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ABSTRACT

It is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is
only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate
that two-dimensional lattices described by the Bose–Hubbard model exhibit information scrambling for systems as little as two hexagons.
However, we also find that the out-of-time-ordered correlator (OTOC) shows the exponential decay characteristic for quantum chaos only
for a judicious choice of local observables. More generally, the OTOC is better described by Gaussian-exponential convolutions, which alludes
to the close similarity of information scrambling and decoherence theory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0199335

Despite initial and outspoken hesitation,1 quantum chaos has
established itself as a veritable field of modern research. How-
ever, whereas classically chaotic dynamics describes the behav-
ior of trajectories in phase space, quantum chaos refers to
the exponentially fast dispersion of information throughout a
quantum many-body system. Interestingly, quantum informa-
tion scrambling2 originated in a resolution of the black-hole
information paradox, in which it was recognized that any infor-
mation crossing the event horizon is chaotically scrambled across
the entire horizon.3 Yet, succinct analyses of the rate of quan-
tum information scrambling require the solution of complex
many-body dynamics. In the present analysis, we study such
complex dynamics, namely, the Bose–Hubbard model on two-
dimensional lattices. We find that already small lattices consist-
ing of two hexagons exhibit evidence of chaotic behavior, but
also that the geometry of the underlying lattice governs the over-
all behavior. Borrowing tools and ideas from decoherence theory
we re-emphasize previous results4 suggesting that information

scrambling and decoherence, i.e., loss of quantum information
into an environment share many similarities.

I. INTRODUCTION

Quantum information scrambling2 refers to the spread of ini-
tially localized quantum information throughout non-local degrees
of freedom in complex many-body systems.4–9 Arguably, the
most commonly used quantifier for the rate with which infor-
mation becomes non-local is the out-of-time-ordered correlator
(OTOC).10–16 In particular, an exponential scaling of the OTOC as a
function of time signifies quantumly chaotic dynamics,17–20 with cor-
responding quantum Lyapunov exponents.21–23 Note, however, that
while it has become common in the literature to refer to exponential
behavior of the OTOC as “quantum chaos,”24 quantum information
scrambling is not necessarily equivalent to chaotic signatures in the
energy level statistics.25–27
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In recent years, quantum information scrambling has attracted
significant interest, see for instance a recent perspective2 and
references therein. However, a comprehensive analysis of the
dynamics of complex many-body systems typically requires sophis-
ticated numerical tools. Hence, a large fraction of the literature
has focused on systems with effectively one-dimensional geome-
try, such as the disordered XXX chain28 or the mixed-field Ising
model.29,30 Note that paradigmatic examples of fast scramblers are
built from Sachdev–Ye–Kitaev (SYK) models23,31–35 or more abstract
networks,36–38 which, however, do not have a clear notion of physical
dimension.

In the present work, we study the dynamics of information
scrambling in lattices with a two-dimensional geometry. As a Hamil-
tonian, we choose the Bose–Hubbard model, for which chaotic
behavior has been reported.39,40 In this context, a two-dimensional
hard-core Bose–Hubbard lattice has also been studied experimen-
tally with a superconducting circuit to probe the nature of the infor-
mation dynamics.41 The Bose–Hubbard model is particularly inter-
esting, since it undergoes a second order quantum phase transition
from the superfluid phase to the Mott insulator phase.42–45 The quan-
tum critical region is strongly interacting, and the energy conserving
interactions between the quasi particles in this regime are respon-
sible for the thermalization of the system at strong couplings.16,46

Interestingly, it was found in Ref. 40 that the dynamics is quantum
chaotic at strong couplings and that the Lyapunov exponent dis-
plays a maximum around the quantum critical region. Moreover,
the eigenvalue statistics, excessive kurtosis of eigenstates, and the
eigenstate thermalization hypothesis have been analyzed.47

What makes the Bose–Hubbard model particularly interesting
is the fact that in hexagonal lattices the two-dimensional system
exhibits Dirac points in the energy bands, which describes the
motion of effectively relativistic dynamics.48 It appears plausible that
the dispersion relation governs the rate with which information can
be scrambled, and hence it is only natural to study the effect of the
lattice geometry on the dynamics of the OTOC in scrambling sys-
tems. Indeed, we find that in two-dimensional lattices, the OTOC is
sensitive to the neighborhood of support of initial local operators,
and that it displays a transition from Gaussian to near exponen-
tial decay as we change the configuration of the lattices and/or
increase their sizes. Interestingly, when using the OTOC as a scram-
bling quantifier, it has been argued that decoherence and scrambling
dynamics are hardly distinguishable in open systems.4,49 This is fur-
ther supported by our current findings, as the OTOC is, indeed, best
described by a convolution of Gaussian and exponential function,
which is in full analogy to the decoherence factor.50

II. PRELIMINARIES

We start by establishing notions and notations, and by specify-
ing the model.

A. The Bose–Hubbard model

The Hubbard model was originally developed to describe
strongly correlated electrons in solids.51 As such, creation and
annihilation operators were equipped with the fermionic commu-
tation relation. Yet, also the corresponding bosonic version has

found widespread applications, in, for instance, describing optical
lattices.52

The Hamiltonian is usually written as

H = −J
∑

〈i,j〉

(

a
†
i aj + a

†
j ai

)

+
U

2

∑

i

ni (ni − 1) , (1)

where J is the hopping coefficient, U is the on-site potential, and

ni = a
†
i ai describes the number of bosons at site i. Note that the

lattice geometry is entirely encoded in the first sum.
The Bose–Hubbard model exhibits a quantum phase transi-

tion. When the first term in Eq. (1) is dominant, then the bosons
can freely hop from one site to another and thus condense into a
superfluid phase. On the other hand, when the second term is dom-
inant, then the bosons have to pay a high potential cost to condense
into a single site, and thus they prefer to stay at their respective sites
resulting in a Mott insulator state. This transition was observed in
ultracold atoms in optical lattices,53 and it has been demonstrated
that the behavior around the critical point is well-described by the
Kibble–Zurek mechanism.44,54–56

In the following analysis, we will study the dynamics of spread-
ing information through different lattice geometries. As a main
diagnostics tool, we will be using the OTOC. For a brief discussion
of other quantifiers of scrambling, we refer to the Appendix.

B. Quantifying scrambling—The OTOC

In classical Hamiltonian dynamics, chaos can be identified
from the exponential growth of the Poisson bracket.57 Hence,
arguably the most prominent tool to diagnose scrambling of quan-
tum information is a closely related quantity—the OTOC.12

The OTOC is a four-point correlation function that measures
the growth of operators in the Heisenberg picture, and it can be
written as

OTOC(t) = 〈ψ | A†(t)B†A(t)B |ψ〉 , (2)

where A and B are two local operators, A(t)= exp (iHt)A exp (−iHt)
is the time-evolved operator in the Heisenberg picture, and H is the
Hamiltonian describing the system of interest. Moreover, |ψ〉 is an
initial state of the system. Since A and B are initially local operators,
usually defined at two different sites on a lattice, they commute with
each other. However, with time, A(t) develops support on other sites
in the lattice and as a result [A(t), B] 6= 0.

It is easy to see that at t = 0 we simply have OTOC(0) = 1,
and that for t > 0, we observe OTOC(t) < 1. For spatial systems,
we can associate a velocity with the OTOC, called the butterfly
velocity.18,58 This velocity characterizes local operators’ growth in
time. For non-relativistic lattices, the Lieb–Robinson velocity places
an upper bound on the size of time-evolved operators and is state
independent.59–61 It has been shown that the butterfly velocity is an
effective state-dependent Lieb–Robinson velocity.5

It is interesting to note that the OTOC (2) is experimen-
tally accessible. For instance, in a variety of experiments with
ion traps, Eq. (2) has been measured directly62–64 as well as
spectroscopically.65,66 For a more comprehensive exposition of
recent experiments, we refer to a timely Perspective.2
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III. SCRAMBLING IN 2D

To analyze the scrambling properties of the Bose–Hubbard
model, we solved the ensuing dynamics numerically. To this end,
we used Krylov subspace methods67 to compute the time evolution
operator. For the present purposes, we chose the following OTOC:

OTOC(t) =
〈

a
†
j (t)a

†
i aj(t)ai

〉

ψ
, (3)

where i and j are a pair of specific sites in the lattice, and the ini-
tial state is chosen to be all-up, ψ = |1, 1, 1, . . .〉. In the Appendix
we briefly present results for one-dimensional lattices with periodic
boundary conditions. For a lattice with six sites and six bosons, we
observe convincing evidence of scrambling in the superfluid phase.

A. Triangular and square geometries

We start with the simplest two-dimensional geometries, before
systematically building up to hexagonal geometries.

a. Triangular unit cell. In Fig. 1 we plot the OTOC (3) for a
small lattice comprising two triangles. We observe a rapid decay of
the OTOC, followed by sizable fluctuations. This evidences the small
system size, which makes an analysis of universal properties of the
dynamics inconclusive.

b. Square unit cell. We continue with the next simplest geom-
etry, namely, a finite lattice comprised of two squares. The corre-
sponding results are depicted in Fig. 2. We observe qualitatively
the same behavior as for the triangular cases. Note, however, that
the fluctuations from the finite-size effects are significantly less
pronounced.

c. Triangular-square unit cell. As a final example, before moving
on to hexagonal geometries, we consider a mixed case. In Fig. 3 we
summarize findings for lattice configurations that are comprised of
a triangle and a square. We find that the increased complexity of the
geometry does not lead to qualitatively different behavior, but rather
that the dynamics is still governed by finite-size effects. In fact, the
irregular fluctuations of the OTOC are more pronounced than for
the regular square configurations in Fig. 2.

B. Hexagonal geometries

From the simplest geometries discussed so far, we have found
that while the OTOC does exhibit the decay characteristic for scram-
bling, finite-size effects govern the dynamics. The situation becomes
more interesting for hexagonal geometries.

a. Strip with neighboring local operators. We start with choosing
the local operators to be on neighboring sites and consider “strip”
configurations with one, two, and three hexagons. For the ease of
notation, we refer to lattices comprised of n hexagons simply as “n

FIG. 1. OTOC (3) as a function of Jt, for two configurations of the triangular lattice
for U/J = 4 and J = 4. (a) Configuration 1. (b) Configuration 2.

hex.” See Fig. 4 for an illustration. The yellow circles in each lattice
indicate the support of the initially local operators in the OTOC (3).

Our results are summarized in Fig. 5. Observe that at early
times, the decay of the OTOC (3) is independent of the size of the
systems. Early in the evolution quantum information remains local-
ized in the first hexagon, and only as time progresses excitations
travel farther into the lattice. This observation is further supported
by the fact that the OTOC for 2 hex departs from the behavior of 3
hex later than the OTOC for 1 hex.

b. Strip with distant local operators. The observed behavior for a
second configuration is similar, while also markedly different. If the
initial operators are chosen on “distant” lattice sites, as illustrated in
Fig. 6, we again find the early time dynamics to be independent of
the size of the system. This is depicted in Fig. 7. However, we also
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FIG. 2. OTOC (3) as a function of Jt, for three configurations of the square
lattice for U/J = 4 and J = 4. (a) Configuration 1. (b) Configuration 2.
(c) Configuration 3.

notice an earlier departure of the three curves, as well as a much
weaker decay of the OTOC at very early times.

c. Bose–Hubbard flakes. As a third and final example, we solved
the dynamics of a “flake” configuration with distant local operators,
cf. Fig. 8. The resulting OTOC is depicted in Fig. 9. We observe qual-
itatively similar behavior to the strip configuration with distant local
operators, cf. Fig. 7.

C. Quantum chaos in the Bose–Hubbard model

As mentioned above, quantum chaotic dynamics are indicated
by an exponential decay of the OTOC (3), whereas non-chaotic
scrambling leads to a slower decay at early times. Thus, we fitted
the initial behavior of the OTOC to a simple exponential,

OTOC(t) ∼ exp (λ (t − |x|/v)) (4)

FIG. 3. OTOC (3) as a function of Jt, for three configurations of the triangu-
lar-square lattice for U/J = 4 and J = 4. (a) Configuration 1. (b) Configuration 2.
(c) Configuration 3.

FIG. 4. Three sizes of the finite hexagonal lattice with neighboring local operators.
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FIG. 5. OTOC (3) as a function of Jt for a strip with neighboring local operators
as illustrated in Fig. 4 for U/J = 4 and J = 4.

as well as to a Gaussian function,

OTOC(t) ∼ exp
(

λ (t − |x|/v)2
)

. (5)

The rationale for this particular choice will become apparent shortly.
Note that v is the butterfly velocity, i.e., the rate with which quasi-
particle excitations travel through the lattice.

In Table I, we summarize our findings for the strip with distant
local operators, cf. Fig. 6. Interestingly, we find that for 1 hex and 2
hex, the Gaussian fit (5) describes the behavior to much higher accu-
racy than the exponential fit (4). However, for 3 hex, the Gaussian
fit predicts negative butterfly velocities, which is unphysical. Rather,
the exponential fit is a much better approximation.

FIG. 6. Three sizes of the finite hexagonal lattice with distant local operators.

FIG. 7. OTOC (3) as a function of Jt for a strip with distant local operators as
illustrated in Fig. 6 for U/J = 4 and J = 4.

Similar results are found for the flake configuration in Fig. 8.
The fitting parameters for the OTOC depicted in Fig. 9 are summa-
rized in Table II. We find that 2 hex and 3 hex are best described
with an exponential fit (4).

Our findings indicate that the dynamics in Bose–Hubbard lat-
tices with hexagonal unit cells becomes chaotic for as little as 2 to 3
hexagons. Moreover, we observe a Gaussian to exponential transi-
tion, which strongly reminds of similar observations in decoherence
theory.68

IV. DECOHERENCE VS SCRAMBLING

Interestingly, such a Gaussian to exponential transition has
been discussed in the literature on the decoherence factor in open

FIG. 8. Three sizes of the finite hexagonal lattice, including the Bose–Hubbard
flake.
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FIG. 9. OTOC (3) as a function of Jt for the Bose–Hubbard flake for distant local
operators as illustrated in Fig. 6 for U/J = 4 and J = 4.

quantum systems.50 In this context, see also earlier work69,70 dis-
cussing the dynamical consequences of generic energy eigenspectra
and local density of states.

In the decoherence picture, consider a composite system SE

described by the Hamiltonian

HSE = λσz ⊗ HI + HE , (6)

where HI,E acts on the environment and σz is the Pauli Z oper-
ator acting on the qubit system S . Initializing SE in a product
state, ρSE(0) = ρS(0)⊗ ρE(0), the decoherence function r(t) can
be written as

r(t) = 〈n| exp (iHE t) exp (−i(HE + λHP)t) |n〉 , (7)

where |n〉 are the eigenstates of HE and HP ∝ HI. Note that Eq. (7)
is a Loschmidt echo.71–73

TABLE I. Fitting parameters (including the “goodness” χ 2) for the OTOC (3) resulting

from the strip with distant local operators in Fig. 7. The bold faced line indicates the

best fit.

Lattice Fit type λ v χ 2

1 hex Gaussian −26.310 14.754 0.015
Exponential −5.619 13.299 0.406

2 hex Gaussian −16.352 16.389 0.005
Exponential −16.351 8.194 0.231

3 hex Gaussian −3.072 −9.591 0.004
Exponential −3.734 12.551 0.055

TABLE II. Fitting parameters (including the “goodness”χ 2) for the OTOC (3) resulting

from the flake with distant local operators in Fig. 9. The bold faced line indicates the

best fit.

Lattice Fit type λ v χ 2

1 hex Gaussian −26.310 14.754 0.015
Exponential −5.619 13.299 0.406

2 hex Gaussian −2.536 −9.848 0.034
Exponential −3.024 12.218 0.153

3 hex Gaussian −2.330 −9.481 0.066
Exponential −3.003 11.205 0.248

Yan and Zurek50 then showed that Eq. (7) can be expressed as a
convolution of Gaussian and exponential functions,

r(t) ∝ exp (−τ t/2) ∗ exp
(

−σ 2t2/2
)

∝
∑

±

exp

(

±τ t

2

)

Erfc

(

τ/2 ± σ 2t
√

2σ

)

, (8)

where ∗ denotes convolution and Erfc refers to the error function.
In Ref. 50, it is shown explicitly that under rather general assump-
tions the overlap between the eigenstates of HE and eigenstates of
HE + λHP gives rise to a Lorentzian of width τ , whose Fourier
transform is the exponential in Eq. (8). The Gaussian contribution
comes from the spectral density of the Hamiltonian containing local
terms, which is assumed to be a Gaussian with standard deviation σ .

Remarkably, the same authors also showed in Ref. 68 that the
Haar-averaged OTOC (2) can also be written as a Loschmidt echo.
Hence, it is not far-fetched to realize that also in our present case the
behavior of the OTOC (3) should be well-described by the Gaussian-
exponential convolution (8).

To this end, consider that a small local subsystem, i.e., a small
subset of the lattice sites, is designated as system, and the remain-
ing lattice sites as environment. Then, the local operator A is chosen
to live on the support of the system, and B has support initially
only in the environment. In this picture, it becomes immediately
obvious that the OTOC (3) is identical to the decoherence function
describing the loss of coherence from the “system” into the larger
lattice.

Accounting for reflected quasi-particle excitations due to the
finite size of the lattice, we write

OTOC(t) = P exp

(

−τ t

2

)

Erfc

(

τ/2 − σ 2t
√

2σ

)

+ Q exp

(

τ t

2

)

Erfc

(

τ/2 + σ 2t
√

2σ

)

, (9)

TABLE III. Fitting parameters (including the “goodness” χ 2) for the OTOC (3) as

convolution function (9) resulting from the strip with distant local operators in Fig. 7.

Lattice τ σ τ /σ χ 2

1 hex 1.822 0.122 14.934 0.085
2 hex 1.707 0.163 10.472 0.044
3 hex 0.751 1.138 0.660 0.006
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TABLE IV. Fitting parameters (including the “goodness” χ 2) for the OTOC (3) as

convolution function (9) resulting from the flake with distant local operators in Fig. 9.

Lattice τ σ τ /σ χ 2

1 hex 1.822 0.122 14.934 0.085
2 hex 0.495 0.875 0.566 0.039
3 hex 0.667 0.954 0.699 0.079

where P and Q are free parameters. Using Eq. (9), we fitted our
earlier results again, and the results are summarized in Tables III
and IV.

Note that when τ � σ , the convolution function equation (8)
reduces to a Gaussian, whereas when τ � σ , it reduces to an expo-
nential. We immediately observe that (i) the convolution is a much
better description of the OTOC, and (ii) that the more sophisticated
fit is consistent with our above results.

More importantly, we conclude that for two-dimensional
Bose–Hubbard lattices, the behavior of the OTOC is remarkably
well-described by a decoherence model. This is consistent with ear-
lier findings that highlight the close relationship of information
scrambling and decoherence.4

V. CONCLUDING REMARKS

In this paper, we have studied the notion of information scram-
bling in two-dimensional lattices described by the Bose–Hubbard
model. We have found that for as little as 2 hexagons the OTOC
shows the characteristic exponential decay indicating quantum
chaotic behavior. However, we have also found that the scrambling
dynamics is highly sensitive to the choice of local operators and
lattice configuration. In particular, for “flake” configurations, the
OTOC decays more akin to decoherence functions as described by a
Gaussian-exponential convolution, rather than exhibiting a chaotic,
exponential decay.
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APPENDIX: SCRAMBLING IN 1D

For completeness and to verify our numerical approach, we
also solved for the dynamics of the one-dimensional Bose–Hubbard
model. As for the two-dimensional case, we computed the OTOC
(3) and also other quantifiers of scrambling.

a. Mutual information. In Ref. 74, it was shown that the mutual
information is a thermodynamically well-motivated quantifier of
scrambling. For two subsystems A and B, the bipartite mutual
information between A and B is given by

I(A : B) = SA + SB − SAB, (A1)

where SX = −tr
{

ρX ln ρX

}

is the Von-Neumann entropy of the
corresponding subsystem X.

In Ref. 74, it was shown that the change in Haar-averaged
OTOC is upper bounded by the change in bipartite mutual infor-
mation,

1〈OTOC(t)〉Haar ≤ 1I(A : B)(t), (A2)

where 1〈OTOC(t)〉Haar = 1 − 〈OTOC(t)〉Haar is a monotonically
growing function. This means that1I(A : B) also has to be growing
in time.

b. Tripartite mutual information. Another such information-
theoretic quantity that does not depend on the choice of opera-
tors is tripartite mutual information (TMI). The tripartite mutual
information (TMI) between the three subsystems A, B, and C
reads

I3(A : B : C) = I(A : B)+ I(A : C)− I(A : BC). (A3)

Information is said to be scrambled for systems comprised of
B ⊗ C if TMI becomes negative.28,75–77 This means that the infor-
mation about A in BC combined has to be greater than the total
information about A that B and C have separately.

c. Numerical results. Various measures of scrambling for one
hexagonal lattice with six sites, six bosons, and local operators
defined over any two nearest neighbor sites on the lattice are shown
in Fig. 10. We find that the Bose–Hubbard model shows information
scrambling only when U � J.

The OTOC shows a rapid decay followed by small oscilla-
tions. Mutual information, over equal bi-partitions of the system,
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FIG. 10. Information scrambling in the one-dimensional Bose–Hubbard model. The scrambling of this model is consistently captured by the bipartite, tripartite mutual
information, and the OTOC for U/J = 4 and J = 4.

rises rapidly and oscillates about a steady value thereafter. We find
that the OTOC for a specific choice of operators (not averaged
over) also obeys (A2). The initial state for TMI is |ψ〉 = (|0〉A |1〉B

+ |1〉A |0〉B) |1, 1〉C |1, 1, 1〉D, where BCD evolves via the Bose–
Hubbard Hamiltonian and A remains stationary. The TMI becomes
negative and fluctuates about a steady negative value afterward.
Therefore, we find that all three quantities indicate the scrambling of
quantum information in the Bose–Hubbard Model, which confirms
the validity of our approach.
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