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Abstract. Finding the ground state of the Ising model is an impor-
tant problem in condensed matter physics. Its applications spread far
beyond physic due to its deep relation to various combinatorial optimiza-
tion problems, such as travelling salesman or protein folding. Sophisti-
cated new methods for solving Ising instances rely on quantum anneal-
ing, which is a paradigm of quantum computation. However, commer-
cially available quantum annealers are still prone to errors, and their
ability to find low energetic states is limited. This naturally calls for a
post-processing procedure to correct errors. As a proof-of-concept, this
work combines the recent ideas revolving around the DIRAC architec-
ture with the Chimera topology and applies them in a real-world setting
as an error-correcting scheme for D-Wave quantum annealers. Our pre-
liminary results show how to correct states output by quantum annealers
using reinforcement learning. Our approach exhibits excellent scalability,
as it can be trained on small instances. However, its performance on the
Chimera graphs is still inferior to Monte Carlo methods.

Keywords: Quantum error correction · Quantum annealing · Deep
reinforcement learning · Graph neural networks

1 Introduction

Many significant optimization problems can be mapped onto the problem of find-
ing the ground state of the Ising model. Among them are Karp’s 21 NP-complete
problems [11], the travelling salesman [10], the protein folding problems [1] and
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Fig. 1. Overview of our method. Arrows represent subsequent steps. First, we define
the Ising instance. Then we obtain the proposed solution from a quantum annealer.
White (black) nodes represent spin σi = 1 (−1). Edges represent couplings. In the
next step, we encode such an instance using a graph neural network into the matrix of
encodings, where each row zi corresponds to the embedding of a vertex. This matrix
is passed through a decoder to obtain Q-values of actions associated with each vertex.
The spin flipping procedure involves “flipping” spins one by one according to Q-Values
and recording the energy state after each step.

financial portfolio management [16] to name just a few. Promising new methods
for solving Ising instances rely on quantum annealing.

The latter is a form of quantum computing, well-tailored for discrete opti-
mization [7,17]. It is closely related to adiabatic quantum computation [12], a
paradigm of universal quantum computation which relies on the adiabatic the-
orem [8] to perform calculations. It is equivalent, up to polynomial overhead, to
the better-known gate model of quantum computation [12]. Nevertheless, com-
mercially available quantum annealers are prone to various errors, and their
ability to find low energetic states is limited.

Inspired by the recently proposed deep Reinforcement Learning (RL) method
for finding spin glass ground states [3], here, we propose a new post-processing
error correction schema for quantum annealers called Simulated Annealing with
Reinforcement (SAwR). This procedure combines deep reinforcement learning
with simulated annealing (SA). We employ a graph neural network to encode
the Ising instance into an ensemble of low-dimensional vectors used for RL.
The agent learns a strategy for improving solutions outputted by the D-Wave
annealer. The process of finding the lower energy state involves “flipping” spins
one by one according to the learned strategy and recording the energy state after
each step. The solution is defined as the lowest energy state found during this
procedure. Figure 1 presents an overview of this method. In SAwR, we start with
SA, and at low temperature, we replace the Metropolis-Hasting criterion with a
single pass of the spin flipping procedure.
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2 Results

Ising Problem and Quantum Annealing. The Ising problem is defined on
a graph G = (V, E). Its Hamiltonian is given by [15]:

HIsing =
∑

〈i,j〉∈E

Jijσiσj +
∑

i∈V
hiσi, (1)

where σi±1 is the i-th spin, 〈i, j〉 denotes neighbours in G, Jij strength of inter-
action between i-th and j-th spin, hi is an external magnetic field. Our goal is to
find the ground state, which corresponds to the minimal energy ofHIsing, which is
NP-hard. Quantum annealing is one of the methods for finding the ground state
of (1). This can be achieved by the adiabatic evolution from the initial Hamilto-
nian HX of the transverse field Ising model to the final Hamiltonian HIsing. The
Hamiltonian for such process is described by H(t) = A(t)HX+B(t)HIsing, where
HX =

∑
i σ̂i

x and σ̂i
x is the standard Pauli X matrix acting on the i-th qubit.

The function A(t) decreases monotonically to zero, while B(t) increases mono-
tonically from zero, with t ∈ [0, tf ], where tf denotes the annealing time [6,17].

Reinforcement Learning Formulation. We consider a standard reinforce-
ment learning setting defined as a Markov Decision Process [18] where an
agent interacts with an environment over a number of discrete time steps
t = 0, 1, . . . , T . At each time step t, the agent receives a state st and selects
an action at from some set of possible actions A according to its policy π, where
π is a mapping from set of states S to set of actions A. In return, the agent
receives a scalar reward rt and moves to the next state st+1. The process contin-
ues until the agent reaches a terminal state, sT , after which the process restarts.
We call one pass of such a process an episode. The return at time step t, denoted,
Rt =

∑T−t
k=0 γkrt+k is defined as a sum of rewards that the agent will receive for

the rest of the episode discounted by the discount factor γ ∈ (0, 1]. The goal is
to maximize the expected return from each state st. The basic components, in
the context of the Ising spin-glass model, are:

• State: s represents the observed spin glass instance, including the spin con-
figuration σ, the couplings {Jij} and values of the magnetic field {hi}.

• Action: a(i) refers to the flip of spin i, i.e., changing is value to the opposite.
For example, after the agent performs an action, a(i), σi = 1 becomes −1.

• Reward: r(st; a
(i)
t ; st+1) is the energy change after flipping spin i from state

st to a new state st+1.

Starting at t = 0, an agent flips one spin during each time step, which moves
him to the next state (different spin configuration). The terminal state sT is met
when the agent has flipped each spin. The solution is defined as the spin config-
uration σ corresponding to the lowest energy state found during this procedure.
An action-value function Qπ(s, a) = E(Rt | st = s, at = a) is the expected
return for selecting action a in state s and following policy π. The value Qπ(s, a)
is often called Q-value of action a in state s. The optimal action-value func-
tion, Q∗(s, a) = maxπ Qπ(s, a) which gives the maximum action value for state
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s and action a achievable by any policy. As learning of the optimal action-value
function is in practice infeasible, We seek to learn the function approximator
Q(s, a;Θ) ≈ Q∗(s, a) where Θ is a set of learnable model parameters. We denote
policy used in such approximation as πΘ.

Model Architecture. Our model architecture is inspired by DIRAC (Deep
reinforcement learning for spIn-glass gRound-stAte Calculation), an Encoder-
Decoder architecture introduced in [3]. It exploits the fact that the Ising spin-
glass instance is wholly described by the underlying graph. In this view, couplings
Jij become edge weights, external magnetic field hi and spin σi become node
weights. Employing DIRAC is a two-step process. At first, it encodes the whole
spin-glass instance such that every node is embedded into a low-dimensional
vector, and then the decoder leverages those embeddings to calculate the Q-value
of every possible action. Then, the agent chooses the action with the highest Q-
value. In the next sections, We will describe those steps in detail.

Encoding. As described above, the Ising spin-glass instance can be described in
the language of graph theory. It allows us to employ graph neural networks [4,5],
which are neural networks designed to take graphs as inputs. We use modified
SGNN (Spin Glass Neural Network) [3] to obtain node embedding. To capture
the coupling strengths and external field strengths (Jij and hi), which are crucial
to determining the spin glass ground states, SGNN performs two updates at each
layer: the edge-centric update and the node-centric update, respectively.

Let’s z(i,j) denote embedding of edge (i, j) and z(i) embedding of node i.
The edge-centric update aggregates embedding vectors from its adjacent nodes
(i.e. for edge (i, j) this update aggregate embeddings z(i) and z(j)), and then
concatenates it with self-embedding z(i,j). The vector obtained in this way is
then subject to non-linear transformation (ex. ReLU(x) = max(0, x)). Mathe-
matically, it can be described by the following equation

zk+1
(i,j) = ReLU(γθ(zk(i,j)) ⊕ φθ(zk(i) + zk(j))), (2)

where zk(i,j) denotes encoding of edge (i, j) obtained after k layers. Similarly,
zk(i) denotes encoding of node i obtained after k layers, γθ and φθ are some
differentiable functions of θ. Symbol ⊕ is used to denote concatenation operation.

The node-centric update is defined in a similar fashion. It aggregates embed-
ding of adjacent edges and then concatenates it with self-embedding z(i). Later,
we transform this concatenated vector to obtain the final embedding. Using
notation from equation (2), the final result is the following:

zk+1
(i) = ReLU(φθ(zk(i)) ⊕ γθ(Ek

i )), Ek
i =

∑

j

zk(i,j). (3)

Edge features are initialized as edge weights {Jij}. It is not trivial to find ade-
quate node features, as node weights {hi} and spins σi are not enough.

We also included pooling layers not presented in the original design. We
reasoned that after concatenation, vectors start becoming quite big, so we employ
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pooling layers to not only reduce the model size but also preserve the most
essential parts of every vector. As every node is a potential candidate for action,
we call the final encoding of node i its action embedding and denote it as Zi.
To represent the whole Chimera, we use state embedding, denoted as Zs, which
is the sum over all node embedding vectors, which is a straightforward but
empirically effective way for graph-level encoding [9].

Decoding. Once all action embeddings Zi and state embedding Zs are com-
puted in the encoding stage, the decoder will leverage these representations to
compute an approximated state-action value function Q(s, a;Θ) which predicts
the expected future rewards of taking action a in state s, and following the policy
πΘ till the end. Specifically, we concatenate the embeddings of state and action
and use it as decoder input. In principle, any decoder architecture may be used.
Here, we use a standard feed-forward neural network. Formally, the decoding
process can be written as Q(s, a(i);Θ) = ψΘ(Zs ⊕ Zi), where ψΘ is a dense
feed-forward neural network.

Training. We train our model on randomly generated Chimera instances. We
found that the minimal viable size of the training instance is C3. Smaller
instances lack couplings between clusters, crucial in full Chimera, which leads
to poor performance. We generate {Jij} and {hi} from a normal distribution
N (0, 1) and starting spin configuration σ from a uniform distribution. To intro-
duce low-energy instances, we employed the following pre-processing procedure.
For each generated instance, with probability p = 10%, we perform simulated
annealing before passing the instance through SGNN.

Our goal is to learn approximation of optimal action-value function
Q(a, s;Θ), so as the reinforcement learning algorithm we used standard n-step
deepQ learning [13,14] with memory replay buffer. During the episode, we collect
sequence of states action and rewards τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT )
with terminal state as final element. From those we construct n-step transi-
tions τn

t = (st, at, rt,t+n, st+n) which we collect in memory replay buffer B. Here
rt,t+n =

∑k=n
k=0 γkrt+k is return after n-steps.

Simulated Annealing with Reinforcement. Simulated annealing with rein-
forcement (SAwR) combines machine learning and classical optimization algo-
rithm. Simulated annealing (SA) takes its name from a process in metal-
lurgy involving heating a material and then slowly lowering the temperature
to decrease defects, thus minimizing the system energy. In SA, we start in some
state s and in each step, we move to a randomly chosen neighbouring state s′. If a
move lowers energy E(s) of the system, we accept it. If it doesn’t, we use the so-
called the Metropolis-Hasting criterion: P(accept s′ | s) = min(1, e−β∆E), where
∆E = E(s′) − E(s) and β denotes inverse temperature. In our case, the move
is defined as a single-spin flip. Simulated annealing tends to accept all possible
moves at high temperatures. However, it likely accepts only those moves that
lower the energy at low temperatures.
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Our idea is to reinforce random sampling with the trained model. As a result,
instead of using the Metropolis-Hasting criterion, we perform a single pass of
the DIRAC episode at low temperatures, as described in the caption of Fig. 1.

3 Experiments

We collected data from the D-Wave 2000Q device using default parameters by
generating 500 random instances of sizes 128, 512, 1152, and 2048 spins. Parame-
ters {Jij} and {hi} were generated from a normal distribution N (0, 1) and initial
spin configuration, σ, from a uniform distribution. We used identical distribu-
tions for training instances. The low energy states of generated instances were
obtained using quantum annealing. We have used three methods - simulated
annealing, SAwR, and D-wave steepest descend post-processing [2], cf., Fig. 2.
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Fig. 2. Results of the experiments. SAwR is the simulated annealing with reinforce-
ment. The probability of finding a lower energy state was computed over 500 random
instances for each Chimera size. The value of the improvement was defined as the
difference between the initial energy and the lowest energy found.

Two metrics were tested: the probability of finding lower energy states and
the mean value of an improvement over the starting energy state. To compute the
probability for each Chimera size, we started with proposed solutions obtained
from quantum annealer and tried to lower them using different tested methods.
Then we counted those instances for which a lower energy state was found. We
define the value of the improvement as the difference between the initial energy
and the lowest energy found.

SAwR achieved lower probabilities of finding a lower energy state. Although
the difference between SAwR and traditional simulated annealing is slight, its
consistency across all sizes suggests that it is systemic rather than random noise.
It is interesting that, on average, SAwR was able to find a better low energy state
than simulated annealing, but still, the difference is not significant.
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