandi, N. Sarrafzadegan, U.R. Acharya, Machine
learning-based coronary artery disease diagnosis: A comprehensive review,
Comput. Biol. Med. 111 (2019) http://dx.doi.org/10.1016/j.compbiomed.
2019.103346, https://doi.org/10.1016/j.compbiomed.2019.103346.

[37] Z. Sherkatghanad, M. Akhondzadeh, S. Salari, M. Zomorodi-Moghadam,
M. Abdar, U.R. Acharya, R. Khosrowabadi, V. Salari, Automated detec-
tion of autism spectrum disorder using a convolutional neural network,
Front. Neurosci. 13 (2020) http://dx.doi.org/10.3389/fnins.2019.01325, URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971220/.

[38] E. Nasarian, M. Abdar, M.A. Fahami, R. Alizadehsani, S. Hussain, M.E. Basiri,
M. Zomorodi-Moghadam, X. Zhou, P. Pławiak, U.R. Acharya, R.-S. Tan,
N. Sarrafzadegan, Association between work-related features and coro-
nary artery disease: a heterogeneous hybrid feature selection integrated
16
with balancing approach, Pattern Recognit. Lett. (2020) http://dx.doi.org/
10.1016/j.patrec.2020.02.010, URL: https://www.sciencedirect.com/science/
article/pii/S0167865520300507.

[39] J.A. ALzubi, B. Bharathikannan, S. Tanwar, R. Manikandan, A. Khanna, C.
Thaventhiran, Boosted neural network ensemble classification for lung
cancer disease diagnosis, Appl. Soft Comput. 80 (2019) 579–591.

[40] M. Abdar, U.R. Acharya, N. Sarrafzadegan, V. Makarenkov, NE-Nu-SVC:
A new nested ensemble clinical decision support system for effective
diagnosis of coronary artery disease, IEEE Access 7 (2019) 167605–167620.

[41] M.A. Lones, S.L. Smith, J.E. Alty, S.E. Lacy, K.L. Possin, D.R. Jamieson, A.M.
Tyrrell, Evolving classifiers to recognize the movement characteristics of
Parkinson’s disease patients, IEEE Trans. Evol. Comput. 18 (4) (2014) 559–
576, http://dx.doi.org/10.1109/TEVC.2013.2281532, URL: http://ieeexplore.
ieee.org.

[42] J. Quevedo, M. Abdelatti, F. Imani, M. Sodhi, Using reinforcement learning
for tuning genetic algorithms, 2021.

[43] K. Heraguemi, H. Kadri, A. Zabi, Whale optimization algorithm for solving
association rule mining issue, Int. J. Comput. Digit. Syst. 10 (1) (2021)
333–342.

[44] A. Cano, A. Zafra, S. Ventura, A parallel genetic programming algorithm for
classification, in: Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 6678 LNAI, 2011, pp. 172–181, http://dx.doi.org/10.1007/978-3-642-
21219-2_23, URL: https://www.researchgate.net/publication/221053488.

[45] F.M. Johar, F.A. Azmin, M.K. Suaidi, A.S. Shibghatullah, B.H. Ahmad, S.N.
Salleh, M.Z.A. Abd Aziz, M.M. Shukor, A review of genetic algorithms
and parallel genetic algorithms on graphics processing unit (GPU), in:
Proceedings - 2013 IEEE International Conference on Control System,
Computing and Engineering, ICCSCE 2013, 2013, pp. 264–269, http://dx.
doi.org/10.1109/ICCSCE.2013.6719971, URL: https://www.researchgate.net/
publication/279205302.

[46] L. Zheng, Y. Lu, M. Ding, Y. Shen, M. Guoz, S. Guo, Architecture-based
performance evaluation of genetic algorithms on multi/many-core systems,
in: Proc. - 14th IEEE Int. Conf. on Computational Science and Engineering,
CSE 2011 and 11th Int. Symp. on Pervasive Systems, Algorithms, and
Networks, I-SPA 2011 and 10th IEEE Int. Conf. on IUCC 2011, 2011, pp.
321–334, http://dx.doi.org/10.1109/CSE.2011.65, URL: https://ieeexplore.
ieee.org/abstract/document/6062894/.

[47] S.R. Dash, S. Dehuri, S. Rayaguru, Discovering Interesting Rules from
Biological Data using Parallel Genetic Algorithm, 2013, pp. 631–636, http:
//dx.doi.org/10.1109/IAdCC.2013.6514300.

[48] P. Pospichal, J. Jaros, J. Schwarz, Parallel Genetic Algorithm on the
CUDA Architecture, 2010, pp. 442–451, http://dx.doi.org/10.1007/978-3-
642-12239-2_46.

[49] A. Cano, J.M. Luna, S. Ventura, High performance evaluation of
evolutionary-mined association rules on GPUs, J. Supercomput. 66 (3)
(2013) 1438–1461, http://dx.doi.org/10.1007/s11227-013-0937-4.

[50] M. Rodríguez, D.M. Escalante, A. Peregrín, Efficient distributed genetic
algorithm for rule extraction, Appl. Soft Comput. 11 (1) (2011) 733–743,
http://dx.doi.org/10.1016/j.asoc.2009.12.035.

[51] P. Sharma, S. Saroj, Discovery of classification rules using distributed
genetic algorithm, Procedia Comput. Sci. 46 (2015) 276–284, http://dx.doi.
org/10.1016/j.procs.2015.02.021, www.sciencedirect.com.

[52] M.J. del Jesus, J.A. Gamez, P. Gonzalez, J.M. Puerta, On the discovery of
association rules by means of evolutionary algorithms, Wiley Interdiscip.
Rev.: Data Min. Knowl. Discov. 1 (5) (2011) 397–415.

[53] A. Cano, A. Zafra, S. Ventura, Solving classification problems using genetic
programming algorithms on GPUs, in: Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6077 LNAI, (PART 2) 2010, pp. 17–26, http:
//dx.doi.org/10.1007/978-3-642-13803-4_3.

[54] A. Cano, A. Zafra, S. Ventura, Parallel evaluation of pittsburgh rule-based
classifiers on GPUs, Neurocomputing 126 (2014) 45–57, http://dx.doi.org/
10.1016/j.neucom.2013.01.049.

[55] M. Harris, S. Sengupta, J.D. Owens, Parallel prefix sum (scan) with CUDA,
GPU Gems 3 (39) (2007) 851–876.

[56] D. Dua, C. Graff, UCI Machine Learning Repository, University of California,
Irvine, School of Information and Computer Sciences, 2019, URL: http:
//archive.ics.uci.edu/ml/datasets/HCV+data.

[57] D. Dua, C. Graff, UCI Machine Learning Repository, University of California,
Irvine, School of Information and Computer Sciences, 2017, URL: https:
//archive.ics.uci.edu/ml/datasets/Poker+Hand.

[58] SRK, Novel Corona Virus 2019 Dataset, 2020, https://www.kaggle.com/
sudalairajkumar/novel-corona-virus-2019-dataset. (Accessed 20 March
2020).

[59] M. Beheshti Roui, M. Sarvelayati, Novel corona virus 2019 dataset,
2020, https://www.kaggle.com/msarvelayati/modified-covid19-open-line-
list. (Accessed 20 March 2020).

[60] M. Beheshti Roui, M. Sarvelayati, GitHub - 2b2ak/CUDA_PGA: Article: A
Novel Approach based on Genetic Algorithm to Speed up the Discovery of
Classification Rules on GPUs, URL: https://github.com/2b2ak/CUDA{_}PGA.

http://dx.doi.org/10.1016/c2015-0-02431-5
http://dx.doi.org/10.1016/c2015-0-02431-5
http://dx.doi.org/10.1016/c2015-0-02431-5
http://www.academia.edu/download/30841796/10.1.1.188.691.pdf{#}page=108
http://www.academia.edu/download/30841796/10.1.1.188.691.pdf{#}page=108
http://www.academia.edu/download/30841796/10.1.1.188.691.pdf{#}page=108
http://dx.doi.org/10.1016/C2010-0-68654-8
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
https://books.google.com/books?hl=en{&}lr={&}id=LsNVFUnzcVMC{&}oi=fnd{&}pg=PP1{&}dq=gpu-computing-gems-jade-edition{&}ots=v-ld0QuImB{&}sig=Uzx{_}Kr8r72lyP1DEO9z182TPllI
http://dx.doi.org/10.1016/C2010-0-65709-9
http://dx.doi.org/10.1016/C2010-0-65709-9
http://dx.doi.org/10.1016/C2010-0-65709-9
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://dx.doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
https://journals.tubitak.gov.tr/elektrik/abstract.htm?id=6712
https://journals.tubitak.gov.tr/elektrik/abstract.htm?id=6712
https://journals.tubitak.gov.tr/elektrik/abstract.htm?id=6712
http://dx.doi.org/10.5120/3792-5221
http://dx.doi.org/10.5120/3792-5221
http://dx.doi.org/10.5120/3792-5221
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.4592{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.4592{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.4592{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1109/ICIII.2008.289
https://ieeexplore.ieee.org/abstract/document/4737521/
http://dx.doi.org/10.1109/CCUBE.2017.8394151
http://dx.doi.org/10.1109/CCUBE.2017.8394151
http://dx.doi.org/10.1109/CCUBE.2017.8394151
https://ieeexplore.ieee.org/abstract/document/8394151/
https://ieeexplore.ieee.org/abstract/document/8394151/
https://ieeexplore.ieee.org/abstract/document/8394151/
http://dx.doi.org/10.1109/COMAPP.2017.8079783
http://dx.doi.org/10.1109/COMAPP.2017.8079783
http://dx.doi.org/10.1109/COMAPP.2017.8079783
https://ieeexplore.ieee.org/abstract/document/8079783/
https://ieeexplore.ieee.org/abstract/document/8079783/
https://ieeexplore.ieee.org/abstract/document/8079783/
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb30
http://dx.doi.org/10.17148/IJARCCE.2016.56110
http://dx.doi.org/10.1109/ICCTD.2009.71
http://dx.doi.org/10.1109/ICCTD.2009.71
http://dx.doi.org/10.1109/ICCTD.2009.71
https://ieeexplore.ieee.org/abstract/document/5359676/
http://dx.doi.org/10.5120/5644-8072
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.1812{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.1812{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.1812{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1007/s41870-019-00303-z
http://dx.doi.org/10.1007/s41870-019-00303-z
http://dx.doi.org/10.1007/s41870-019-00303-z
http://dx.doi.org/10.1007/s10916-019-1343-0
https://www.researchgate.net/publication/333023902
https://www.researchgate.net/publication/333023902
https://www.researchgate.net/publication/333023902
http://dx.doi.org/10.1016/j.compbiomed.2019.103346
http://dx.doi.org/10.1016/j.compbiomed.2019.103346
http://dx.doi.org/10.1016/j.compbiomed.2019.103346
https://doi.org/10.1016/j.compbiomed.2019.103346
http://dx.doi.org/10.3389/fnins.2019.01325
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971220/
http://dx.doi.org/10.1016/j.patrec.2020.02.010
http://dx.doi.org/10.1016/j.patrec.2020.02.010
http://dx.doi.org/10.1016/j.patrec.2020.02.010
https://www.sciencedirect.com/science/article/pii/S0167865520300507
https://www.sciencedirect.com/science/article/pii/S0167865520300507
https://www.sciencedirect.com/science/article/pii/S0167865520300507
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb40
http://dx.doi.org/10.1109/TEVC.2013.2281532
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb43
http://dx.doi.org/10.1007/978-3-642-21219-2_23
http://dx.doi.org/10.1007/978-3-642-21219-2_23
http://dx.doi.org/10.1007/978-3-642-21219-2_23
https://www.researchgate.net/publication/221053488
http://dx.doi.org/10.1109/ICCSCE.2013.6719971
http://dx.doi.org/10.1109/ICCSCE.2013.6719971
http://dx.doi.org/10.1109/ICCSCE.2013.6719971
https://www.researchgate.net/publication/279205302
https://www.researchgate.net/publication/279205302
https://www.researchgate.net/publication/279205302
http://dx.doi.org/10.1109/CSE.2011.65
https://ieeexplore.ieee.org/abstract/document/6062894/
https://ieeexplore.ieee.org/abstract/document/6062894/
https://ieeexplore.ieee.org/abstract/document/6062894/
http://dx.doi.org/10.1109/IAdCC.2013.6514300
http://dx.doi.org/10.1109/IAdCC.2013.6514300
http://dx.doi.org/10.1109/IAdCC.2013.6514300
http://dx.doi.org/10.1007/978-3-642-12239-2_46
http://dx.doi.org/10.1007/978-3-642-12239-2_46
http://dx.doi.org/10.1007/978-3-642-12239-2_46
http://dx.doi.org/10.1007/s11227-013-0937-4
http://dx.doi.org/10.1016/j.asoc.2009.12.035
http://dx.doi.org/10.1016/j.procs.2015.02.021
http://dx.doi.org/10.1016/j.procs.2015.02.021
http://dx.doi.org/10.1016/j.procs.2015.02.021
http://www.sciencedirect.com
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb52
http://dx.doi.org/10.1007/978-3-642-13803-4_3
http://dx.doi.org/10.1007/978-3-642-13803-4_3
http://dx.doi.org/10.1007/978-3-642-13803-4_3
http://dx.doi.org/10.1016/j.neucom.2013.01.049
http://dx.doi.org/10.1016/j.neucom.2013.01.049
http://dx.doi.org/10.1016/j.neucom.2013.01.049
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb55
http://archive.ics.uci.edu/ml/datasets/HCV+data
http://archive.ics.uci.edu/ml/datasets/HCV+data
http://archive.ics.uci.edu/ml/datasets/HCV+data
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/msarvelayati/modified-covid19-open-line-list
https://www.kaggle.com/msarvelayati/modified-covid19-open-line-list
https://www.kaggle.com/msarvelayati/modified-covid19-open-line-list
https://github.com/2b2ak/CUDA{_}PGA

M. Beheshti Roui, M. Zomorodi, M. Sarvelayati et al. Knowledge-Based Systems 231 (2021) 107419
[61] P. Micikevicius, Analysis-driven optimization, in: GPU Technology
Conference, 2010, pp. 1–55.

[62] B. Li, Modeling and Runtime Systems for Coordinated Power-Performance
Management (Ph.D. thesis), Virginia Tech, 2019.

[63] S. Hashem, G. Esmat, W. Elakel, S. Habashy, S. Abdel Raouf, S. Darweesh,
M. Soliman, M. Elhefnawi, M. El-Adawy, M. ElHefnawi, Accurate prediction
of advanced liver fibrosis using the decision tree learning algorithm
in chronic hepatitis C Egyptian patients, Gastroenterol. Res. Pract. 2016
(2016).

[64] C. Za’in, M. Pratama, E. Pardede, Evolving large-scale data stream analytics
based on scalable PANFIS, Knowl.-Based Syst. 166 (2019) 186–197.

[65] P. Sharma, S. Ratnoo, Bottom-up pittsburgh approach for discovery of
classification rules, in: 2014 International Conference on Contemporary
Computing and Informatics, IC3I, IEEE, 2014, pp. 31–37.
17
[66] S. Jabin, Poker hand classification, in: 2016 International Conference
on Computing, Communication and Automation, ICCCA, IEEE, 2016, pp.
269–273.

[67] D. Dua, C. Graff, UCI Machine Learning Repository, University of California,
Irvine, School of Information and Computer Sciences, 2017, URL: https:
//archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).

[68] D. Bui-Thi, P. Meysman, K. Laukens, MoMAC: Multi-objective optimization
to combine multiple association rules into an interpretable classification,
Appl. Intell. (2021) 1–13.

[69] M. Harris, et al., Optimizing parallel reduction in CUDA, Nvidia Dev.
Technol. 2 (4) (2007) 1–39.

http://refhub.elsevier.com/S0950-7051(21)00681-X/sb62
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb62
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb62
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb64
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb64
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb64
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb65
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb65
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb65
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb65
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb65
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb66
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb66
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb66
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb66
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb66
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb68
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb68
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb68
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb68
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb68
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb69
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb69
http://refhub.elsevier.com/S0950-7051(21)00681-X/sb69

	A novel approach based on genetic algorithm to speed up the discovery of classification rules on GPUs
	Introduction
	Background and problem statement
	GA for classification
	CUDA environment

	Problem statement

	Related work
	Classification rule discovery
	Parallel GA

	The proposed approach
	Rule encoding
	Fitness evaluation
	Coverage
	Reduction
	Confusion

	Selection
	Genetic operators
	Average coverage
	Proposed crossover
	Proposed mutation

	Experimental results
	Experimental setup
	Results
	K-fold validation
	Improved kernel utilization

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	References

