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ABSTRACT We propose a Recurrent Trend Predictive Neural Network (rTPNN) for multi-sensor fire
detection based on the trend as well as level prediction and fusion of sensor readings. The rTPNN model
significantly differs from the existing methods due to recurrent sensor data processing employed in its
architecture. rTPNN performs trend prediction and level prediction for the time series of each sensor reading
and captures trends on multivariate time series data produced by multi-sensor detector. We compare the per-
formance of the rTPNN model with that of each of the Linear Regression (LR), Nonlinear Perceptron (NP),
Multi-Layer Perceptron (MLP), Kendall-τ combined with MLP, Probabilistic Bayesian Neural Network
(PBNN), Long-Short Term Memory (LSTM), and Support Vector Machine (SVM) on a publicly available
fire data set. Our results show that rTPNN model significantly outperforms all of the other models (with
96% accuracy) while it is the only model that achieves high True Positive and True Negative rates (both
above 92%) at the same time. rTPNN also triggers an alarm in only 11 s from the start of the fire, where
this duration is 22 s for the second-best model. Moreover, we present that the execution time of rTPNN is
acceptable for real-time applications.

INDEX TERMS Fire detection, trend prediction, multi-sensor, sensor fusion, recurrent neural networks,
machine learning.

I. INTRODUCTION
Nowadays, most fire detectors only detect smoke, although
the fire is a process that consists of smoke, flame, several
kinds of gasses, temperature and humidity [1]. The current
percentage of the smoke detectors to the rest in the market of
fire detectors is reported as around 60%, however, it is pre-
dicted that this percentage will decrease to 50% in 2025 [2].
That is, the fire detectors other than the smoke detectors will
comprise half of the market.

The most important success measure for the fire detector
is to detect fire situations correctly (in other words, achiev-
ing a low False Negative Rate (FNR)). Although the smoke
detectors are able to achieve acceptably low FNR, the reason
for the decreasing percentage of smoke detectors is that they
are weak to differentiate the pollination, cigarette smoke, and
smoke of cooking from the fire [3]. That is, most smoke
detectors give False Positive alarms while detecting such
cases. False Positive alarm means that the detector alarms
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as fire even the situation is neither fire nor related to a fire.
According to Duisburg Fire Department, only 84% of the
fire alarm calls that are automatically triggered by the fire
detectors are real fire situations [4]. In addition, 44% of the
False Positive alarms are triggered due to the aerosols, almost
20% of which are dust and water aerosols [5]. The False Pos-
itive alarms waste the time and money of the fire departments
and decrease the comfort level of the users during the daily
usage of detectors. Reference [6] shows that multi-sensor
design with the decision-maker based on machine learning is
able to decrease the False Positive Rate (FPR) significantly.
However, the performance of such amulti-sensor fire detector
needs further improvement in terms of FNR and FPR.

In order to decrease both FNR and FPR, in this paper,
we propose the Recurrent Trend Predictive Neural Net-
work (rTPNN) architecture for multi-sensor fire detectors.
rTPNN detects the fire based on multi-sensor readings and
the predicted trend and level of that readings. That is, rTPNN
constructs a relationship between the decision of fire and
the trend of the sensor data as opposed to the conventional
approach that takes into account only the current value of
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the sensor data. With possessing this property, rTPNN is
robust to the instant changes of the sensor data, which may
be caused by an internal defect of the detector or an external
disturbance. The rTPNN model can be used for either the
multi-sensor fire detectors or single-sensor detectors. How-
ever, rTPNN provides a suitable architecture for multi-sensor
fire detectors, which combines the information from different
sensors. rTPNN extends the idea of Trend Predictive Neural
Network (TPNN) that was firstly proposed by the first two
authors of this paper in a conference paper [7]: However,
the architecture of rTPNN significantly differs from the archi-
tecture of TPNN as follows: 1) rTPNN performs both level
prediction and trend prediction while TPNN only performs
trend prediction. 2) The recurrent structure of rTPNN enables
the learning of all parameters during the training of the model
whereas in TPNN the parameters for trend prediction are
determined in a trial and error manner. 3) The structure of
rTPNN, which learns trend and level prediction, does not
perform the extra operations required for TPNN in real-time
operation. With these properties, rTPNN is more suitable for
real-time applications.

Furthermore, the recurrent internal architecture of the
rTPNN model successfully captures the trends in the time
series data of each sensor that minimizes the error for the
output of rTPNN; hence, it significantly improves the overall
prediction performance of the neural network. This paper
demonstrates that trend prediction and sensory data fusion
properties of the developed rTPNN make a great impact on
the fire detection performance of the detectors in terms of
sensitivity, specificity, and fire detection time. Note that the
rTPNN is a neural network architecture that is suitable and
promising for multivariate time series applications beyond
multi-sensor fire detection.

In this paper, we evaluate the performance of the
multi-sensor fire detector based on rTPNN for the 9 dif-
ferent real-life fire experiments from the publicly available
data set [8], [9]. For these experiments, for the multi-sensor
detector, we compare the performance of our rTPNN model
with that of each of the Linear Regression (LR), Non-
linear Perceptron (NP), Multi-Layer Perceptron (MLP),
Kendall-τ combined with MLP (Kendall-MLP), Probabilis-
tic Bayesian Neural Network (PBNN), Long-Short Term
Memory (LSTM), and Support Vector Machine (SVM).
We also compare the performance of rTPNN with those of
the single-sensor detectors. While the used part of the pub-
licly available data set contains 25796 samples, it provides
meaningful performance evaluation results as well as a fair
comparison of the models. Our results show that the rTPNN
model outperforms all of the machine learning models while
it achieves 1) prediction performance with high generaliza-
tion ability, 2) low percentages for both FNR and FPR at the
same time, and 3) early detection of fire.

The rest of this paper is organized as follows: In Section II,
we state the difference between our work and the state-of-
the-art works. In Section III, we introduce the rTPNN model
and explain it in detail. In Section IV, we present our results

for the performance of the rTPNN and its comparison with
the state-of-the-art methods. In Section V, we conclude our
study.

II. RELATED WORKS
We now present the relationship between our work and the
works in the literature. We may categorize the works in the
literature into two categories as the works that aim to detect
fire for the outdoor and that for the indoor.

First, in the current literature, there are plenty of works that
focus on the fire detection systems for outdoor applications
(generally for forest fires). For outdoor fire detection, the first
group of works uses image-based techniques. Reference [10]
proposes an algorithm that classifies the fire pixels based on
the colors. In addition, Reference [11] uses Convolutional
Neural Network (CNN) for the recognition of the smoke from
the satellite image. CNN-based algorithms are also used to
detect the fire for the outdoor in [12], especially for the forests
in [13]–[15]. Furthermore, for the forest fire detection from
the images, References [16]–[18] use Neural Network (NN)-
based algorithms and Reference [19] proposes Hough Feature
Transformation based algorithm. The second group of works
uses sensors for outdoor fire detection. Reference [20] pro-
poses the usage of the frequencies in the bandwidth of the
microwaves, namely plasma frequency for the sensor-based
detection of the outdoor fire. Each of References [21]–[24]
uses the sensor network that is generally comprised of mul-
tiple fire detectors located separately. The sensor networks
are also used for the outdoor fire detection with the Arti-
ficial Intelligence (AI)-based decision systems, which are
specifically designed by using NNs in [25], [26], and Deep
Learning model in [27]. Moreover, References [28]–[30]
combine the sensor networks with vision-based systems in
order to detect the outdoor fire accurately. Besides the many
differences with individual works in the category of outdoor
fire detection systems, the main difference between our work
and the works in this category is as follows: These works
aim to detect the fire for the outdoor applications whereas
our purpose is to design a novel fire detection system that
will be implemented in commonly used fire detectors for the
indoor.

The works in the second category focus on fire detection
for the indoor applications on which this paper also focuses.
In this category, References [31]–[41] detects the fire for the
indoor by using only images of the considered spaces, since
References [42], [43] combine the images with sensor data.
In contrast, we use multiple sensors and combine the data
from the sensors by means of rTPNN model to detect fire.

The contrasts between vision-based and sensor-based fire
detectors may be examined separately for outdoor and
indoor applications. For outdoor applications, vision-based
fire detection systems have a higher potential to achieve better
performance than sensor-based systems [44]. Supporting this
idea, for the detection of forest fires, the accuracy has been
reported to be above 95% for vision-based detectors [11],
[13], [14] while it is between 80% and 95% for sensor-based
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detectors [21], [25], [26]. One of the main reasons is that the
concentration levels of gases may be too low to detect fire via
sensor-based systems. On the other hand, for indoor appli-
cations, there are different trade-offs for the performances of
vision-based and sensor-based systems in different fire cases.
For example, whereas the sensor-based systems may detect
smouldering fires earlier than vision-based systems, this may
be vice-versa for flaming fires. However, the performance
may not be the first criterion for selecting a fire detector
for indoor applications. One of the most important trade-offs
between sensor-based and vision-based fire detectors is that
the sensor-based fire detectors can be used in environments
for which privacy is amajor issue, such as bedrooms, personal
areas, and public restrooms. The cost of the fire detector is
another important concern that should be taken into account
especially for small indoor spaces.

For the indoor fire detection, Reference [45] examines
the performance of the gas sensor based fire detectors, Ref-
erences [46]–[48] use metal oxide gas sensors, and Refer-
ences [49], [50] use array of gas sensors. However, it is known
that the reading of the gas sensors are highly dependent on
the temperature and the humidity of the environment [51].
In addition, References [52], [53] uses multiple-sensor sys-
tem, where each sensor module is placed at the separated
locations. These systems are effective for the localization
of fire source but not for the suitable and efficiently usable
for the indoor fire detection. Thus, in this paper, we use the
combination of multiple sensors, which may be located at
the same position and satisfy the necessary information to
the rTPNN-based decision-maker.

Another group of works designs and uses the multi-sensor
detector in many different ways for indoor fire detection.
The multi-sensor fire detector is used with decision-makers
based on simple algorithms in [54], [55], fuzzy logic in [1],
[56]–[59], and data fusion in [60], [61]. References [62]–[66]
implement the NN-based models for the decision-maker of
the multi-sensor fire detector. Whereas all of these works
detect fire by using only the reading of the sensor at the
current time, we consider the trend of each sensor reading
over time via the trend prediction in the novel architectural
design of the rTPNN.

Finally, Reference [7] proposes the usage of trend com-
bined with MLP neural network, where the trend is com-
puted based on exponential smoothing. Reference [67] uses
the combination of trend with MLP and improves it by
computing the trend based on Kendall-τ trending algorithm.
In both of these works, the trend is computed distinctly
from the decision-maker (MLP in these works); thus, either
the computation of trend does not consider the error in
fire decision at all or the tuning of the parameters for the
trend computation should be performed additionally to the
training of decision-maker. In contrast, we propose a novel
NN architecture, namely rTPNN, which consists of both the
computation of trend and the decision-maker together and
designed specifically for fire detection with a multi-sensor
detector.

III. RECURRENT TREND PREDICTIVE NEURAL NETWORK
In this section, we first describe the general architecture,
the inputs and the output of the recurrent and end-to-end
trainable version of TPNN, namely rTPNN.1 Then, we give
the detailed explanation of the internal architecture of each
module in rTPNN. Last, we explain how we learn the model
parameters of rTPNN.

As shown in Fig. 1, the inputs of the rTPNN model are the
reading of the sensors at discrete time k , {xki }i∈{1,...,I } and that
at k−1, {xk−1i }i∈{1,...,I }, where I is the total number of sensors
in the hardware implementation of fire detector. The output
of rTPNN, yk is the state of the fire. At each discrete time k ,
yk takes value in the range [0, 1], where yk = 0 advocates
that there is no fire and yk = 1 advocates otherwise. In the
practical usage of rTPNN, if the value of yk is greater than a
threshold γ , we state that there is fire.2 Otherwise, we state
that there is no fire.

In the architecture of rTPNN in Fig. 1, there is one Sen-
sor Data Processing (SDP) module for each sensor i of fire
detector, which is denoted by SDPi. At each discrete time k ,
for sensor i, the SDPi calculates the predicted trend tki and
the predicted level lki of sensor i. The outputs of the SDPs are
connected to the Fire Predictor (FP) module which predicts
yk and is designed as fully connected layers.

A. SENSOR DATA PROCESSING (SDP) MODULE
Before we predict the fire state via the FP module in Fig. 1,
we first process the reading of each sensor i via the SDPi
module. The reason for using an SDPi module is that we
would like SDPi to learn the relationship between the sensor
reading xki and each of the predicted trend t

k
i and the predicted

level lki . Each module SDPi consists of the following units:
Trend Predictor (TPi) and Level Predictor (LPi). At each
discrete time k , this module takes xki and xk−1i as the inputs
and returns vector [tki , l

k
i , x

k
i ] as the output.

1) TREND PREDICTOR
TPi unit of the SDPi module calculates the trend of the
reading of sensor i as

tki = α
1
i (x

k
i − x

k−1
i )+ α2i t

k−1
i (1)

Shortly, in (1), we take the weighted sum of the change
in the sensor reading from k − 1 to k and the previous
value of the predicted trend. Although the idea of the trend
prediction is based on the Holt-Winters double exponential
smoothing [68], we now learn the prediction of the trend via a
recurrent neural network without the condition α1i = 1− α2i .
That is, clearly, (1) states for equation of a linear recurrent
neuron, which is shown in Fig. 2.

In Fig. 2, we see that xki and xk−1i are the inputs and
the predicted trend tki is the output of TPi unit. In this unit,

1We share the codes for the implementation of the rTPNN model at
https://github.com/mertnakip/Recurrent-Trend-Predictive-Network.

2The value of γ might be selected empirically to achieve the best perfor-
mance of rTPNN.
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FIGURE 1. The architecture of the Recurrent Trend Predictive Neural Network (rTPNN).

FIGURE 2. The inner architecture of the Trend Predictor unit for sensor i .

(xki − x
k−1
i ) and the previous state of the predicted trend tk−1i

is fed into the linear recurrent neuron with the connection
weights α1i and α

2
i , respectively. The values of these parame-

ters are learned during the training stage of rTPNN.

2) LEVEL PREDICTOR
LPi unit of the SDPi module predicts the level of the read-
ing of sensor i based on the well-known simple exponential
smoothing (in other words, Holt Linear) [69] as

lki = β
1
i x

k
i + β

2
i l
k−1
i (2)

Although (2) is the equation of Holt Linear, in our LPi unit,
there is no direct relationship between β1i and β2i , and it is
represented as a linear recurrent neuron. The recurrent neuron
of (2) is shown in Fig. 3.

FIGURE 3. The inner architecture of the Level Predictor unit for sensor i .

As shown in Fig. 3, at discrete time k , the only input of
LPi unit is xki and the output is l

k
i , where β

1
i is the connection

weight of xki . In addition, the previous state of the predicted
level lk−1i is fed into the linear neuron with connection weight
β2i . Since LPi unit is a recurrent neuron, the parameters β1i
and β2i are learned during the training of rTPNN.

B. FIRE PREDICTOR (FP) MODULE
In Fire Predictor (FP)module of rTPNN in Fig. 1, we use fully
connected dense layer, whose inputs are {tki , l

k
i , x

k
i }i∈{1,...,I },

and output is yk at time k . The FP module consists of H
hidden layers and an output layer. Each hidden layer h is com-
prised of nh fully connected neurons. In addition, at the output
layer of FP module, we use one neuron for the prediction of
the fire state.
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In Fig. 1, in FP module, each arrow represents a trainable
parameter, namely connection weight or bias. We also letWh
denote the matrix of the connection weights for the inputs of
hidden layer h, and bh denote the vector of bias parameters
of h. Thus, at each time k , the forward pass of the FP module
is computed as

zk1 = 9(W1



tk1
lk1
xk1
...

tkI
lkI
xkI


)+ b1

zkh = 9(Whzkh−1)+ bh ∀h ∈ {2, . . . ,H}

yk = 9(WH+1 zkH )+ bH+1

where zkh is the output of hidden layer h. Furthermore,
we set the activation function 9(·) = sigmoid(·), where
sigmoid(a) = 1/(1+ e−a). Note that9(.) is an element-wise
operator for the vectors or matrices.

C. TRAINING OF rTPNN
We first let dk denote the experimentally collected value of
the fire state. At each discrete time k ∈ [1,T ], in order to
collect xki ’s and the corresponding dk ’s, the fire experiments
are performed. At k , if there is fire in the experiment, we set
dk = 1; otherwise, dk = 0.
For the training of rTPNN model, we measure the predic-

tion error of the model via the Mean Squared Error (MSE)
as

EMSE =
1
T

T∑
k=1

(dk − yk )2 (3)

The parameters in {SDPi}i∈{1,...I }modules, {γ 1
i , γ

2
i }i∈{1,...I },

{β1i , β
2
i }i∈{1,...I }, and the connection weights and biases in FP

module, {Wh,bh}h∈{1,...,H+1}, are learned in training stage of
rTPNN to minimize the prediction error EMSE .

IV. RESULTS
In this section, we evaluate the performance of the rTPNN
model and compare that with the performance of each
of Linear Regression (LR), Nonlinear Perceptron (NP),
Multi-Layer Perceptron (MLP), Kendall-τ combined with
MLP (Kendall-MLP), Probabilistic Bayesian Neural Net-
work (PBNN), Long-Short Term Memory (LSTM) and Sup-
port Vector Machine (SVM) on fire experiments. To this end,
we first review the data set that is used in this paper.

A. FIRE DATA SET
During the results of this paper, we evaluated the performance
of the rTPNN model on the open-access data set, which is
published in [8], [9].

This data set is comprised of 27 experiments each of which
consists of the relative time to ignition in seconds as well as

the sensor readings for an experiment. During these experi-
ments, there are separately located sensors that measure the
Temperature, Smoke Obscuration, and the concentrations of
Carbon Monoxide, Carbon Dioxide, and Oxygen; however,
the sensors that measure all of thesemetrics are only available
in the (or close to the) bedroom in the testbed of data collec-
tion. Thus, we use only the experiments that are executed in
the bedroom.

Moreover, since in this data set, three of the experiments
(Experiment (Exp)-3, Exp-30, and Exp-32) are aborted due to
the failure of ignition, we do not include those in our results.
Thus, we use remaining 9 experiments.3 Accordingly, we use
10-fold cross-validation (CV) over the rest of the experiments
for the training and test of the fire prediction methods.

Furthermore, in order to simplify the input set of each of
the fire detection methods, we normalize each sensory data

xki as xki ←
xki

maxk xki
. Note that while the original value of

sensory data is greater than zero, the normalized data is in the
range [0, 1]. In addition, for each experiment, we assume that
the fire starts after 10 seconds (which is only two samples in
the data set) from the ignition time. This assumption shows
the expected time for the first triggered alarm but does not
prevent fire detectors to detect fire earlier.

1) 10-FOLD CROSS-VALIDATION (CV)
In order to evaluate the performance of models for the cases
that are unseen by the models and the robustness of the mod-
els against the selection of the training set, we aim to perform
10-fold cross-validation (CV) on the data of 9 experiments
that are mentioned above. To this end, we first create the
input-output pair, denoted by {X,Y}, from the time series data
of each experiment as follows.

Let assume that the number of samples in the time series
data equals T+1.Moreover, xki is the value for sensor i, and y

k

is a binary label that states the fire situation at each k ∈ {0,T }
in this time series data. Then, X is a three-dimensional input
tensor, whose size is T × 2 × I . The entry (k, p, i) of X
equals x(k+1)−pi , where k ∈ {0, . . . ,T − 1}, p ∈ {0, 1} and
i ∈ {0, . . . , I − 1}. Y is an output vector, whose length is T .
The entry (k) of Y equals yk . At the end of this operation,
we have 25796 samples (i.e. T = 25796). Note that for 73.5%
of these samples, the desired output is no fire; that is, the data
set is imbalanced. In addition, while we observe Tempera-
ture, SmokeObscuration, CarbonMonoxide, CarbonDioxide
and Oxygen, we have 5 sensors (i.e. I = 5). Accordingly,
in Fig. 4, we show the input tensor and output (label) vector
for rTPNN model.

Next, we shuffle these 25796 samples randomly and save
them. Finally, we perform CV on the shuffled data set.
Note that in order to achieve a fair comparison between

3We use the following experiments: SDC04-SDC07, and SDC36-SDC40.
The number of samples in each of these experiments is respectively as
follows: 1168, 222, 1372, 570, 5790, 4065, 3780, 2718, and 6120. Note that,
for each experiment, the number of samples will decrease by one while we
take {xk−1i }i∈{1,...,I } as an input.
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FIGURE 4. The dimensions of the input tensor and output vector of
rTPNN in the case where all samples are fed into the model at once.

the models, we shuffle the data set once and use it for all
models.

B. PARAMETER TUNING FOR STATE-OF-THE-ART MODELS
AGAINST WHICH rTPNN IS COMPARED
We now explain the internal architectures, parameter tuning
and the implementation details of the machine learning mod-
els that we have selected to compare with rTPNN model,
which are LR, NP, MLP, Kendall-MLP, PBNN, LSTM and
SVM.

In common, for all of these models, except SVM, we apply
thresholding on the output of the model, yk , after the training
of the model is completed. To this end, we update yk as

yk ← 1yk≥γ (4)

In other words, we set yk = 1, if yk ≥ γ and yk = 0,
if yk < γ , where γ denotes the value of threshold. Further-
more, for each of the nonlinear models (rTPNN, NP, MLP,
PBNN, LSTM and Kendall-MLP), we exhaustively search
for the best value of γ between 0 and 1 that maximizes the
performance of the model on the training set.

1) RECURRENT TREND PREDICTIVE NEURAL NETWORK
(rTPNN)
Recall that we need to determine only the number of hidden
layers H and the number of neurons nh at each hidden layer
h ∈ {1, . . . ,H}. To this end, we first set H = 3 because it is
known that the neural network with at least three nonlinear
layers is a universal approximator [70]. Then, we set the
number of neurons nh = I .(H − h) at each hidden layer
h ∈ {1, . . . ,H − 1}, and nh = dI/2e at h = H .

2) LINEAR REGRESSION (LR)
We select the LR as the simplest linear benchmark model.
Via LR, we simply compute the weighted sum of the sensory
inputs at current time t . The input of LR is the collection
{xki }i∈{1,...,I }, and the output is yk .

3) NONLINEAR PERCEPTRON (NP)
We select the NP as a nonlinear benchmark model. The archi-
tecture of the NP model is comprised of a single neuron with
a nonlinear activation function, whose input is {xki }i∈{1,...,I }
and output is yk . In addition, we set the activation function of
NP to sigmoid function.

4) MULTI-LAYER PERCEPTRON (MLP)
The recent works [6], [7] have shown that MLP is a highly
competitive model for multi-sensor fire detection. Thus,
we select MLP as one of the neural network models against
which the rTPNN will be compared. We use an MLP model
which is comprised of H hidden layers and an output layer
with a single neuron (namely, output neuron), where we set
H = 3. We set the number of neurons nh = I .(H −h) at each
hidden layer h ∈ {1, . . . ,H − 1}, and nh = dI/2e at h = H .
In addition, we set the activation function of each neuron at
each layer to sigmoid function.

5) KENDALL-τ COMBINED WITH MLP (KENDALL-MLP)
The Kendall-MLP model is proposed by Reference [67] for
multi-sensor fire detection. It is a fire detection method that
uses the trend of the sensor reading. This method computes
the trend via Kendall τ and predicts the fire via MLP based
on the sensor readings and trend of those. In [67], the results
on the subset of the data set that is also used in this paper
have shown that Kendall-MLP achieves better accuracy than
MLP andRadial Basis Function (RBF) neural network. In this
paper, for the MLP block in the Kendall-MLP model, we use
the architecture which is described above.

6) PROBABILISTIC BAYESIAN NEURAL NETWORKS
For multi-sensor fire detection, References [64] and [65]
have used the probabilistic neural networks which predict
a distribution of fire probability at each time. In this paper,
we compare the performance of our rTPNN model against
the Probabilistic Bayesian Neural Network (PBNN) [71]. The
architecture of PBNN is comprised of a batch normalization
layer, H = 3 hidden layers, a dense layer with two neurons
and an output layer which returns a distribution. At each time,
the fire probability is predicted as the mean of the distribution
at the output of PBNN. We set the number of neurons nh =
I .(H − h) at each hidden layer h ∈ {1, . . . ,H − 1}, and
nh = dI/2e at h = H . We also set the activation function
of each neuron at each hidden layer to sigmoid . In addition,
during the training of PBNN, the negative log likelihood is
considered as the cost function.

7) LONG-SHORT TERM MEMORY (LSTM)
The recent work [72] has proposed the usage of an unsuper-
vised model, which is the LSTM based Variational Autoen-
coder, for fire detection and has presented the performance for
each individual experiments in the data set that is considered
in this paper. Since the results of this paper are obtained
with the supervised models for fire detection, the compari-
son of LSTM based Variational Autoencoder against rTPNN
is not fair.4 (In this comparison, the supervised models

4The reason that the comparison between unsupervised LSTM based
Variational Autoencoder (LSTM-VAE) and supervised methods is unfair is
as follows: Since LSTM-VAE is an unsupervised model, it should be trained
by using only the data related with no fire cases. In this way, LSTM-VAE
does not require fire data (which is one of the most important properties of
the unsupervised approach). However, such an unsupervised method detects
fire later than the supervised models, where the recent work [72] has reported
that time to alarm of LSTM-VAE is about 180 seconds on average for the
experiments that are considered in this paper.
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TABLE 1. Comparison of fire detectors with respect to the cross-validation percentage accuracy.

(including rTPNN) would be advantageous.) On the other
hand, considering the success of LSTM based Variational
Autoencoder for fire detection in [72] and that of LSTM for
other problems onmultivariate time series data, we use LSTM
for performance comparison.

For the design of the LSTM model, we connect an LSTM
layer to the input of the MLP architecture which is explained
above. The inputs of the LSTM model are {xki }i∈{1,...,I } and
{xk−1i }i∈{1,...,I }, and the output of that is yk . In addition, for
the LSTM layer, we set the number of LSTM units to the
number of sensors, I .

8) SUPPORT VECTOR MACHINE (SVM)
Reference [6] used SVM with RBF kernel as the decision
maker for multi-sensor fire detection and showed that the
percentage of false positive alarms is less than 10%. Thus,
we selected SVM as the machine learning classifier to be
compared (where, the rest of the methods are the regression
models). We use RBF as the kernel of SVM. In addition,
we selected the value of C parameter from the set {0.1, 1, 10}
as to maximize the performance of SVM on training
set.

C. EVALUATION OF FIRE DETECTION PERFORMANCE
We now compare the performance of the rTPNN model with
that of each of the LR, NP, MLP, Kendall-MLP, PBNN,
LSTM and SVM as well as the benchmark single-sensor
detectors. To this end, we use sensors that measure

Temperature, Smoke Obscuration, and Carbon Monoxide,
Oxygen and Carbon Dioxide concentrations.5

1) FIRE DETECTION ACCURACY
First, we compare the fire detection methods with respect to
the CV performance. In this way, we analyze the generaliza-
tion ability of the detectors as well as the fire detection ability.

In Table 1, we present the fire prediction accuracy of each
of the detection methods on the training and test sets. In addi-
tion, in order to clearly show the ranking of the methods,
the rows of this table are ordered with respect to the accuracy
of the methods and are grouped into the Machine Learning
based Multi-Sensor Detectors and Single-Sensor Detectors
with a Threshold.

In this table, we see that the rTPNN based multi-sensor
detector achieves 96% accuracy and significantly outper-
forms all of the other fire detectors. In addition, when we
estimate the worst-case performance of the rTPNN model
as the subtraction of two standard deviation from the mean,
the worst-case performance is 93% for the test set which
is still better than the performance of the majority of other
methods.

Furthermore, Table 1 shows that the multi-sensor fire
detectors (especially combined with nonlinear models6) sig-
nificantly outperform the single-sensor detectors combined

5The headers for these sensor data in the data set are TCB_1, SMB_1,
GASB_1, GASB_3, GASB_5.

6In this paper, rTPNN, LSTM, Kendall-MLP, MLP, NP, PBNN and SVM
(with RBF kernel) are the nonlinear models.
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TABLE 2. Comparison of fire detectors with respect to each of the true positive rate, true negative rate, false positive rate, false negative rate.

with a threshold. Moreover, although the second best per-
forming methods, LSTM, Kendall-MLP and MLP perform
close to each other between 88% and 93%, the standard devi-
ation of the LSTM is higher than those of the Kendall-MLP
and MLP. That is, the worst-case performance of LSTM is
almost equal to that of Kendall-MLP.

2) METRICS OF CONFUSION MATRIX
In order to analyze the fire detection performance of the
methods in a more detailed way, in Table 2, we present
the percentage means of True Positive Rate (TPR), False
Negative Rate (FNR), True Negative Rate (TNR), and False
Positive Rate (FPR) as well as the standard deviations of
those. Note that TPR + FNR = 100 and the standard devia-
tion of TPR and that of FNR are equal to each other. Similarly,
TNR + FPR = 100 and standard deviation of TNR is equal
to that of FPR. Before the examination of the results in this
table, we shall note that 73.5% of the data set is comprised of
‘‘no fire’’ samples.

The results in Table 2 show that there is a significant
gap between the percentage TPR of the rTPNN based
multi-sensor detector and those of the other multi-sensor
detectors, where the value of this gap varies between 9% and
55%. Only the Oxygen sensor based detector with a threshold
achieves higher TPR than rTPNN. The reason is that this
detector triggers a fire alarm for the majority of the samples.
Accordingly, FPR of the Oxygen sensor based detector is
unacceptably high so the usage of this detector is unpractical.

Moreover, FPRs of all of the detectors except Oxygen
sensor based detector are below 6% which shows that those
models trigger a wrong alarm only for 6% of the no fire cases.

Furthermore, Table 2 shows that only the rTPNN model is
able to achieve high performance (above 92%) for both the
TPR and TNR, while 73.5% of the data set is comprised of
no fire samples. That is, rTPNN is the only model within the
investigated models that predicts both fire and no fire cases
with high success.

3) F1 SCORE, MCC, AND ROC curve
Now, we present the F1 Score, Matthews Correlation Coef-
ficient (MCC) and Receiver Operating Characteristic (ROC)
Curve of each of the compared multi-sensor methods for the
CV experiment.

First, Fig. 5 (top left) shows the average F1 Scores for
the multi-sensor detectors for CV experiment. In short,
the F1 score is the harmonic mean of the sensitivity (namely,
TPR percentage) and precision of the alarm decisions of a
method; thus, it measures the balance between sensitivity and
precision together. The sensitivity conveys how sensitive the
method against the fire cases, and the precision conveys how
accurate the alarm decisions of the method. Note that the
F1 Score takes values in the range [0, 1], where 1 indicates
perfect sensitivity and precision, and 0 indicates vice-versa.

In this figure, we see that the F1 Score for rTPNNmodel is
0.93which is very close to 1 and shows that the rTPNNmodel
is highly successful in terms of both sensitivity and precision.
In addition, the F1 Score of rTPNN model is significantly
higher than those of the other models, where the difference is
between 0.07 and 0.42.

Second, Fig. 5 (top right) displays the Matthews Correla-
tion Coefficient (MCC) for each of themulti-sensor detectors.
The MCC measures a binary classification performance by
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FIGURE 5. Comparison of the multi-sensor fire detectors with respect to the F1 Score (top left), MCC (top right) and ROC curve (bottom).

taking all of the true positives, true negatives, false positives,
and false negatives into account. The MCC is a balanced
measure for the imbalanced data sets and takes values in the
range [−1, 1], where 1 indicates perfect classification and
−1 indicates vice-versa [73].

In this figure, we see that rTPNN significantly outperforms
all of the other models with respect to MCC, where the
difference is between 0.08 and 0.44. The results show that
the performance gap between rTPNN and other models is
widened about 2% from F1 Scores to MCC. The reason is
thatMCC provides a balancedmeasure between labels for our
imbalanced data set while the label with more samples has a
significant effect on the F1 Score. In addition, these results
show that rTPNN is more robust against the imbalanced
data set than the other models, so it outperforms the other
models.

Finally, Fig. 5 (bottom) shows the ROC curve for each of
the multi-sensor detectors. For each model, the ROC curve
displays the trade-off between TPR (sensitivity) and FPR
(1−specificity). Basically, as the performance of a model
approaches perfect classification, its ROC curve converges
to the upper left corner of the figure (where TPR = 1 and
FPR = 0). In addition, note that an imaginary 45◦ line from
the lower left to upper right corner states the performance of
a random classifier. Furthermore, generally, the Area Under
Curve (AUC) is also important to measure the performance of
the model, where a higher AUC refers to better performance
and the AUC takes values in [0.5, 1].

Accordingly, in this figure, the ROC curve shows that
rTPNN outperforms all of the other models and that the gap
between the performance of rTPNN and perfect classifier is
highly small. The ROC curve also shows that rTPNN treats
both positive and negative labels almost equally while the
73.5% of the data set is comprised of no fire labels. Moreover,
the legends of Fig. 5 (bottom) show that the AUC of rTPNN
is 0.99, and the AUC gap between rTPNN and the second
best-performing model LSTM is 0.03 which is a wide gap
considering the best value of AUC is 1.

4) TIME TO ALARM
We now aim to compare the multi-sensor fire detectors
(machine learning models) with respect to the time that is
passed until the alarm, namely ‘‘time to alarm’’. To this end,
we train and test each method on each fire experiment; then,
we calculate the average time to alarm over the experiments.
Note that in this experiment, we do not include the False
Positive alarms for which the value of time to alarm is already
negative.

In Fig. 6, we present the results for an average time to alarm
of each model. The results in this figure show that the rTPNN
model captures the fire significantly (at least 11 seconds)
earlier than the other models due to its recurrent trend and
level predictor structure. In addition, we see that each of the
MLP, Kendall-MLP and LR triggers an alarm in 22 seconds
while SVM, LSTM, NP and PBNN trigger in 32, 33, 36 and
61 seconds, respectively.
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FIGURE 6. Comparison of the fire detectors with respect to the time passed between the start of the fire and the alarm.

5) ANALYSIS OF THE LEARNING CURVE OF rTPNN
In this subsection, we analyze the value of the MSE cost for
each of the training and test sets in the 10th fold of CV during
the training stage of rTPNN. These MSE costs are displayed
for the shuffled data set that is used throughout the results of
this paper in Fig. 7 (top) and for the data set that is not shuffled
in Fig. 7 (bottom).

In Fig. 7 (top), we clearly see that training loss and test
loss are similar to each other. The reason is that shuffling
the data randomly distributes samples from different exper-
iments; so that, the training set contains enough samples for
both fire and no fire data from different cases to have better
generalization ability. Supporting this reasoning, the results
in Fig. 7 (bottom) show that the test loss increases as training
loss decreases when the data set is not shuffled.

D. COMPUTATION TIME
We now present the comparison of the multi-sensor fire
detectors with respect to each of the training and execution
times. To this end, we measure the training time per epoch
and the execution time per prediction on a single experiment7

for the increasing number of sensors. For each number of
sensors I , we select I random sensors from the set of all
available sensors. In addition, we performed this experiment
on the Google Colab platform with no accelerator.

7For the computation time measurements, we evaluate the performance of
the methods on the experiment SDC05; however, another experiment may
be used instead of SDC05. The selection of the experiment will affect only
the training time proportional to its number of samples.

FIGURE 7. The MSE for training and test sets in 10th fold of CV during the
training of rTPNN for 5000 epochs for shuffled data set (top) which is
used during the results of this paper and for the data set which is not
shuffled (bottom).

In Fig. 8 (left), we present the training time per epoch
for each fire detection method for the increasing number of
sensors. We see that the training time of rTPNN increases
linearly with the number of sensors. The reason is that in
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FIGURE 8. Comparison of the multi-sensor detectors with respect to the training time per epoch (left) and execution time (right) for increasing number of
sensors.

the internal architecture of rTPNN (in Fig. 1) for each sensor
that is added to the fire detector, an SDP module is added
to the neural network. In addition, it is seen that the training
time rTPNN is higher than that of all of the other models for
I > 3. On the other hand, for the fire detectors, the training
of the detection method is performed offline, and the number
of sensors is practical up to (around) 5 sensors due to the
hardware costs; thus, the training time of rTPNN is highly
acceptable for the practical implementation while its perfor-
mance is superior to other methods.

Fig. 8 (right) shows the average execution time that is
spent for a single prediction by a multi-sensor fire detector
for increasing number of sensors. In this figure, we see that
the execution time of rTPNN increases almost linearly with
the number of sensors, where it is less than 0.6 ms even for
20 sensors. In addition, the execution time of the slowest
method is around 0.8ms, which is acceptable for the real-time
usage of the multi-sensor fire detectors.

V. CONCLUSION
We have proposed a novel Recurrent Trend Predictive Neural
Network (rTPNN) which captures the trends of time series
data via its recurrent internal architecture. rTPNN performs
data fusion on the multivariate time series with its cap-
tured trend values and significantly improves the prediction
performance.

We have evaluated the performance of rTPNN for the
multi-sensor fire detection on the publicly available data
set, and we presented the comparison of the performance of
rTPNN with those of LR, NP, MLP, Kendall-MLP, PBNN,
LSTM, and SVM. We have also demonstrated the perfor-
mance evaluation via cross-validation in order to evaluate
the generalization abilities of these models. According to
our results, we have achieved the following conclusions:
1) The rTPNNmodel outperforms all of the machine learning
models in terms of the prediction performance with high
generalization ability. 2) rTPNN is the only model among
the compared models which is able to achieve very low
percentages for both False Negative Rate and False Positive

Rate at the same time. 3) rTPNN triggers an alarmwithin only
11 s from the start of the fire, which is much earlier than the
other models.

Moreover, we have shown that the execution time of the
rTPNN model remains under 0.6 ms up to 20 sensors con-
nected to the fire detector. The execution time of rTPNN is
comparable with that of the other models for up to 5 sen-
sors while the performance of rTPNN is superior to that
of the other models. Thus, the rTPNN model is a success-
ful decision-maker for the real-time implementations of fire
detectors due to its great prediction performance and highly
acceptable execution time.

Even though we have presented rTPNN for the
multi-sensor fire detection, rTPNN is a general neural net-
work architecture that might be used for any prediction
(as well as the classification and forecasting) problem on
multivariate time series data. Based on the results of this
paper, we interpret that the rTPNNmodel will have an impact
on the various time series problems, especially where the
trend of data plays a crucial role.

Future work will extend the application area of the rTPNN
model beyond fire detection. In addition, we shall also
examine the hardware implementation of the rTPNN-based
multi-sensor fire detector and the performance evaluation of
that via real-time experiments.
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