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Abstract in Polish

W ostatnich dziesięcioleciach społeczność naukowa była świadkiem szybkiej ewolucji
komputerów, w wyniku której powstały potężne urządzenia połączone z wyrafi-
nowanymi metodami obliczania trudnych zadań, co pozwoliło zrewolucjonizować
sposób, w jaki rozumiemy i przetwarzamy informacje. Jednocześnie społeczność
naukowa jest świadkiem pojawienia się nowego paradygmatu: technologia kwan-
towa to obiecująca dziedzina, która potencjalnie zapewnia korzyści obliczeniowe.
W szczególności kultowe algorytmy Shora i Grovera zwróciły uwagę środowiska
informatycznego teoretyczną możliwością budowania algorytmów szybszych w po-
równaniu do obecnie znanych dla komputerów konwencjonalnych.

Oprócz tego, w miarę zbliżania się do fizycznych granic obecnej architektury,
poszukiwanie alternatywnych metod obliczeniowych przyczynia się również do
badań i rozwoju tak zwanych komputerów kwantowych. Jednak wysiłki mające na
celu zbudowanie odpornych na uszkodzenia systemów przetwarzania kwantowego
zakończyły się skromnym sukcesem. Wdrażane obecnie urządzenia kwantowe są
ograniczone skalą i hałaśliwe i znane są jako komputery kwantowe o średniej
skali szumu (NISQ). W tym scenariuszu metody hybryd kwantowo-klasycznych,
takie jak wariacyjne algorytmy kwantowe (VQA) i wyżarzanie kwantowe, okazały
się kandydatami do wykonywania zadań optymalizacyjnych w tak ograniczonym
scenariuszu. W szczególności możliwość zastosowania łagodzenia błędów, późniejszej
selekcji i lepsze zrozumienie krajobrazów energetycznych może poprawić jakość
wyników VQA dla urządzeń NISQ.

Poza tym można zadać sobie pytanie, co w danej chwili potrafi komputer
kwantowy. Na przykład interesujące jest wiedzieć, czy komputer kwantowy jest
gotowy do wykonywania zadań związanych ze sztuką i kreatywnością. Mówiąc
dokładniej, poprzez adaptację ich do problemów optymalizacyjnych sformułowanych
do rozwiązania w urządzeniach do wyżarzania.

W tej pracy zaproponowałem dyskusję na temat ulepszenia protokołów przy-
jaznych NISQ w podejściu opartym na bramkach. Przedstawiamy dwie metody:
pierwsza to schemat łagodzenia błędów w wariacyjnych obwodach kwantowych
poprzez postselekcję w obwodzie środkowym. Podejście to opiera się na badaniu
prawidłowych podprzestrzeni uzyskanych za pomocą różnych kodowań, takich jak

11



Polish abstract

kodowanie one-hot, k-hot, kodowanie binarne i kodowanie ścian domenowych, które
często pojawiają się w kodowaniu problemów optymalizacji kombinatorycznej oraz
w chemii kwantowej. Druga to strategia heurystyczna, która wykorzystuje klasyczną
optymalizację homotopii, ponieważ ma potencjalne zastosowanie w radzeniu sobie
z funkcjami wysoce nieliniowymi. Strategia ta upraszcza wyszukiwanie dobrych
parametrów QAOA, utrzymując jednocześnie PQC na niezmienionym poziomie.
Aby zaprezentować to podejście, badamy ważony problem Max-Cut na wykresach
Baraba-Asiego-Alberta. Na koniec pracowaliśmy także nad aplikacjami Zastosowa-
nia wyżarzania kwantowego w teorii muzyki. Rozważamy problem komponowania
muzyki z różnych stron, m.in. kompozycji melodii i rytmu. W przypadku redukcji
muzyki potraktowaliśmy problem jako wariant planowania zadań, w którym każda
maszyna jest instrumentem, a zadania są frazami muzycznymi. Wykorzystując
dostępne na rynku wyżarzacze kwantowe generujemy utwory muzyczne, które
prezentowane są w trakcie pracy dyplomowej.

1212



Abstract in English

In last decades, the scientific community witnessed the fast evolution of computers,
resulting in powerful devices combined with sophisticated methods for computing
difficult tasks, which allowed us to revolutionize the way we understand and process
information. Alongside, the scientific community witness the emergence of a new
paradigm: the Quantum Technology is a promising field that potentially provides
computational advantages. In particular, the iconic Shor’s and Grover algorithms,
called the attention of computer science community with the theoretical possibility
of building algorithms which are faster compared to the currently known for
conventional computers.

Alongside, as we approach the physical limits of the current architecture, the
search for alternatives computational methods also contributes to the research and
development of the so called Quantum Computers. However, the efforts to build
a fault tolerant quantum processing systems resulted in modest successes. The
quantum devices implemented at the moment are limited by scale and noisy, been
known as Noisy Intermediate Scale Quantum (NISQ) computers. In this scenario,
quantum-classical hybrids methods, such as Variational Quantum Algorithms
(VQAs) and Quantum Annealing, appeared as candidates to perform optimization
tasks in such limited scenario. In particular, the possibility of applying error
mitigation, post-selection, and a better understanding of the energy landscapes can
enhance the quality of VQAs results for NISQ devices.

Besides, one can also asks what a quantum computer can do at moment. For
instance, it is interesting to know if a quantum computer is ready to perform tasks
related with art and creativity. More specific, by adapting them into optimization
problems formulated to be solve into annealing devices.

In this thesis, I proposed a discussion about how to improve NISQ friendly
protocols in gate based approach. We introduce two methods: the first one is a
scheme for error mitigation in variational quantum circuits through mid-circuit post-
selection. The approach is based on investigating valid subspaces obtained through
different encodings such as one-hot, k-hot, binary, and domain-wall encoding
that frequently appear in encoding combinatorial optimization problems and in
quantum chemistry. The second is a heuristic strategy that uses classical homotopy

13



English abstract

optimization, since it has potential application in dealing with highly non-linear
functions. This strategy simplifies the search for good QAOA parameters while
keeping the PQC unchanged. To showcase this approach, we investigate the
weighted Max-Cut problem on Barabási-Albert graphs. Finally, we also worked on
applications Applications of Quantum Annealing for Music Theory. We consider the
problem of music composition from various aspects, among them the composition
of melody and rhythm. For music reduction, we treated the problem as a variant of
job scheduling, where each machine is a instrument and the jobs are music phrases.
Using the available commercial quantum annealers, we generate music pieces that
are displayed in the course of the thesis.

1414
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Chapter 1

Introduction

In last century, the scientific community witnessed the fast evolution of computers
resulting in powerful devices and sophisticated methods for dealing with all sort of
tasks. It is an undeniable fact that computers are indispensable in our lives at this
point.

In a nutshell, a computer is a programmable device capable of carry on instruc-
tions, such as arithmetic or logical operations, to process information. Classical
computers are the ones that can be modelled as a deterministic Turing Machine.
Up to date, the most common classical computers are electronic digital devices
that makes uses of bits as their most basic unit of information. Such devices accept
data (input), process that data, produce output, and store the results. For instance,
digital computers can read, compare and do bit manipulation very well, since their
invention. It is the cornerstone of pretty much all the computation we perform
nowadays.

However, it is important to remark that the history of modern computers is
not limited to digital devices. In fact, through the 20th century, the scientific
community observed the rise and fall of alternative computational architectures
and algorithms. One could question the very nature of those machines in general:
what are computers rather them glorified calculators?

I would like to point out an alternative and older type of classical computer
which was one of most prominent method in past, the so called analogue computers.
Initially built to perform very specific tasks, different from a universal computational
model, the analogue computers are designed to process continuous data and
perform mathematical operations using physical quantities, such as electrical
signals, mechanical movements, hydraulics pressure, among them. They were
widely used before the advent of digital computers and are still utilized in specific
applications today1. The analogue computers were typically much faster then the

1Mechanical watches, analogue music synthesizers, and thermometers among them.
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Chapter 1. Introduction

digital ones, although, less precise then the former ones. Therefore, the idea of
building a hybrid computer, i.e., digital-analogue devices, was not uncommon: it
appears from the need of solving problem with speed and accuracy.

Eventually, the digital computers evolved becoming considerably cheap, fast
and powerful. This process culminated in “retiring” some of the analogue devices.
Still, a digital computer is a classical computer : they are modelled as deterministic
Turing device, which is good enough to perform a tantamount of tasks. However,
due the nature of those devices – in both theoretical and physical ways – certain
types (or classes) of problems are not efficiently solved in those machines.

Meantime, scientists managed to combine two of the most influential and
revolutionary theories from the twentieth century: information theory and quantum
mechanics. From this new science, the field of Quantum Computing bring to light
the possibility of having algorithmic advantage over classical computation and
revolutionize our ways to understand and process information. The most notable
example is Shor’s polynomial quantum algorithm for finding the prime factors
of a integer2 in polynomial time [111]. Also, combinatorial problems, which is a
important class of optimization problems in our daily lives, are one of the favourite
topics to tackle with Quantum Optimization algorithms

The main difference between a classical and quantum computer is the fact
that the later one is based on quantum mechanics phenomena, and make usage of
quantum bits or qubits as their basic information unity. The qubit is distinguished
from a classical due it superposition propriety, making the state of a qubit as
convex combination of two probabilities amplitudes values. When measuring a
qubit, the result is a probabilistic output of a classical bit. Note that, pretty much
as the analogue devices, quantum computational approaches improve upon classical
methods for specific a number of tasks.

Whereas the development of quantum computers show us very valuable theoret-
ical approaches as new way to solve hard problems, the applicability of quantum
computing still under development and research. It is not yet known what quantum
computers are capable of, how the explore their full potential or even which task
can outperform classical computers. Besides, the efforts to build a fault tolerant
quantum processing systems resulted in modest successes. The quantum devices
implemented at the moment are limited by scale and noisy, been known as Noisy
Intermediate Scale Quantum (NISQ) computers. The possibility of building a
fault-tolerant quantum computer with sufficient number of qubits is still an open
question.

Once again, it comes as no surprise to approach hybrid computation by com-
bining quantum and classical computers as an attempt to overcome the noise
typical from quantum systems and the complexity constraints imposed to classical

2a problem know to be difficult and used as the bases for RSA encryption [76]
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Chapter 1. Introduction

machines. In fact, giving instructions and reading the outputs of quantum device
requires a classical computer as a mainframe. Alternatively, one can say that a
quantum computer by the definition must be a hybrid computer. As Scott Aarason
says in his popular science blog [3], and I quote: “every quantum algorithm is a
“hybrid quantum/classical algorithm” with classical processors used wherever they
can be, and qubits used only where they must be”.

Up to this point, NISQ computation relies heavily in hybrid approaches, using
both classical and quantum hardware to process information, and specific algorithms
tailored for NISQ devices carry partially the some of the optimization tasks in the
classical devices. For example, for some quantum annealing processes, the quantum
part acts as guide for the classical heuristics.

Even though the quantum technology still in the very beginning and has many
challenges to overcome, it inspire the research community towards improving
classical algorithms, for example, quantum resilient or post-quantum protocols are
now being developed, based on computational problem that are assumed too be
hard to solve using quantum computers. Once can say that it is also an opportunity
to creating novel methods for art and creative applications.

The main idea of this thesis revolves two simple questions: How to improve the
way we process information in quantum computers and what they ready to do? In
a attempt to answer those questions, I worked in two different types of quantum
computation methods: the gate based and quantum annealing. In both methods,
my approach was to treat problems as optimizations, more specific, combinatorial
optimization, such as job scheduling. For the gate based computation, my work was
about improving the quality of the algorithms by either applying error mitigation
schemes or homotopic optimization, in other to make a better search in the feasible
space of the problems. For the quantum annealing, I allowed myself to explore
the creative problems of music composition and and music reduction, adapting
them into optimization problems formulated specifically to be solve into annealing
devices.

The rest of the thesis is organized as follows. Chapter 2 initiates by giving a
brief introduction to complexity, graphs, combinatorial problems, basics of quantum
circuits, quantum annealing, and variational quantum algorithms. In Chapter 3 we
discuss about error mitigation by using post-selection strategies to filter out wrong
solutions of the travelling salesperson problem, diminishing the depth of the circuit
and improving the quality of the results by making a better search in the subspace
of the feasible solutions. In Chapter 4, we investigate a variant of the Quantum
Approximation Optimization Algorithm using Homotopic optmization, in order
to approximate the search into a homotopic path similar to quantum annealing.
In Chapter 5, we discuss the usage of quantum annealing as a novel approach for
music composition and music reduction, by formulating the problems as Quadratic

1919



Chapter 1. Introduction

Unconstrained Binary Optimization. And finally, in Chapter 6, we summarize and
conclude the thesis.

In the end, I found myself up with more questions than before. I hope you can
enjoy the reading.
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Chapter 2

Preliminaries

2.1 Complexity

One of our primary concerns is the amount of resources used by a computer to
solve a problem, the so-called complexity of the computation. The most common
resources analysed are time, i.e., the number of elementary operations that are
executed during the computation, and space which is defined as the amount of
memory required to solve the problem.

Measuring the complexity of an algorithms is not a trivial task. However, one
can estimate in a convenient form by analysing its asymptotic behaviour when
the algorithm run on large inputs. For this dissertation, we are going to use the
big-O notation, a useful mathematical definition that assists in characterizing the
complexity of an important class of computational problem.

The big-O notation can formalized in the following definition [113]:

Definition 1 Let R+ be the set of non-negative real numbers and f and g be
functions f, g : N → R+. Say that f(n) = O(g(n)) if positive integers c and n0

exist such that for every integer n ≤ n0,

f(n) ≤ cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for f(n), or more
precisely, that g(n) is an asymptotic upper bound for f(n), to emphasize that we
are suppressing constant factors.

In that sense, a function f(n) is O(g(n)) if its leading term grows as g(n) or
slower. For example, given a function f(n) = 5n3−2n2+n+3. The asymptotic upper
bound of f(n) is O(n3) by selecting the highest order term, 5n3, and suppressing
the constant 5.
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Figure 2.1: A simple representation of the hierarchy complexity classes, assuming
that P ̸=NP.

2.1.1 Complexity Classes

A complexity class is a set of functions that can be computed within a given
resource. Using the big-O notation, algorithmic complexities are classified according
to the type of function, usually expressed in terms of input size n in bits. This
is important in order to measure the efficiency of a given algorithm. For our
purposes, polynomial differences in running time are considered to be small, whereas
exponential differences are considered to be large1. For convenience, we restrict
attention to ‘decision’ problems, where the answer is either ‘yes’ or ‘no’.

Let us define P as the complexity class that contains all decision problems
which are solvable on a deterministic classical computer running in polynomial
time. This is generalized by the class NP which contains decision problems whose
solution can be checked efficiently by classical computers.

One can conceive of computational models that are non-deterministic, for exam-
ple, by making use of random bits. In that sense, we can define a bounded-error
probabilistic polynomial-time (BPP) class: the class decision problems solvable
by a probabilistic Turing machine in polynomial time with an error probability
bounded by 1/3 for all instances.

If we consider the use quantum bits (qubits), the can define a bounded-error
quantum polynomial time (BQP) class containing decision problems solvable
by a quantum computer in polynomial time, with an error probability of at most
1/3 for all instances [96]. In that sense, BQP is a quantum analogue of BPP. Note
also that classical computation, whether deterministic or probabilistic, is a subcase

1Asymptomatically, exponentials grow faster than polynomials.
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Figure 2.2: A simple graph.

of quantum computation. The hierarchy between classes is described in the Fig. 2.1.
The relationship between BQP and NP class is unknown. However, it is possible

that the BQP class contains hard problems for classical computation, which appears
to be incomparable to the standard complexity classes. In [2] is suggested that some
problems intances existing in BQP could be classified as harder than NP-Complete
problems. Paired with the fact that many pract ical BQP problems are suspected
to exist outside of P, this illustrates the potential power of quantum computing
compared to classical.

For this dissertation, we are going to take in consideration, for quantum gate-
based models, the circuit depth, i.e., the number of gates used during the computa-
tion, to compute the complexity of quantum algorithms.

2.2 Basics of Graphs

Before describing the problems, we need to recall some aspects of graph theory. A
graph is a collection of points and lines connecting some pairs of points. Formally,
we can say that a graph is then a pair G = (V,E) where V is a set of vertices (also
called points or nodes) and E a set of edges, which is the set of pairs of vertices
connect by a line. For example, in a graph G that contains nodes i and j, the pair
(i, j) represents the edge that connects i and j, as shown in the figure.

In a simple graph or undirected graph, the order of i a and j does not matter,
differently of a directed graph, which has arrows instead of lines, as shown in the
following figure. The formal description of a directed graph is a pair G⃗ = (V, E⃗),
where E⃗ ⊆ {(x, y) | (x, y) ∈ V and x ̸= y}.
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Figure 2.3: The Rock-Paper-Scissor as a direct graph representation. The arrows
gives the direction of a move that beats the other.

A path in a graph is a sequence of nodes connected by edges. A simple path is a
path that does not repeat any nodes. A graph is connected if every two nodes have
a path between them. A path is a cycle if it starts and ends in the same node.A
simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. When a path or cycle has each node visit only once, it is called
Hamiltonian path or Hamiltonian cycle. Finding Hamiltonian paths or cycles in a
graph are problems considered to belong to NP-Complete class [48].

2.3 Optimization Programming formulations

Let us now define some possible descriptions for the problems considered in this
dissertation as mathematical optimizations, i.e., we select the best conditions
to solve the problem given an goal, a set of possible solutions and sometimes,
restrictions. In order words, an optimization problem consist in selecting an input
such that it returns the maximal (or minimal) value of a real function.

2.3.1 Integer Linear Programming (ILP)

Linear optimization is a method to achieve the best outcome (such as maximum
profit or lowest cost) in a mathematical model whose requirements are represented
by linear relationships. A particular case of LP is the IntegerLinear Programming
(ILP), defined over integer variables with a linear objective function and a set of
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linear constraints. Formally, an ILP is defined as

minimize
∑
i

cixi (2.1a)

subject to ∀j
∑
i

Aijxi ≤ bj, (2.1b)

∀ixi ≥ 0, xi ∈ Z (2.1c)

where Aij ∈ R, bi ∈ R, cj ∈ R are parameters. Some of the problems are also
formulated as Mixed-Inter Linear Programming (MILP), in which some of the
decision variables are not constrained to be integer values. ILP are known to be
NP-Hard.

2.3.2 Quadratic Unconstrained Binary Optimization

A Quadratic Unconstrained Binary Optimization problem (QUBO) is formally
expressed by the optimization problem

minxTQx, (2.2)

where x is a vector of binary decision variables and Q is a square matrix of
real coefficients. By definition, the QUBO model has no constraints other than
the requirement for the variables to be binary. However, many combinatorial
optimization problems often include additional constraints that must be satisfied
besides an objective function to be minimized. Many of these constrained models,
such as integer linear programs or integer quadratic programs, can be effectively
re-formulated as a QUBO model by introducing quadratic penalties into the
objective function as an alternative to explicitly imposing constraints in the classical
sense [79, 108].

The significance of the ability of the QUBO model to encompass many problems
in combinatorial optimization is enhanced by the fact that the QUBO model
can be shown to be equivalent to the Ising model. The transformation between
QUBO and Ising model can be performed easily using the mapping xi ↔ 1−si

2
.

QUBO formulations for many optimization problems are presented in [54,79]. More
generally, one can also formulate combinatorial problems with a Higher-Order
Binary Optimization (HOBO) formulation.
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2.4 Combinatorial Problems

For this dissertation, we study algorithms for combinatorial optimization problems.
Combinatorial optimization is a subfield of mathematical optimization that consists
of finding an optimal solution from a finite set of possible candidates. This is a
essential problem present on the industrial context, arising in resource allocation
tasks, scheduling, routing among other logistic problems, which can be hard to find
an optimal solution due a large number of constrains and variables. Combinatorial
optimization, therefore, has a direct impact in aiding real-word problems and
improvement for decision-making processes.

Combinatorial optimization problems are also at the heart of classical theoretical
computer science, where they are used to characterize and delineate complexity
classes. Typical combinatorial optimization problems have limited structure to
exploit, and therefore quantum computing most often good candidates to provide
polynomial speed-ups.

We selected three combinatorial problems of interest to exploit both theoretical
and applied aspects of quantum computation thought this dissertation, amongst
them the Max-Cut problem, the Travelling Salesperson, and variants of Scheduling
Problem. Those particular problems have in common the hardness in terms of
complexity.

2.4.1 Max-Cut

Given a simple n-node graph G = (V,E), a cut of G is as a partition of the vertices
V into two subsets A = (VA, EA) and B = (VB, EB) such that VA ∩ VB = ∅. The
size of the cut is the number of edges connecting the two subsets. We can define as
maximum cut as the cut of a graph G whose size is at least as large as any other cut.
Finding the maximum cut is referred to as the Max-Cut Problem which is one of the
simplest graph partitioning problems to conceptualize, and yet some variations of
this problem are considered difficult. The Max-Cut problem is considered NP-Hard
and the weighted version of the decision problem variant was included in the Karp’s
21 NP-complete problems [68].

In the weighted version of Max-Cut, we are given an edge weight function where
each edge is associated with a real number, w : E → R, and the problem is to find
a cut with maximum weight. We can represent the assignment of vertices to set
VA or VB using a bit-string, x = x1...xn where xi = 0 if the i-th vertex is in VA
and xi = 1 if it is in VB. We seek a partition x which maximizes the following cost
function

C̃(x) =
∑
i,j

wijx(1− xj).
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Figure 2.4: A Max-Cut solution for the following graph. Note that this is equivalent
of creating a path selecting the maximum number of edges without touching any
edge twice.

Note that this can be also written in terms of a Hamiltonian:

HC =
1

2

∑
⟨i,j⟩

wij(1− ZiZj).

2.4.2 Travelling Salesperson

The Travelling Salesperson Problem (TSP) starts with a simple statement: given a
list of places and the cost for travelling from one location to another, is there a
permutation of the places such that the person can visit all with minimal distance
travelled? Considered one of the most iconic problem among theoretical computer
scientist, the TSP was mathematically formalized around 1930 and has become one
of the most employed benchmarking problems in performance analysis of discrete
optimization algorithms.

Similar to the case of Max-Cut, the TSP can also be described in terms of graphs.
Given a graph G = (V,E), where each edge uv in the graph has a weight Wuv

associated to it, the goal is to find the shortest Hamiltonian cycle or Hamiltonian
path, using all the nodes in the graph, such that the sum of the weights of the
edges is minimized. The decision version of the problem, i.e., if there is a path
whose total wight is smaller than a threshold value, is NP-complete.

While the problem poses significant computational challenges, numerous heuris-
tic and exact algorithmic approaches have been developed. These approaches enable
complete solutions for instances involving tens of thousands of cities. Additionally,
for problems involving millions of cities, remarkably accurate approximations [129].
However, it is not known the existence of a classical algorithm that provides a
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polynomial time solution to TSP [128], and is possible not expected to exist.

2.4.3 Job Scheduling Problems

Optimal job scheduling is a class of optimization problems that deal with how
to appropriately and efficiently assign resources to tasks. Examples for resources
can range from machines, processors, people, and rooms, which are available with
some limitations. The problems input are the jobs, also called task or activities.
The main purposes of job scheduling can be set to shorten the job completion
time or optimize resource utilization, by minimizing an objective function. Since
many of the scheduling problems difficult to solve, the optimization process often
involves complex algorithms and advanced computational techniques to find the
most effective scheduling solutions [23].

Considering a specific variant known as job-shop scheduling (JSP), each job
consists of a set of operations that must be processed in a specific order, known
as precedence constraints. Each operation has a specific machine, which process a
single job each time. In the case of a set of identical machines, problem is reduced
to a variant known as flexible job shop, where each operation can be processed on
any machine of the set. The TSP is a special case of the JSP with a single job, i.e.,
the cities are the machines and the salesman is the job.

Another variant of the scheduling problems consists in which each job has a
fixed start and end time and a value. For given a set of identical machines, the
problem can be represented as a coloring interval graphs [55] and it was formulated
as binary integer linear programming problem in [9] asSomething is

missng here!

2.5 Simulated Annealing

Some of the problems that we studied, along with several problems arising in
practice, are difficult, it is unlikely that we can design exact efficient algorithms
for them. Therefore, one can alternatively opt for approximate the solution. For
instance, a naive approach would be solving the problem by making the locally
optimal choice at each stage, know as greedy algorithm. However, it does not
guaranty an optimal global solution [43].

Other valid approaches to deal with the computational hardness of large combi-
natorial optimization problems are local meta-heuristic searches, such as Simulated
Annealing and Tabu Search, Genetic Algorithms, and Variable Neighbourhood
Search. For this dissertation, we approached the Simulated Annealing method for
comparison with its quantum version.

Originally introduced by [72] to solve the Travelling Salesman Problem, Simu-
lated Annealing (SA) works by emulating the process of annealing a solid by slowly
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lowering the temperature so that when eventually its structure is “frozen”, into a
minimum energy configuration. This method can be regarded as a random walk on
the search space. The algorithm starts at an initial state x having cost c = f(x)
and then iterates to walk through the problem landscape. The unconstrained cost
function can be achieved form the original problem in Eq. (2.1). At each iteration
k, it selects a random neighbour, which is accepted if it has a lower cost, becoming
the current solution cnew. If the new solution has a higher cost, it is accepted
with a probability determined by the temperature parameter tk and the difference
between the existing and the new costs. The acceptance probability function is
usually defined as:

P [Accept(tk,∆)] = min
(
e−∆/tk

)
, (2.3)

where ∆ = cnew − c. As the cooling process is carried out, tk is decremented,
and the optimal solution is found with the help of thermal fluctuations. The SA
is a meta-heuristic method and can be viewed as an adaptation of Metropolis-
Hastings algorithm. We refer readers to [75] for a more detailed survey on SA.
Simulated annealing has been used to solve various problems including scheduling
problems [99, 106,123], Travelling Salesman Problem and its variants [4, 28], graph
colouring [29], and quadratic assignment problem [24].

2.6 The Ising Model
The Ising model is a mathematical model in statistical mechanics that is used to
study phase transitions and critical phenomena in physical systems, particularly in
the context of magnetism. It was first introduced by the German physicist Ernst
Ising in his 1925 doctoral thesis [65]. The problem can been see as a collection
of N particles arranged on the vertices of a graph which is often assumed to be
a d-dimensional grid. Each particle can be in one of two states, called spins,
represented by a variable si ∈ {−1, 1}.

The original motivation for the model was the phenomenon of ferromagnetism.
The Ising model provides a simplified description of a ferromagnetic material, where
the fundamental units are individual magnetic moments or spins. These spins can
be thought of as small atomic-scale magnets that can point in one of two directions:
up or down. The model is often formulated on a regular lattice, such as a square or
a cubic form, where each lattice site hosts a spin. The problem is latter generalized
in terms of characterization of spin configurations given an external field applied
to the system.

The Ising model can be formulated in terms of an undirected graph G = (V,E)
with N nodes. Each node i ∈ V is associated to a spin variable si. On each edge
{i, j} ∈ E, a interaction strength Ji,j is assigned. Also, each particle is under the
influence of a local magnetic field hi. Given a spin configuration s = (s1, · · · , sN),
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The energy of a given configuration is defined by the following Hamiltonian:

H(s) =
∑

hisi +
∑
i ̸=j

Jijsisj, where Ji,j, hi ∈ R. (2.4)

Despite the simple formulation, finding the ground state, i.e., a spin configuration
s that minimizes the Hamiltonian H above can be computationally hard [12]. For
NP-Complete problems, it easy to find a mapping to the decision form of the Ising
model. In fact, the Ising model is closely related to two problems on binary variables.
These latter formulations are sometimes more convenient to work with, partly
because heuristic algorithms are typically implemented to return binary-valued
solutions.

2.7 Basics of Quantum Circuits

Quantum circuits are a way to visually depict the sequence of operations that are
performed on qubits throughout the course of a computation. You can think of
quantum circuits like a recipe, or set of instructions that tells you what to do to
each qubit, and when to do it. By placing and performing the operations in a
certain way, we can realize different quantum algorithms. We next subsections we
will briefly describe the components of a quantum circuit.

2.7.1 The qubit

The basic unity of information in a quantum circuit is a qubit. Mathematically,
the qubit is a state represented by bidimensional normalized vector in the Hilbert
H = C2 space. Using the Dirac’s notation, the vectors |0⟩ and |1⟩ form a basis in
the H, the so called computational basis, defined as the following column vectors:

|0⟩ ≡
[
1
0

]
, |1⟩ ≡

[
0
1

]
. (2.5)

A general noiseless (pure) state |ψ⟩ ∈ H is a linear combination of basis states, and
can be written as:

|ψ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C and |α|2 + |β|2 = 1. (2.6)

The complex terms α and β are also called probability amplitudes. As a consequence
of this mathematical description, unlike a classical bit, a qubit is not limited to
being defined in terms of a single deterministic state. Instead, qubits can exist as a
superposition of states. This property is the essence of practically most of quantum

3030



Chapter 2. Preliminaries

computational methods. It is important to emphasise that it a misconception that
a qubit in a superposition of two states is in both states at the same time: this
is false because the description refers to the probability of observing the state in
certain configuration when it is measured.

However, it is also necessary to have a more generalized representation, especially
when dealing with non-pure or mixed state: an ensemble of states {px, |ψx⟩}, which
describes the statistical uncertainty by considering a weighted mixture of the states
in a set {|ψx⟩} where corresponding probability of each state |ψx⟩ being selected
is px ∈ [0, 1]. The density operator corresponding to this ensable os given by the
convex combination

ρ =
∑

px⟨ψx|ψx⟩. (2.7)

The operator ρ as defined above is known as the density operator because it is the
quantum generalization of a probability density function.

To perform a computational tasks, usually more qubits together are used.
The Hilbert space for a system composed of multiple qubits is built considering
the tensor product of the single-qubit Hilbert spaces. As an example, the two-
qubit system lives in the composed Hilber space H = H1 ⊗ H2 = C4. The
computational basis is combining, resulting all the possible combinations of |0⟩ and
|1⟩: {|00⟩, |01⟩, |10⟩, |11⟩}.

2.7.2 Unitary operators

To manipulate the qubits, it is important that the operation must preserve the
normalization of the state. In that case, such operation are described as an unitary
transformation U : H → H and UU † = I. Operations on qubits are reversible,
and often called gates. For example, the Hadamard gate, maps the state in the
computation basis to the +/− basis:

H|0⟩ = |+⟩, H|1⟩ = |−⟩, (2.8)

where |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

. An important class of two-qubit unitary
operations are the controlled gates. For example, the CNOT gate, is a controlled
NOT gate, where value of the target qubit flips according to the value of the control
qubit. Given a two qubit state |ψ⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, where the first
qubit is the control and the second one is the target, we have:

CNOT |ψ⟩ = CNOT (a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩) (2.9)
= a|00⟩+ b|01⟩+ c|11⟩+ d|101⟩. (2.10)
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Operator Gate
X

H H

CNOT

SWAP

Rx RX(β)

Ry RY (γ)

Rz RZ(θ)

Table 2.1: Some examples of quantum gates and their representation in a circuit.

Therefore, when the first qubit state is |1⟩, the action of the CNOT is equivalent
to the classical NOT gate in the second qubit.

When dealing with multi-qubit systems, the tensor product formalism also
applies to unitary operators. It is important to emphasise that it can be proven
that a n-qubit unitary can be decomposed as a product of just single-qubit gates
and two-qubit controlled gates. Therefore, a small set of the quantum operators can
define the so called universal gate set, which are sufficient to implement arbitrary
multi-qubit computation [110].

Some examples of quantum gates with circuit are available on the Table 2.1.

2.7.3 Measurement process

Finally, once the qubits are prepared and manipulated through operations, the
measurement is the process of extracting the information about systems. This is
done by measuring observables: a set of physical quantities which are variables
such as position or momentum of a particle. In the quantum theory, we represent
observables as Hermitian operators in part because their eigenvalues are real
numbers.

For instance, given a pure state |ϕ⟩ = α|0⟩+ β|1⟩, suppose that we measure the
Z operator. This measurement is also called a “measurement in the computational
basis”, because eigenvalues of the Z operator are the elements of the computational
basis. The measurement postulate of the quantum theory, also known as the Born’s
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rule, states that the system reduces to the state |0⟩ with probability |α|2 and
reduces to the state |1⟩ with probability |β|2.

Expressing the measurement outcome probabilities can formalized by taking
the inner product. Given a quantum state |ψ⟩, the probability that we observe it
in state |φ⟩ when we measure it with respect to a basis that includes |φ⟩ is equal to

pr(φ) = |⟨φ|ψ⟩|2. (2.11)

A measurement in quantum computing is probabilistic, therefore, in order to
get a clearer picture of the value of an observable for a given qubit state, we need
to compute its expectation value. The expectation value of an observable O on a
quantum system described by a noiseless state |ψ⟩ is

⟨O⟩ = ⟨ψ|O|ψ⟩. (2.12)

More generally, we can also define the expectation value using the density matrix
representation and the trace operation:

⟨O⟩ = Tr[Oρ]. (2.13)

2.8 Quantum Optimization Algorithms in NISQ
era

The current state of quantum computing is referred to as the Noisy Intermediate-
Scale Quantum (NISQ) era. Currently quantum devices are small, i.e, with no more
than hundreds to thousands of qubits with considerable noise. Furthermore, it is
believed that new generation of quantum devices will be larger and less noisy, up to
such point that they will outperform classical algorithms and heuristics. Besides, a
huge effort is underway for using these devices for real or realistic problems, which
include quantum simulation, optimization, and machine learning. In particular,
optimization algorithms are expected to be among the first to provide a quantum
advantage.

This emerging paradigm relies on harnessing the power of quantum computation
with hybrid quantum-classical approaches. Such algorithms delegate the classically
difficult parts of the computation to the quantum computer and perform the
remaining on a sufficiently powerful classical device. On gate-based quantum
computers, the Variational Quantum Algorithms (VQAs), as the name suggests,
update variationally the variables of a parametrized quantum circuit. Among them
is the Quantum Approximate Optimization Algorithm (QAOA). Other quantum
computing paradigms propose different kinds of algorithms. They are inspired and
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hybridized with analogue approaches. These include quantum annealing, digital-
analogue quantum computation, Gaussian Boson Sampling and analogue quantum
computation.

For combinatorial optimization problems, the two leading algorithms are Quan-
tum Annealing and QAOA, both motivated by the quantum adiabatic theorem. In
this section, we will cover the recent applications for Quantum Annealing, QAOA,
and also Quantum Inspired Algorithms.

2.8.1 Adiabatic Quantum Computation

In the Adiabatic Quantum Computing, the computation proceeds from an initial
Hamiltonian whose ground state is easy to prepare, to a final Hamiltonian whose
ground state encodes the solution to the computational problem. The adiabatic
theorem guarantees that the system will track the instantaneous ground state
provided the Hamiltonian varies sufficiently slowly. In the following next sections,
it will be described two methods based and inspired on the quantum adiabatic
theorem.

2.8.2 Quantum Annealing

Quantum annealing [6, 66] is a heuristic algorithm that runs in the framework of
adiabatic quantum computing (AQC) [42], targeting optimization problems. In
AQC, a system starting in the lowest energy state (ground state) of some initial
Hamiltonian H0 (a mathematical operator that describes the system’s energy) is
likely to stay in the ground state throughout the evolution, given that the system
is evolved slowly enough. Hence, if some problem Hamiltonian HP is introduced
gradually to the system, it is likely that the system ends up in the ground state
of HP at the end of the evolution time T . Mathematically, the evolution of the
system is described by the time-dependent Hamiltonian

H(t) =

(
1− t

T

)
H0 +

t

T
HP . (2.14)

Note that quantum annealing is a physical process in an analogue quantum device,
as opposed to simulated annealing, and exploits quantum phenomena like tunnelling
and superposition.

The quantum annealers provided by D-Wave implement a problem Hamiltonian
whose energy is expressed by an Ising model of the form

E(s) =
∑
i

hisi +
∑
i<j

Jijsisj, (2.15)
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where s is a spin configuration of variables si ∈ {−1, 1}. Thus, one can use
quantum annealing to solve optimization tasks expressed in terms of an Ising model
or equivalently in the form of QUBO since the transformation between the two can
be easily accomplished. Note that finding the minimum energy configuration of an
Ising model is known to be NP-Hard.

Besides, the quality of the QA solutions is heavily affected by embedding, which
is the process of mapping a specific optimization problem onto the physical qubits
and couplers of a quantum annealer. Quantum annealers have a limited number of
qubits and a specific connectivity structure, therefore, the connectivity graph of
the currently-available quantum annealers is limited.

Quantum annealing has been used to solve optimization problems from different
domains, including transportation [38,95,108], automotive [52,130], and scheduling
[36, 64, 124]. Recently, it has been also used in the scope of music theory for
composing music [10].

The speed-up provided by QA for such problems is under a scientific debate
and not evident [18, 59, 83]. Furthermore, while available D-Wave’s annealers
have thousands of qubits, the topology restrictions may limit the size of tractable
problems to cases solvable by classical procedures.

2.8.3 Variational Quantum Algorithms

The Variational Quantum Algorithms (VQAs) are a set of hybrid classical-quantum
methods which use a classical optimizer to train a Parameterized Quantum Circuit
(PQC). The VQAs have emerged as a leading strategy to address the constraints
imposed by current gate-based quantum devices, which include noise and a small
number of qubits.

The methods consists in approaching the problem solution by encoded it as
the minimum of a cost function which depends on variational parameters. Those
parameters are iteratively tuned, usually via gradient-based methods, to find the
minimum of the function, hence the solution.

A combinatorial problem can be modeled as a QUBO and consequently as Ising
Hamiltonian. The cost functionHP , therefore, can take the shape of the 2-local Ising
Hamiltonian. Besides, Higher Order Binary Optimization (HOBO) formulations
can also be solved natively using QAOA or VQE as suggested in [41,51,108].

The Variational Quantum Eigensolver (VQE), introduced by Peruzzo et al. [105],
is a technique used for finding the quantum state corresponding to the minimum
energy of a Hamiltonian. The expectation value of the Hamiltonian HP in a state
|ψ(θ)⟩ can be expressed as

E(θ) = ⟨ψ(θ)|HP |ψ(θ)⟩. (2.16)

3535



Chapter 2. Preliminaries

The objective of this method is to search for a trial qubit state of a wave function
|ψ(θ)⟩, which depends on a set of variational parameters, such that the expectation
value of the Hamiltonian is minimized.

In order to translate this minimization task into a problem that can be exe-
cuted on a quantum gate computer, one must start by defining a so-called ansatz
wavefunction that can be implemented on a quantum device as a series of quantum
gates. From this ansatz or parametrized quantum circuit, which is corresponding to
an initial ground state of the system, the target Hamiltonian ground state may be
obtained by iterative minimization of the cost function. Therefore, the Hamiltonian
should be written in a form that is directly measurable on a quantum computer, as
a weighted sum of spin operators or Pauli operators [119].

The optimization is carried out by a classical optimizer which leverages a
quantum computer to evaluate the cost function and calculate its gradient at each
optimization step. The quantum circuit is optimized using classical procedures like
gradient descent or simultaneous perturbation stochastic approximation (SPSA).
Due to its generality, VQE is commonly used for molecule Hamiltonians, however,
its usability for combinatorial optimization problems may be limited.

Hence, given a properly defined cost function, variational algorithms then
proceed by combining quantum and classical resources in an iterative loop as
follows:

• On the quantum computer: estimate the cost function for the current values
of the parameters via repeated measurements;

• On the classical computer: input the outcome in a classical optimisation
algorithm that proposes a new value for the parameters so that the cost is
lower;

• repeat previous steps until stop conditions are met (convergence, execution
time, etc.).

2.8.4 Hamiltonian Simulation

Given a graph G(V,E), we can design a Hamiltonian so that the ground state
gives us an optimal solution to problem we would like to solve on the graph. We
can associate each node in V to a qubit, the edges E to interactions. Since the
evolution in a quantum circuit takes form of unitary operations, assuming that the
Hamiltonian is time independent, we can describe the unitary

U = e−itH/ℏ. (2.17)

However, designing a quantum gate corresponding to such unitary can complicated.
In that sense, it can be approximated by expansion as series.
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Trotter-Suzuki formulation Also known as Trotter formulas or Trotter–Suzuki
decompositions is a product expression to simulate the sum-of-terms of a Hamil-
tonian by simulating each one separately for a small time slice. This can be
better understood by taking as example a Hamiltonian that can be written as
−iH/ℏ = A+B. By using the Baker-Campbell-Hausdorf expansion, we have:

et(A+B) = etAetBe−
t2

2
[A,B]e

t3

6
(2[B,[A,B]]+[A,[A,B]])e

−t4

24
([[[A,B],A],A]+3[[[A,B],A],B]+3[[[A,B],B],B]) · · ·

(2.18)
This equation can be truncated, giving the following approximation:

et(A+B) = (eAt/neBt/n)n +O

(
1

n

)
. (2.19)

If we consider H = H0 +H1 and making the proper substitutions, we have

U(t) = (e−itH0/nℏe−itH1/nℏ)n +O

(
1

n

)
. (2.20)

By breaking down the evolution into these smaller steps and applying each operator
sequentially, you can approximate the time evolution of the quantum system. The
accuracy of the approximation depends on the size of the time steps and the
complexity of the system’s Hamiltonian.

2.8.5 Quantum Approximation Optimization Algorithms

QAOA is a hybrid quantum/classical introduced by Farhi et al. [41], which combines
the idea of the Variational Quantum Eigensolver (VQE) and Quantum Annealing.
The approximation is done by constructing a specific variational ansatz through
first-order Suzuki-Trotter decomposition approximating adiabatic evolution, and it
is designed for the quantum gate-based model. Unlike Quantum Annealing, QAOA
can be also used for problems expressed as HOBO. The algorithm leads to a state
prepared by applying a mixer operator exp(H0) and a cost (or problem) operator
exp(HP ) applied in alternation, resulting in the state as alternating blocks of the
two unitaries applied p times such that

|ψ(β,γ)⟩ = U(β)U(γ) · · ·U(β)U(γ)︸ ︷︷ ︸
p times

|ψ0⟩, (2.21)

where |ψ0⟩ is a initial state which is a eigenstate of the mixer Hamiltonian.
Due its compatibility with NISQ devices, QAOA is been used to investigate

combinatorial problems and different variants were developed. For instance, the
Quantum Alternating Optimization Ansatz constrains the search space in accor-
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Figure 2.5: Schematic representation of QAOA. On the left is presented a
parametrized quantum circuit. A initial state is prepared as the eigenstate of
the mixer Hamiltonian H0 which is equal to a superposition of the computational
basis |+⟩⊗N . The state is evolved by applying alternating e−iγiHmix and e−iγiHobj/
Then, on the right, the result is passed to a classical optimizer, that finds new values
for the parameters γ⃗, β⃗ that minimizes E(γ⃗, β⃗) = ⟨Hobj⟩. The loop is repeated
until convergence to a minimum of the cost is reached or stopping criteria are met.

dance with the problem constraints, which are embedded in the initialization and
mixer layers. In the original version, constraints are expressed as penalty terms in
the objective function and the search is performed on the entire Hilbert space.

However, for both VQAs and QAOAs, due to the nature of the NISQ devices,
the quality of the results is presumably reduced with the impact of decoherence.
Moreover, it is unlikely to utilize quantum error correction methods with VQAs to
overcome the effect of noise due to a large number of qubit requirement. Yet, there
are various quantum error mitigation (QEM) techniques suitable for the NISQ era.
An extension of QAOA to deal with more general classes of Hamiltonians has been
proposed with the name of Quantum Alternating Operator Ansatz [14, 57, 125].
This approach allows us to perform the search into a smaller subspace of the feasible
solution.
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2.9 How to compute and evaluate quantum algo-
rithms?

As a newborn technology and the close relation with classical computers and lack
of large and commercial quantum computers, we need to establish proper tools to
design, simulate and analyse quantum algorithms. On this section, we will describe
the computational resources we used for this thesis and methods for computing the
hybrid-quantum algorithms.

2.9.1 Meta-programming

In general, one can say that meta programming is a umbrella term for techniques
that work by manipulating and transforming other programs. For example, using
Python’s operator overloading is a basic kind of meta-programming, but many
other common techniques such as templates/generics, macros, and code generation
broadly fall under the term meta-programming.

Since it is not yet available a way to direct write quantum programs, most of
the work done is carried by humans and classical computers in order to map the
information as data that can be encoded into quantum devices2. Besides, reading
the data also requires a classical computer to read the measurement outputs and
display it into a coherent format.

Due the most of the popular packages and libraries target for quantum informa-
tion and quantum computation been available for Python programming language,
such as QuTip, Qiskit, Tikket, PennyLane, amoung them, we opted for designed
most of the quantum circuits using Python as a meta-programming framework.
We also conducted partially the circuit simulation and gradient computation with
Julia.

2.9.2 Gradient descent and grandient-free methods for clas-
sical optimization

In mathematics, gradient descent is a first-order iterative optimization algorithm for
finding a local minimum of a differentiable function. The idea is to take repeated
steps in the opposite direction of the gradient of the function at the current point in
order to go towards the steepest descent. Conversely, stepping in the direction of the
gradient will lead to a local maximum of that function; the procedure is then known

2Note that is also very common to write a quantum algorithm with an agnostic approach,
i.e., the algorithm is written without taking in consideration physical aspects of the hardware,
such as number of gates or qubits, constraints about the type gates or even how to deal with the
interaction between the qubits.
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as gradient ascent. It is particularly useful for training parametrized quantum
circuits, such as VQE and QAOA. Gradient descent should not be confused with
local search algorithms, although both are iterative methods for optimization.
On this thesis, we used the limited memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) optimization algorithm, available on SciPy and Optim.jl.

As an gradient-free alternative, we also considered the constrained optimization
by linear approximation (COBYLA),which is is an implementation of Powell’s
nonlinear derivative–free constrained optimization.

2.9.3 Input/Output

To conclude this section, I would like to briefly describe the sampling process
and how to prepare the input of the quantum algorithms described in this thesis.
The process starts by sampling the cost function and translating into an Ising
Hamiltonian. This is important to cover as much as possible the capacities of
the algorithm exploration of different feasible spaces. For quantum annealing,
it is sufficient to provide a dictionary where the keys are the QUBO terms and
the values are their coefficients. Therefore, the user should generate a QUBO
cost function mapping their optimization task. For VQE and variants, the cost
Hamiltonian is usually represented as a hash table or dictionary, which maps the
terms written as Pauli operators strings and their correspondent float coefficients.
The same is true for the mixer Hamiltonian. The parameters γ⃗ and β⃗ can be
passed as arrays of floats. The data is used to construct a quantum circuit by
using a framework of choice and it is translated into a quantum assembly (QASM)
language to communicate with a quantum device. Due the probabilistic nature, the
measurement in real quantum devices is perform a number of shots which can be
defined by the user, in order to obtain valid statistical results. In simulations, one
can also considered the expectation values. Finaly, the output of the measurements,
can be returned as floats and used to perform classical numerical optimizations to
obtain new arrays of γ⃗ and β⃗.

4040



Chapter 3

Error Mitigation for QAOA using
post-selection

In this chapter1, we will discuss about error mitigation via post-selection and by
using different encodings schemes for a variation of QAOA.

3.1 Introduction

The Variational Quantum Algorithms (VQAs) are known to be resilient against
coherent errors due to their variational nature [87,101]. However, as any other quan-
tum algorithm running in NISQ devices, the quality of their results is presumably
reduced with the impact of decoherence. In that sense, it is important to enfacise
the usage of error correction hardness the power of the quantum computation and
eventually achieve fault-tolerant devices, such that even though part of the qubits
experience errors, the system will still return accurate answers. Error correction
is a standard technique in classical computing where information is encoded with
redundancy so that checks can be made on whether an error has occurred. However,
considering the current paradigm of NISQ devices, it is unlikely that VQAs would
be enhanced by error correction methods up to this point. In the meantime, one
can consider applying quantum error mitigation (QEM) techniques suitable for
the NISQ era [16, 40]. Note that, QEM aims not to recover the ideal quantum
state. Instead, the approach uses post-processing to reach the ideal measurement
outcome.

Let us consider the readout error caused by the imperfect measurement devices,
which is one of the sources limitations the current quantum hardware. Instead of
obtaining the correct probability distribution from the measurement p, the outcome

1The content of this chapter is based on the author’s work [20] and all the figures in this
chapter are taken from, or are adaptations of, the figures present in such work.
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becomes a stochastically malformed distribution S ·p, where S is a stochastic matrix.
Many proposed works [22,49, 80] focus either on building different noise models or
schemes to mitigate the noise, for instance, by applying a pseudo-inverse S−1S · p
with classical post-processing. Even though the measurement error mitigation is
not always sufficient, due the nature of evolution of quantum circuit in a noisy
environment, one can be interested in the construction of the algorithm such that
the evolution takes place only on a subspace of the full n-dimensional Hilbert space,
and measurement outcomes can be classified as valid or not. As invalid outcomes
appear due to the effect of noise, once they are removed it could potentially improve
the overall fidelity of the measurement statistics.

More specific, in the case of VQAs, such evolution in a subspace of the whole
Hilbert space make it is possible to mark many of the measurement outcomes
as invalid and removed, as in the case of Variational Quantum Eigensolver [105]
and Quantum Alternating Operator Ansatz (QAOA+) [14, 57, 125]. The idea
of post-selection performed in the middle of the circuit based on valid states is
proposed in previous works with many different approaches.

In the previous studies, it was observed that various valid subspaces appear
as a result of the selected encoding scheme when dealing with VQE and QAOA.
One the approaches is the binary encoding, used to represent integers and it was
recently used to obtain qubit-saving formulations as Travelling Salesman Problem
(TSP) [51], graph colouring problem [115], quadratic Knapsack problem [116] and
Max k-Cut problem [45]. Another promising approach is the one-hot encoding.
Although the already proposed schemes work for one-hot states as well, whether
one can further exploit the special property of those states to obtain more efficient
error mitigation schemes is unknown. Finally, it is also worth mentioning the
domain-wall encoding presented in [30], and the authors provide special mixers
preserving the valid subspace of quantum states for QAOA.

For the methods to be NISQ-friendly, they should use as few resources as
possible. The resources usually considered are the number of ancilla qubits, the
number of gates, and the depth of the circuit. These three, together with the
volume, will be considered our main resources for this chapter.

On this chapter, it will be describe a proposed scheme for error mitigation in
variational quantum circuits through mid-circuit post-selection. The post-selection
is performed by injecting a quantum circuit consisting of both gates and measure-
ments. Our approach is based on investigating valid subspaces obtained through
different encodings such as one-hot, k-hot, binary, and domain-wall encoding that
frequently appear in encoding combinatorial optimization problems and in quantum
chemistry. In particular, the scheme we propose for one-hot encoding works by
compressing the valid subspace to the smaller subspace of quantum states and
differentiates from the known methods. We also demonstrate the effectiveness of our
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approach with an application to QAOA+ for TSP. The proposed error mitigation
schemes are suitable, but not limited to NISQ algorithms in principle. Furthermore,
they can be currently employed with mid-circuit measurements, recently provided
by quantum computers developed by IBM [93] and Honeywell [1].

3.2 Error Mitigation

To fully understand the method described in this thesis, let us discuss briefly
about effects of noise on quantum circuits and how error can be mitigated through
post-selection performed in the middle of the circuit.

Error mitigation approaches use the outputs of circuit ensembles to reduce or
eliminate the effect of noise in estimating expectation values. While fault tolerance
quantum devices are still not available, error mitigation is the path that gets
quantum computing to usefulness. A simple approach to mitigate the noise is
through post-selection: this technique refers to the process of conditioning on the
outcome of a measurement on the qubits. Post-selection has been featured in plenty
of quantum mechanics experiments, once it facilitates way to a quantum control of
the system.

Let U be a quantum circuit with n qubits and initial state |ψ0⟩. This initial
state in the circuit will evolve as |ψ⟩ = U |ψ0⟩, and it belongs to the subspace
spanned by a particular subset S ⊂ {0, 1}n. The final state can be expressed as

|ψ⟩ =
∑
s∈S

αs|s⟩. (3.1)

Due the effects of noise, instead of a pure quantum state |ψ⟩, it will be returned
a mixed state ϱ spanned by the whole Hilbert space. The objective of quantum
error mitigation is to make ϱ as close as possible to the ideal state |ψ⟩. Using
post-selection to mitigate the noise, if a measure not comes from from S then it
can be discarded.

Consider the projector into the subspace of S as ΠS =
∑

s∈S |s⟩⟨s|. Our post-
selection scheme is based on projecting ϱ as

ΠSϱΠS

tr(ΠSϱΠS)
, (3.2)

and such mixed state is a more reliable representation of the ideal state |ψ⟩ than ϱ
itself. This is true once that states spanned by S are valid, and the states spanned
by the remaining are invalid. In fact, it is important to note that one should
consider if correct or incorrect states are detectable or not by post-selection.

With this in mind, we distinguish three orthogonal subspaces defined through
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projections P1 := |ψ⟩⟨ψ|, P2 := ΠS − P1 and P3 := 1l−ΠS. Those projections can
be interpreted as follows:

• P1 is the projection onto unknown correct state, which would be measured
on the noise-free machine;

• P2 is the subspace spanned by the incorrect valid states. Those states
are not detectable by post-selection applied after the measurement in the
computational basis;

• P3 is the subspace of invalid states, detectable through the post-selection.

The efficiency of post-selection greatly depends on the overlap of the noisy state ϱ
with these subspaces: if the overlap tr(P2ϱ) is high compared to overlap tr(P1ϱ)
then we should not expect significant improvement. On the other hand, overlap
with tr(P3ϱ) only influences the number of circuit runs to get a fixed number of
valid samples. Projection P1 +P2 defines the valid subspace and projection P2 +P3

defines the incorrect subspace.
Let us consider depolarizing noise, which turns the ideal state |ψ⟩ into noisy

state ϱ. A measurement {P1, 1l−P1} would give back the ideal state. Nevertheless,
it is unreasonable to expect that such measurement can be implemented in the
middle of the circuit in principle, as this would require information about |ψ⟩. On
the other hand, performing a measurement {ΠS, 1l− ΠS} seems to be much more
plausible since S is known. Although this is still not simple for an arbitrary S, it
does not require any information other than S.

As an example, suppose that the subspace S consists of quantum states of
Hamming weight2 1, so-called one-hot vectors

S = {100 . . . 0, 010 . . . 0, . . . , 000 . . . 1}, (3.3)

and the valid quantum states are those spanned by S. Let us consider a quantum
circuit over n qubits consisting of l layers of the ansatz presented in Fig. 3.1. Since
the given ansatz does not change the Hamming weight of the state, starting with a
valid state, any obtained quantum state throughout the noiseless evolution of the
circuit will belong to the subspace spanned by S. The effect of the post-selection
discussed above can be improved by performing post-selection in the middle of
the circuit by projection onto the subspace P2, as the valid states belong to the
subspace spanned by S throughout the evolution of the circuit. Let us investigate
the effect of mid-circuit post-selection in more detail. The evolutions can be roughly
decomposed into amplitude transfer between subspaces defined through P1, P2, P3,
see Fig. 3.2. If the transition was from valid to invalid states only, then we would

2We can say that Hamming weight is number of ones in a bit string.
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Figure 3.1: Ansatz preserving the subspace of one-hot basis states

not expect any improvement from mid-circuit post-selection compared to the final
post-selection. However, the transitions take place also from invalid to valid states.
Note that the correct space is only one-dimensional while the dimensionality of the
whole valid space usually grows exponentially with the size of the data. Hence, the
mid-circuit post-selection attempts to remove the impact of the transitions from
invalid states to valid incorrect states mostly.

invalidvalid

incorrect

correct

incorrectZ

X, Y

X, Y

Figure 3.2: A scheme of how X, Y and Z errors changes the subspace of the state.

3.2.1 Post-Selection by filtering and compression

Current quantum devices can only measure qubits independently, and thus mea-
surement {ΠS, 1l− ΠS} cannot be applied directly. Even so, we can simulate such
measurement. We can distinguish two non-exclusive approaches: post-selection
through filtering and post-selection through compression.

The post-selection through filtering requires ancillary qubits. The idea is to
construct a quantum circuit Ufilter which maps the basis state |s⟩ with s ∈ {0, 1}N
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such that

Ufilter|s⟩|0 · · · 0⟩ =
{
|s⟩|0 · · · 0⟩, s ∈ S,
|s⟩|φs⟩, s ̸∈ S, (3.4)

where |φs⟩ is (preferably) orthogonal to |0 · · · 0⟩ for any s ∈ S. Upon application
of Ufilter, the ancilla can be measured in the computational basis and computation
continues only if 0 · · · 0 was measured.

A second approach, post-selection through compression, does not require extra
qubits. Instead, we need a quantum circuit Ucompress, which compresses valid states
to a some smaller subspace S ′ ⊆ H such that

Ucompress|s⟩ =
{
|ψs⟩|0 · · · 0⟩, s ∈ S,
|φs⟩, s ̸∈ S. (3.5)

Note that here the only requirement is that some qubits are ‘reset’ to |0⟩ after
Ucompress. Like in post-selection through filtering, the qubits are measured, and the
computation continues iff all qubits are in state |0⟩. In this case, we uncompute
the compression through U †

compress. An evident advantage of this method compared
to the previously introduced one is that it can run in-place without extra qubits.

The proposed methods are particularly suitable for quantum devices that allow
mid-circuit measurements and can reset qubits to |0⟩. Indeed, in this case, the
number of required qubits does not grow with the number of applications of the
proposed techniques. Still, it is also possible to harness quantum devices without
the mid-circuit measurements feature. It is enough to implement filtering each
time with different ancilla and to uncompute the state to a new set of qubits in
the compression case. Then, the number of additional qubits will be proportional
to the number of corrections applied and the number of measured qubits. However,
a large number of mid-measured qubits or the number of post-selections applied
makes the approach significantly less NISQ-friendly.

Besides, it is not possible to provide a general description of how to implement
Ucompress or Ufilter. The reason behind this is that the structure of S depends on the
form of the Hamiltonian and the origins of the optimization problem. In the next
section, we will discuss the implementations of specific error mitigation schemes for
with post-selection circuits for different S, which are specifically useful for various
combinatorial and physical optimization problems.

3.3 Post-selection schemes for different encodings

Before moving on to the description of specific error mitigation schemes for different
encodings, we would like to recall the circuit counting the electron number from [85].
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|x1⟩ • •
|x2⟩ • •
|xn⟩ • •
|0⟩a H R1 R1 R1 u1 H R2 R2 R2 u2

Figure 3.3: An example implementation of the circuit verifying whether the total
number of 1’s is equal to κ. The gate Rj is given by diag(1, eπi/2j−1) and uj is given
by diag(1, e−dec(κj−1···κ1)πi/2j−1

) where dec(κj−1 · · ·κ1) is the decimal representation
of the least significant j bits of the binary string κ = κnκn−1 · · ·κ1. u1 is defined
as the identity operator.

|x1⟩ • • •
|x2⟩ • • •
|x3⟩ • • •
|x4⟩ • • •
|x5⟩ • • •
|0⟩a H R1 R1 R1 R1 R1 u1

|0⟩a H R2 R2 R2 R2 R2 u2

|0⟩a H R3 R3 R3 R3 R3 u3

Figure 3.4: An example implementation of alternative circuit verifying whether the
total number of 1’s is equal to κ. The idea behind is the same as the one presented
in Fig. 3.3 except we have ∼ log n ancilla and we apply gates in parallel.

In a pragmatic sense, the method is based on counting the number of 1’s in a basis
state. The circuit described in [85] computes the number of 1’s in binary, one bit
at a step, using only a single ancilla. The idea can be used as a subroutine in other
circuits to verify whether the total number of 1’s is a particular value.

Let us describe the verification circuit inspired by [85]. Suppose that we want
to verify whether the basis state |x⟩ = |x1x2 · · ·xn⟩ contains exactly k 1’s. Let κ be
the binary representation of k written using ⌈log n⌉ bits (0’s are padded to the most
significant bits if ⌈log k⌉ < ⌈log n⌉) and let ξ denote the binary representation of
the sum of 1’s in |x⟩. The circuit computes ξ starting from the least significant bit,
as long as the measured bits coincide with that of κ’s. In general, for an n-qubit
circuit, there are ⌈log n⌉ blocks each computing a bit of ξ. After each block, the
ancilla qubit is measured in the X-basis. If the measurement result is |+⟩, then
it indicates that the bit is 1 and the measurement result |−⟩ indicates that the
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bit is 0. Note that there are two possible outcomes when running the verification
circuit: If at some stage the measurement outcome does not coincide with κ the
computation ends, or all n bits coincide indicating that the verification succeeds.
We would like to remark that all ⌈log n⌉ bits of ξ should be computed since it can
be the case that κ and ξ coincide on the first ⌈log k⌉ bits, although κ and ξ are
different.

For example, consider the state |111⟩. For this state, the number of 1’s is equal
to k = 3, which can be represented as the binary string: ξ = 11. Given another
bit string κ = 01, the algorithm mentioned about would stop after computing the
second bit of ξ since it does not coincide with κ.

In Fig. 3.3, a circuit with n = 3 control qubits and a single ancilla qubit is given.
Note that there are 2 blocks in the given circuit as the sum can be at most 112. If
the first measured bit is not the least significant bit of κ, then the computation
ends. Otherwise, the computation continues with the second block.

The overall number of required gates and the depth are O(n log n). However,
one can apply the controlled rotations in parallel, given extra ancilla qubits. The
idea for n = 5 is presented in Fig. 3.4. This approach requires ∼ log n ancilla and
the depth equals O(n). Note that in this case each bit of ξ is stored on a different
ancilla qubit.

3.3.1 k-hot encoding

The k-hot states are 0-1 states with Hamming weight k and often appear in physics
and computer science: k-hot vectors for k ≥ 2 are a natural description of quantum
k-particle Fock spaces [9, 50, 85]. Dicke states which are the equal superposition of
k-hot states are used as the initial state in QAOA [13] for certain problems. k-hot
states are also used to encode the feasible states in problems like Max-k Vertex
Cover problem [33], and graph partitioning [57].

Post-selection can be applied to k-hot states through filtering by verifying the
total number of 1’s in the quantum state using the circuits given in Fig. 3.3 or 3.4.
The idea was first investigated in [85], in the scope of VQE and particle number
preserving ansatz.

3.3.2 One-hot encoding

One-hot encoding is a special case of k-hot encoding, and it is used in literature for
encoding various problems like Travelling Sal esman Problem, Graph Coloring, and
Clique Cover [79]. It is also used for optimization over functions σ : {1, . . . , n} →
{1, . . . ,m}. In the latter case, we specify n quantum registers, and each register
consisting of m qubits that encode the values of the function between 1 and m.
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× × |0⟩
× • |b1⟩
× • × |0⟩

• • |b2⟩
• × |0⟩

• × |0⟩
• × |0⟩

• • • • |b3⟩
Figure 3.5: An example of the implementation of the map V which transforms
the one-hot encoding to binary encoding [109]. Note that the procedure can be
adjusted to the case where the maximal stored number is not a power of 2. If an
initial state is a superposition of one-hot basis states, then some of the output
qubits are set to |0⟩.

We will mention two different approaches for post-selecting one-hot states. Since
one-hot vectors are a special case of k-hot vectors with k = 1, we can use the
filtering approach proposed in the Sec. 3.3.1. Alternatively, one can consider a post-
selection through compression with a circuit that converts one-hot representation to
binary representation [109]. Let V be the unitary operation implementing this map.
For an integer l ∈ {1, . . . , n}, let OHn(l) be the bit assignment for one-hot encoding,
i.e. it maps l to the quantum state with a 1 in the l’th position. Let Bm(l) be the
bit assignment function encoding l in binary using exactly m bits. Bm maps l to
bm . . . b1 such that l =

∑m
i=1 2

i−1bi. Although the map V : OHn(l) 7→ Bm(l) does
not preserve the number of qubits, the unoccupied qubits after the transformation
are set to |0⟩ as it can be seen in Fig. 3.5. The one-hot to binary conversion leaving
some qubits in-state |0⟩ provides a natural scheme for error mitigation.

The circuit implementing V usesO(n) gates, no ancilla, and hasO(n) depth [109].
After applying V and measuring the qubits which should be in state |0⟩, V † should
be applied for decompression. Note that the compression approach uses fewer
resources when compared to the k-hot filtering approach for one-hot states.

3.3.3 Domain-wall encoding

In domain-wall encoding [30], valid states are of the form |1 · · · 10 · · · 0⟩, ie. the state
starts with some number of ones followed by zeros. It requires less connectivity for
checking the feasibility condition. For instance, in one-hot encoding, it is required
to check whether each pair of qubits are in state |1⟩ or not, while for domain-wall
it is sufficient to check only neighboring qubits to see whether a |0⟩ is followed by
|1⟩. Note that any problem expressed using n qubits in one-hot encoding can be
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wall • ••
|0⟩
|0⟩
|0⟩

(a) Domain-wall post-selection
checking each consecutive qubit
pair and storing the result in
ancilla.

•
•

•
(b) Circuit transforming wall-
domain to one-hot and Gray code
to binary encoding [109].

Figure 3.6: Circuits used for postselection for wall-domain encoding.

•
•
• •

•
• • •

|0⟩

Figure 3.7: Binary exact post-selection for µ = 42 = 1010012

also expressed by domain-wall encoding, such that integer l is represented with a
quantum state where l ones are followed by n− l zeros.

The conditions above also motivate a mid-circuit post-selection scheme through
filtering as invalid states can be detected by checking consecutive bits. One approach
is to check each neighboring pair of qubits and store the result using n− 1 ancilla.
While very demanding in the number of qubits, the approach requires only O(1)
depth and O(n) gates. An example circuit with 4 qubits can be found in Fig. 3.6a.
When the number of qubits is limited, then one can apply the error checking with
the output on a single ancilla qubit, and measure it instantly and reset it so that it
will be reused for the next condition checking. While the number of ancilla qubits
will be only one, the depth will increase to O(n).

Finally, one can use an ancilla-free method by first transforming domain-wall
to one-hot encoding using the circuit given in Fig. 3.6b and use the post-selection
through compression method described in the previous subsection. In this case,
the number of gates and depth is the same as for one-hot vectors which are O(n)
for both.
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3.3.4 Binary and Gray encoding

Binary encoding of an integer l using n bits is obtained by the assignment Bn(l)
as discussed in Sec. 3.2. It is used in QUBO formulations to save qubits while
representing slack variables as discussed in [79]. It is also used while formulating
qubit efficient higher-order unconstrained binary optimization formulations (HOBO)
for problems like TSP [51] and graph coloring [115].

Using n bits, the numbers 0, 1, . . . , 2n−1 − 1 are naturally encoded. If not all of
the integer values encoded using n bits are admissible, then some of the encoded
integers will be invalid and this will increase the infeasible space. There are several
workarounds to solve this issue. One approach is to use the knowledge about the
maximal attainable value x̄ [67], and update the encoding as

n∑
i=1

2i−1bi +

x̄− ⌈log(x̄)⌉∑
i=1

2i−1

 bn, (3.6)

which introduces bias for higher values. However, when the numbers encoded are
the slack variables turning inequality f(b) ≥ 0 into f(b) + xi = 0, usually small
values of xi are encountered so that the original inequality is satisfied tightly or
almost tightly. For this reason, introducing bias for higher values may have a
negative effect on the optimization. Furthermore, in recent HOBO formulations
using binary encoding [51,115], quantum states which encode too large values have
to be penalized unlike the method above. However one may expect a variation of
this algorithm with QAOA+ which will forbid (up to noise) quantum state from
evolving into too large numbers, for example, a particular version of QAOA+.
Motivated by this, and also for completeness, we describe a filtering scheme below.

Suppose the valid integer can be at most µ = b′nb
′
n−1 · · · b′1. Let I ′0 be the

collection of indices i for which b′i = 0. The bit assignment is invalid (ie. encodes a
larger integer than µ) if at some bit at which it should be zero, it is one and all
of the more significant bits are the same as that of µ. For example, if we have
µ = 42 = 1010012, then incorrect numbers are of the form 11b3b2b1b0, 1011b1b0 and
10101b0, where bi are arbitrary. Hence, we need to verify whether any such situation
occurs. An exemplary post-selecting circuit proposed in Fig. 3.7 for µ = 42.

In the worst case, for instance when µ = 10 · · · 02, one may need to check n− 1
invalid forms. Each check requires implementation of multi-controlled NOT gates.
To implement a multi-controlled NOT gate controlled by n qubits, we will consider
two different methods: The first method described in [107] uses no ancilla, requires
O(n2) gates and has O(n) depth. The second method proposed in [60] uses O(n)
ancilla, O(n) gates and has O(log n) depth.

Hence, if one wants to save ancilla qubits, then the ancilla-free implementation
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of multi-controlled NOT gate is more convenient, the overall approach requiring a
single ancilla qubit, O(n3) gates and the circuit has O(n2) depth. Using the second
method, overall circuit requires O(n) ancilla, O(n2) gates and has O(n log n) depth.

In general, checking all invalid forms might be costly depending on the value of
µ as the error mitigation itself might introduce some errors. For instance, when
µ = 10 · · · 0, checking only the most significant bit that should be 0 is enough to
eliminate half of the invalid cases. In general, this would require only a single
application of multi-controlled NOT gate, and in the worst case when µ = 11 · · · 10
there will be n− 1 control qubits. In such a case, it may not be efficient to use an
error mitigation circuit only to eliminate a single invalid state. However, if there
are multiple registers, say k, encoding numbers in binary, then the proportion of
the feasible to all states equal (

n− 1

n

)k

≈ e−
k
n . (3.7)

Even for this extreme case, for k ≈ n we already have a constant fraction of the
mitigated cases. This scenario appears in [51]. So we can say it might be infeasible
to eliminate an error for a single number, but, it still may be beneficial for multiple
registers.

Note that this approach can also be used for one-hot encoding in combination
with post-selection through compression scheme discussed in Sec. 3.2. One can
check if the compressed number in binary is representing a number greater than or
equal to n in an n-qubit circuit. In this case, the depth and the number of gates
will be O(n).

In addition, the proposed approach can be applied to Gray-code encoding [109],
after transforming it to binary encoding using the circuit given in Fig. 3.6b. The
transformation has no impact on any of the resource measures.

3.3.5 One-hot and binary mixed

Finally, let us consider a combination of one-hot encoding and binary encoding
proposed in [51,109]. In such cases, bits encoding a single number are partitioned
into l groups, each group consisting of m qubits, and only one of the groups has
nonzero bits. If l̄-th group is the one with nonzero bits, then the bits of l̄-th group
encodes the number xl̄ in binary or Gray-code encoding, and the value of the
encoded number is (l̄ − 1)(2m − 1) + xl̄ − 1. For example for 4 groups, each with
2 bits, for the sequence 00 00 10 00 we have l̄ = 3 and thus the value encoded is
(3− 1)(22 − 1) + 102 − 1 = 7. Note that two conditions can be asserted: Exactly
one group consists of nonzero bits, and the last group may only attain some values
due to the redundancy of binary encoding described in the previous paragraph.
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The latter can be solved the same way as it was solved for purely binary encoding
in Sec. 3.3.4. For the former, we need to check whether the number of groups in
which all consecutive bits in the group are all zeros is equal to l − 1.

One approach is to count the number of such groups using the verification
idea from Fig. 3.3. To implement the circuit, we need to implement a rotation
gate controlled by m qubits for each one of the l groups. Using the ancilla-free
and non-ancilla-free implementations of multi-controlled NOT gate, this would
require O(lm2) and O(lm) gates, respectively. Recall that there are two different
approaches for verification, one using 1 ancilla qubit and the other using log l
qubits. Single-ancilla verification idea is visualized in Fig. 3.8a. To save qubits, one
may prefer ancilla-free multi-controlled NOT gate and single ancilla verification,
overall which would require 1 ancilla qubit, O(lm2 log l) gates and has O(lm log l)
depth. To have a circuit with smaller depth, one can use non-ancilla-free multi-
controlled NOT gate and verification with log l ancilla, resulting in O(m log l)
ancilla, O(lm log l) gates and O(l logm) depth.

In the second approach, the idea is to store the information whether each group
consists of all zeros or not in an ancilla qubit. To implement this idea we use l
ancilla qubits, and save the required information. After applying NOTs on those
qubits we can check whether the resulting l-qubit state is an one-hot state. Then
using the compression scheme for one-hot encoding from Sec. 3.3.2, we can check
if the resulting state is one-hot. Using the ancilla-free implementation of multi-
controlled NOT gate, this would require O(l) ancilla, O(lm2) gates and O(l +m)
depth. When we use non-ancilla-free implementation of multi-controlled NOT gate,
then we have two options. We can use different ancilla for each multi-controlled
NOT gate requiring O(lm) ancilla overall, and we can implement the circuit using
O(l + logm) depth, or using the same O(m) ancilla for each multi-controlled NOT
gate, we can have a circuit with O(l +m) ancilla and O(l logm) depth. For both
approaches, the number of required gates is O(lm).

This scheme can be also used for the mixture of Gray and one-hot encoding [109]
after it is translated into binary encoding using the circuit given in Fig. 3.6b.

3.3.6 Summary

We present a summary of the resource requirements for the methods discussed so
far. Depending on whether we use the 1- or log n ancilla counting method, we use
notation Σ1 and Σlog respectively. Tfree denotes the ancilla-free implementation of
multi-controlled NOT gate, while Tancilla denotes the O(n) ancilla implementation.
Tmulti-anc is the case where it is guaranteed that for each implementation of the multi-
controlled NOT gate, different ancilla qubits are available. Finally, M denotes more
subtle implementation details. For wall-domain encoding, it differentiates between
the parallel checking with O(n) and 1 ancilla. For the mixed encoding, Mstore
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l̄ = 1

l̄ = 2

l̄ = 3

|0⟩ Rj Rj Rj ωj

(a) Post-selection circuit for mixed one-
hot and binary encoding using the veri-
fication idea in Figure 3.3. The circuit
computes the j’th bit of the binary rep-
resentation of the number of groups in
which all consecutive bits in the group
are all zeros. This circuit is repeated for
⌈log l⌉ times.

|0⟩
is

one-hot
|0⟩
|0⟩

(b) Post-selection circuit with storing
the outcome on l ancilla qubits. For
‘is one-hot’ we use compression scheme
presented in Sec. 3.3.2

Figure 3.8: Post-selection circuits for binary encoding and mixed encoding.

denotes the approach of constructing one-hot vector and using the compression
scheme. For all of the encodings, we assume that the analyzed system consists of n
qubits. For the mixed encoding, this also gives an identity n = lm.

In addition to the resources considered in the previous sections, we also present
the volume of the encoding. The volume is defined as the product of depth and
the number of qubits. For the number of qubits, we used the sum of ancilla qubits
and n.

3.4 Application to Quantum Alternating Operator
Ansatz

In this section, we will consider the Travelling Salesman Problem (TSP). The
QUBO formulation for TSP over N cites is given as

A
N∑
t=1

(
1−

N∑
i=1

bt,i

)2

+ A

N∑
i=1

(
1−

N∑
t=1

bt,i

)2

+
N∑

i,j=1
i ̸=j

Wij

N∑
t=1

bt,ibt+1,j, (3.8)

where W is the cost matrix, and bt,i, is the binary variable such that bt,i = 1 iff
the i-th city is visited at time t [79]. A is a constant which needs to be adjusted
so that the optimal solution of QUBO encodes the optimal solution for TSP.
The formulation uses N2 qubits which produces a large infeasible space ie. there
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Encoding Info. Ancilla Gates Depth Volume

k-hot
Σ1 [85] 1 O(n log n) O(n log n) O(n2 log n)

Σlog O(log n) O(n log n) O(n) O(n2)

Domain-wall
Minductive 1 O(n) O(n) O(n2)

Mparallel O(n) O(n) O(1) O(n3)

Binary/Gray
Tfree 1 O(n3) O(n2) O(n3)

Tanc O(n) O(n2) O(n log n) O(n2 log n)

Mixed

Σ1Tfree O(1) O(lm2 log l) O(lm log l) O(l2m2 log l)

Σ1Tanc O(m) O(lm log l) O(l log l logm) O(l2m log l logm)

ΣlogTfree O(log l) O(lm2 log l) O(lm) O(l2m2)

ΣlogTanc O(m log l) O(lm log l) O(l logm) O(l2m logm)

MstoreTfree O(l) O(lm2) O(l +m) O(l2m+ lm2)

MstoreTanc O(l +m) O(lm) O(l logm) O(l2m logm)

MstoreTmulti-anc O(lm) O(lm) O(l2m+ logm) O(l2m+ lm logm)

Table 3.1: Summary of the resource requirements of the post-selection circuits for
different encoding using filtering.

Encoding Gates Depth
1-hot O(n) O(n)

Domain-wall O(n) O(n)

Table 3.2: Summary of the resource requirements of the post-selection circuits for
different encodings using compression.

are 2N
2 possible solutions to QUBO model, while the number of routes is only

N ! = 2ON logN . To reduce the infeasible space, one possible approach is to encode
the problem using less number of qubits as proposed in [51]. Another approach is to
reduce the effective space of the evolution, which is the idea behind the Quantum
Alternating Operator Ansatz (QAOA+) [57].

QAOA+ is considered as an extension of QAOA that allows more general
families of mixing operators. In QAOA+, the initial state is usually a feasible
solution to the problem, and the mixer operator restricts the search to the feasible
subspace by mapping feasible states to other feasible states. Unlike the regular
version of QAOA, the evolution takes place in a smaller subspace of the full Hilbert
space. On this chapter we will consider a special case of QAOA+ called XY-QAOA.

5555



Chapter 3. Error Mitigation for QAOA using post-selection

In XY-QAOA, the mixer is chosen as XY-Hamiltonian

N∑
i=1

XiXi+1 + YiYi+1, (3.9)

applied on every one-hot register, which preserves the Hamming weight of the
quantum states [125]. In the case of TSP over N cities, N registers each with
N qubits are used such that if bt,i = 1, then register t encodes i using one-hot
encoding. The initial state can be prepared as the Kronecker product of W -states
which can be efficiently implemented [125]. Note that the choice of the initial
state is particularly suitable for XY-mixer as XY-mixer maps one-hot states to
one-hot states. Although the generated subspace contains some infeasible states as
well, it contains the whole feasible space for the TSP problem and is significantly
smaller than the full Hilbert space. More precisely, the evolution takes place in
NN = 2ON logN dimensional subspace of the full N2-qubit Hilbert space.

As the post-selection scheme, we use the compression scheme for one-hot vectors
proposed in Sec3.3.2 We consider a noise model where every gate is affected by
a random unitary channel applied after each quantum gate, including gates from
the post-selection. In particular, we will consider depolarizing noise, amplitude
damping noise, and random X noise with parameter γ reflecting the strength of
the noise: the smaller the value of gamma, the least is the effect of the noise on
the evolution. We assume that the initial state is |0 · · · 0⟩ and measurements (both
final and in the middle) are implemented perfectly. Ideal initial state preparation
is justified as any digression into infeasible subspace will be detected by mid-circuit
post-selection, or will produce some bias for QAOA+, which may be corrected by
adjusting the parameters of the ansatz. For measurements, we note that the noise
is highly biased. States |0⟩ are much less prone to error compared to |1⟩ so that it
is unlikely that 1 is measured when one is expecting to measure 0 [81].

A simplified version of the circuit is visualized in Fig.... After a fixed number
of QAOA layers we apply the compression scheme presented in Sec.... We continue
computation iff all measurements result in 0 states. For the final measurements,
we post-select only those measurement samples which would appear in the error-
robust computation. Note that in fact the mid-circuit post-selection can be also
applied in the middle of the objective Hamiltonian application–this Hamiltonian is
implemented by consecutively applying diagonal matrices, which does not change
the space over which the states is defined. However, we apply mid-circuit post-
selection after at the end of layers only for simplicity.
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3.5 Circuit Design
We designed and implemented our circuits using Qiskit software development kit
(SDK). One can say that the circuit for XY-QAOA can be break down in the
following steps:

1. Preparation of the W -states;

2. implement QUBO objective Hamiltonian followed by the mixer XY Hamilto-
nian (QAOA layer);

3. change the encoding from Binary to Unary;

4. mid circuit measurement and post-selection;

5. repeat 2 to 4 until reach the maximal number of layers.

The first step is prepared the ground state of interest. For the regular QAOA, this
process consists in applying Hadamard gates in all the qubits, generating an equal
superposition of the computational basis elements,

|0⟩⊗N → H⊗N0⊗N . (3.10)

In the case of QAOA+, the inital state is Kronecker product of W -state.
When implementing the objective Hamiltonian, we only included the part for

computing the cost routes and for verifying whether at different time-points we
have distinct cities. Note that the part which checks whether at given time point
only one city is visited is guaranteed by the algorithm itself.

At the time, in order to keep the depth of the circuit at the minimal, we had to
enforce some ways to organize the distribution of gates. For instance, we set the
gates fo QUBO usign round robyn scheduling based on [51].

3.6 Results
We start by investigating the effect of the post-selection for randomly chosen angles.
We sample 100 instances of TSP for n = 3, 4 cities. Cost matrix W is a random
matrix with elements sampled i.i.d. from the range {1, . . . , 9}. The penalty value
equals A = 2maxi,j Wij . In the rest of the discussion, any considered energy will be
for rescaled QUBO, such that the corresponding (attainable) maximal value of the
pseudo-Boolean function is 1, and the smallest value is 0. Let E be the true energy
coming from the noise-robust evolution and let Eno-mid be the energy obtained
from the noisy evolution but with post-selection applied on the final outcomes
only. Finally, let Emid be the energy with the post-selection applied both in the
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Figure 3.9: The efficiency of mid-circuit post-selection against final circuit post-
selection only. The subplots (a), (b) and (c) are for 3 cities, and (d), (e), (f) are
showing the results for 4 cities.
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Figure 3.10: Acceptance probability, defined as the probability of accepting the
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over 100 samples. The (hardly visible) areas represent the samples between 10th
and 90th percentile. The subplots (a), (b) and (c) are showing the results for 3
cities instances, and (d), (e), (f) are showing the results for 4 cities.
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Figure 3.11: Effect of post-selection on QAOA optimization. In the first column,
we simply correct the optimal angles obtained through regular optimization with
the post-selection applied at every 2 layers. In the second column, we compare
optimization with and without mid-circuit post-selection, starting with the same
angles. Finally, in the last column, we take the optimal angles obtained through
regular optimization and repeat the optimization with mid-circuit post-selection.
The solid black line is the y = x and denotes the ‘no difference’ case. The red solid
line is the y = 0.85x.
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middle (at every 4th layer) and on the final outcomes. Our measure of quality is
∆E(i) = |E(i) −E(i)

no-mid| − |E(i) −E(i)
mid|, where i stands from the i-th TSP instance.

Note that the larger the value, the more positive impact the mitigation scheme has
on the output.

The results presented in Fig 3.9 show that the effect of post-selection strongly
depends not only on the noise impact γ, but also on the type of the noise. This is
expected, as the noise structure also affects the way the amplitude is transferred
between valid and invalid states. For example, for random Z noise our method
(the same as the classical post-selection) cannot detect any deviation. However, for
all combinations of noise strength and noise models, we see that the post-selection
has mostly a positive effect on the evolution.

The mean of ∆E is usually detached from zero. However, the area denoting
the space within plus/minus standard deviation highly deviates from the mean.
Yet, in most of the cases, the difference of the mean and standard deviation is
close to 0, which shows that our method has likely no negative effect against final
post-selection only.

The error mitigation process requires extra measurements some circuits are are
discarded. In Fig. 3.10, we show the probability of accepting circuit run. The
probability decreases exponentially with the number of levels, as we discard a fixed
portion of the measurements every few layers, every four layers in our case. We
observe that the increase in the noise strength diminishes further the probability.

Let us now consider the effect of post-selection on the optimization process.
We considered 40 TSP instances generated as described above, with 8 layers and
random X noise with γ = 0.002. We consider 3 scenarios here. In all of them,
we use the classical post-selection of the final outcomes, as classical post-selection
can be implemented efficiently using classical computing. In the first scenario, we
optimize the circuit without mid-circuit post-selection. Then we inject inside this
circuit a mid-circuit post-selection procedure and compare the obtained energy
with the previous one. This is the most efficient method, as the mid-circuit part
of the circuit does not take part in the optimization process, which may slightly
decrease the time required for the optimization. In the first column of Fig3.11, we
can see that this approach provides stable improvement of around 15% for both 3
and 4 cities case.

One may expect that correcting the energy via post-selection, through correcting
the energy, will provide an alternative, more faithful energy landscape. To analyse
this, we used mid-circuit post-selection also in the middle of optimization. We
considered two approaches. In the first, we compare the energy obtained through
circuits with and without post-selection, starting from the same initial angles.
In the second, we first optimized the circuit without mid-circuit post-selection,
and then we took the final circuit and re-optimized it with the circuit containing
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mid-circuit post-selection. Both are presented in Fig. 3.11 We can see that there
is almost no difference between these two approaches, which indicates that the
landscape may be very similar for these cases. This in turn implies, that it may be
sufficient to optimize the circuit without the mid-circuit post-selection, and only
then apply the mid-circuit post-selection.

3.7 Conclusion

There have been some recent attempts to mitigate errors in Variational Quantum
Algorithms (VQAs) through mid-circuit post-selection. Following this line of
work, we presented post-selection schemes for various encodings and different valid
subspaces of quantum states, which can be used with VQA while solving particular
combinatorial optimization problems and problems from quantum chemistry. We
implemented the one-hot to binary post-selection through compression scheme
to solve the Travelling Salesman Problem (TSP) using the Quantum Alternating
Operator Ansatz (QAOA+) algorithm. The experiment results show that for
amplitude damping, depolarizing, and bit-flip noises, the mid-circuit post-selection
has a positive impact on the outcome compared to final post-selection only. The
schemes we propose are qubit efficient, do not need classical operation, and use
only mid-circuit measurements and reset. Hence, with the emerging technology of
mid-circuit measurements [32, 33], the presented methods are currently applicable
to NISQ algorithms. Finally, our method can also be used in principle outside the
scope of VQA.

Although we have only considered the TSP problem in our numerical exper-
iments, it is worth noting that the proposed schemes can be used with different
objective Hamiltonians. Our ancilla-free post-selection through compression scheme
can be applied to any problem where the feasible states are one-hot, including the
problems defined over permutations such as Vehicle Routing Problem [19], varia-
tions of TSP [103,108], Railway Dispatching Problem [37,38], Graph Isomorphism
Problem [25], Flight Gate Assignment Problem [114].

There are several research directions that can be pursued requiring further
investigation. First of all, in general, the optimal number of post-selections to apply
is not evident. Many factors should be considered here, including the complexity
of the post-selection, the form of the feasible subspace S, the strength and form of
the noise affecting the computation. It is desirable to design methods that would
choose the optimal number (and perhaps the position) of mid-circuit post-selections
to be applied.
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3.8 Chapter Summary
On this chapter, we discussed how to enhance the performance and reliability of
VQAs by investigating the error mitigation strategy utilizing mid-circuit measure-
ments. The key concepts are:

• Variational Quantum Algorithms (VQAs): These algorithms leverage classical-
quantum hybrid approaches where a parametrized quantum circuit is op-
timized using a classical optimizer to solve problems. It is a crucial class
of algorithms for quantum computing since it is particularly suited NISQ
devices.

• Error Mitigation: Techniques aimed at reducing the impact of noise and
errors in quantum computations without requiring fault-tolerant quantum
error correction.

• Mid-Circuit Measurements: The process of measuring certain qubits at
intermediate steps during the execution of a quantum circuit. This technique
allows for dynamic error detection and correction, improving the overall
fidelity of quantum operations.

We introduce a error mitigation approach using a post-selection scheme. The
post-selection is performed by injecting a quantum circuit consisting of both gates
and measurements in between the layers of a parametrized circuit with the intuit
to filter out the states that don’t belong to the feasible state. We consider the
different post-selection strategies for various valid subspaces obtained through
different encodings that frequently appear in encoding combinatorial optimization
problems and in quantum chemistry. Among them:

• k-hot: The k-hot states are 0-1 states with Hamming weight k and often
appear in physics and computer science. Post-selection can be applied to
k-hot states through filtering by verifying the total number of 1’s in the
quantum state

• One-hot: this encoding is a special case of k-hot encoding, and it is used in
literature for encoding various problems like Travelling Salesperson Problem,
Graph Coloring, and Clique Cove. Since one-hot vectors are a special case of
k-hot vectors with k = 1, it can use the post-selection strategy mentioned
above. Alternatively, one can consider a post-selection through compression
with a circuit that converts one-hot representation to binary representation.

• Domain-wall: valid states are of the form |1 · · · , 10, · · · 0⟩, i.e. the state
starts with some number of ones followed by zeros. The particularities of
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this encoding scheme motivate a mid-circuit post-selection scheme through
filtering as invalid states can be detected by checking consecutive bits.

• Binary and Gray encoding: a binary encoding consist in encoding integer l
using n qubits. For example, the number 3 can be mapped in a quantum
state prepared as |011⟩. The Gray encoding, also known as reflected binary,
is an ordering of the binary numeral system such that two successive values
differ in only one bit. Therefore, the state representing the number 3 in Gray
encoding is |101⟩.
The post-selection scheme for binary encoding consists in checking if the bit
assignment is invalid, for instance, if at some bit at which it should be zero,
it is one and all of the more significant bits are the same. Each check requires
implementation of multi-controlled NOT gates. Implementing multiple multi-
controlled NOT gates can be done by either using ancilla or not. Note that
this approach can also be used for one-hot encoding in combination with
post-selection through compression scheme. This proposed approach can be
applied to Gray-code encoding, after transforming it to binary encoding, once
that the transformation has no impact on any of the resource measures.

In particular, the scheme we propose for one-hot encoding works by compressing
the valid subspace to the smaller subspace of quantum states and differentiates
from the known methods. We them proceed by implementing the one-hot to binary
post-selection through to solve the Travelling Salesman Problem (TSP) using the
Quantum Alternating Operator Ansatz (QAOA+) algorithm.

The proposed error mitigation strategy using mid-circuit measurements offers
a promising avenue for enhancing the performance of VQAs on NISQ devices.
The experiment results show that for amplitude damping, depolarizing, and bit-
flip noises, the mid-circuit post-selection has a positive impact on the outcome
compared to final post-selection only. The schemes we propose are qubit efficient,
do not need classical operation, and use only mid-circuit measurements an reset.
Hence, with the emerging technology of mid-circuit measurements the presented
methods are currently applicable to NISQ algorithms.
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Chapter 4

Hamiltonian-Oriented Homotopy
QAOA

The classical homotopy optimization approach has the potential to deal with highly
nonlinear landscapes, such as the energy landscape of QAOA problems. In this
chapter1, we introduce Hamiltonian-Oriented Homotopy QAOA (HOHo-QAOA), a
heuristic method for combinatorial optimization using QAOA, based on classical
homotopy. We will brefly discuss the Homotopy method and compare with other
approaches for QAOA considering the Max-Cut problem.

4.1 Introduction

Given the limited resources of quantum computers, it is essential to effectively
explore the landscape of cost function when implementing VQA’s Parametrized
Quantum Circuits. Particularly, in the case of QAOA, the landscape of energy
function is highly non-linear. Therefore, sophisticated methods are necessary to
deal with such complicated landscapes.

This motivate to investigate the QAOA cost functions by formulating a heuristic
strategy that uses classical homotopy optimization, since it has potential application
in dealing with highly non-linear functions [126]. Such method compromises a
homotopy map, taking each value of interpolating parameter α ∈ [0, 1] and outputs
an optimization problem. In particular, for α = 0, the problem is easy-to-solve,
and for α = 1 the homotopy map returns the problem of interest. During the
interpolation process, which changes the value of α from 0 to 1, the solution
continuously changes and is expected to be optimal, or close to optimal for the
intermediate problems. If the intermediate optimization succeed, in the end we

1The content of this chapter is based on the author’s work and all the figures in this chapter
are taken from, or are adaptations of, the figures present in such work.
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obtain the optimum of the target problem. One can see quantum annealing as a
particular type of homotopy optimization. A homotopy optimization for VQE was
already proposed in [47] and improved in [58, 87]. However, its applicability for
QAOA was only briefly mentioned in [86].

The introduced Hamiltonian-Oriented Homotopy QAOA (HOHo-QAOA), illus-
trated in Fig. 4.1, decomposes the optimization into several loops. The homotopy
map provides a smooth transition between the mixer Hamiltonian and the problem
Hamiltonian during the optimization and each loop uses a combination of these
two Hamiltonians for cost function evaluation and the quantum state is optimized
with respect to such intermediate cost functions. This strategy simplifies the search
for good QAOA parameters while keeping the PQC unchanged. To showcase this
approach, we investigate the weighted Max-Cut problem on Barabási-Albert graphs.
First, we empirically analysed the impact of the choice of the homotopy parameters:
the initial αinit value and the step parameter αstep which defines the difference
between two consecutive α values. Setting αinit and αstep close to zero provides a
better approximation to the optimal solution in theory, we empirically show that
one can still get a good approximation even if αinit and αstep are detached from zero.
This hugely reduces the computational cost of HOHo-QAOA. Finally, we compare
HOHo-QAOA with other commonly used QAOA optimization strategies [41,132].

By studying the role of the adiabatic path in the QAOA landscape, we aim
to uncover insights that could lead to improved optimization strategies or better
convergence properties of the algorithm.

4.2 Energy Landscape

Let us take a briefly look at the QAOA, the energy landscape considering a single
parameter θ. Given an initial quantum state, if applicable, all the unitary operations
that precede the θ-dependent operation are applied, which maps the initial state
into a different one. Afterwards, under an assumption of noiseless evolution, an
unitary exp(−iθH) corresponding to a mixer or objective Hamiltonian H is applied,
followed by the the remaining operations. At the end, the energy estimation with
respect to the observable is measured. Given a Hamiltonian H with spectrum set
{E1, . . . , Ek}, and O be an arbitrary observable. The energy function with respect
to θ and a arbitrary state ϱ can be computed as

tr(exp(−iθH)ϱ exp(iθH)O) = C +
∑
i>j

Ai,j cos(θ(Ei − Ej) +Bi,j), (4.1)

in which {Ei} is the set of all eigenvalues of the operator H, and real parameters
C,Ai,j, Bi,j depend on the initial state, observable, and θ-independent quantum
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α = α + αstep

Figure 4.1: Schematic representation of HOHo-QAOA. The algorithm starts with
choosing an initial value of parameters (γ, β) according to some probability distri-
bution P , and optimizing them for the initial Hamiltonian H for α = αinit with
the chosen classical optimization procedure. Then, the optimal parameters for the
ansatz are iteratively used as the initial parameters for the consecutive optimization
routines for H with an increased value of α, i.e. α = α+∆α. The procedure stops
at H = Hobj for αinit = 1, which is the objective Hamiltonian. Throughout the
chapter, α is referred to as a homotopy parameter.
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Figure 4.2: Illustration of the highly nonlinear energy landscape of QAOA for
Max-Cut for 10 nodes with weighted Barabási-Albert graph for (a) objective
Hamiltonian and (b) mixer Hamiltonian. Enorm is a normalized energy of the
objective Hamiltonian, described in Eq. 4.8, so that the eigenvalues lie in [0, 1].

operations. Note that Eq. (4.1) is highly non-linear, therefore its optimization
may be difficult in practice. This is in contrast to typically used VQE approaches,
in which the parameter-dependent unitary can be reduced to a single-qubit gate,
which in turn may result in a simple, yet powerful gradient-free optimization
technique [91,100].

Unfortunately, the number of cosines in Eq. (4.1) may grow quadratically with
a number of distinct eigenvalues of the considered Hamiltonian. In the case of
the objective Hamiltonian, the number may be particularly high. While for many
simple problems like unweighted Max-Cut or Max-SAT the number of different
eigenvalues usually grows polynomially with the size of the data, for weighted
Max-Cut each partition may result in a different objective value, which may give
O(2n) different energies in general. A complicated energy landscape can be seen
already even for a small and simple instance, see Fig. 4.2. For problems generating
such complicated landscapes, more sophisticated methods may be at hand.

4.3 Homotopy optimization method

One of the well-known methods to solve a system of highly nonlinear problems is
homotopy optimization, where a homotopy map is constructed between two systems.
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The solution corresponding to one of the systems is transformed into the solution
of the other system. For example, consider the function ftarg(x) which encodes a
computationally hard problem and finit(x) which is a problem with an easy-to-find
solution. Then the particular homotopy map between the systems can be given as

F(α, x) = g1(α)ftarg(x) + g2(α)finit(x), 0 ≤ α ≤ 1, (4.2)

where

g1(0) = 0, g2(0) = 1,

g1(1) = 1, g2(1) = 0.
(4.3)

Here, we get a family of problems corresponding to minxF(α, x) = 0 for each α
value from 0 to 1. We track the optimized solutions starting from (α, x) = (0, x0),
as α moves from 0 to 1, which for a successful homotopy map leads to (α, x) =
(1, x1), where x1 is ideally the optimal solution of ftarg.

The state-of-the-art approach is to start from (αinit, xinit) with xinit minimizing
F(0, x) = finit(x). Then the problem minxF(α + αstep, x) = 0 is iteratively
solved using the solution of minxF(α, x) as a starting point, for sufficiently small
αstep > 0 [126].

4.4 Hamiltonian-Oriented Homotopy QAOA

The Hamiltonian-oriented homotopy QAOA decomposes the optimization process
of the objective Hamiltonian into several optimization loops. Each loop optimizes
the energy

Eα(γ⃗, β⃗) = ⟨γ⃗, β⃗|H(α)|γ⃗, β⃗⟩, (4.4)

where H(α) encodes the homotopy map

H(α) = g1(α)Hmix + g2(α)Hobj, 0 ≤ α ≤ 1. (4.5)

For α = 1 the expectation value in Eq. (4.4) is the energy corresponding to the
Hobj. While there is a freedom in the choice of g1 and g2, throughout the paper we
a simple case

g1(α) = 1− α, g2(α) = α. (4.6)

During the optimization process, we choose an initialization of mixer and objective
parameters (at α = 0) in such a way that the parameters corresponding to the
mixer are sampled from the uniform random distribution U(a, b) in an interval
[a = 0, b = 2π] and the objective parameters are all set to 0. With this initialization
we make sure that the homotopy starts from the exact ground state of the mixer
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on a noise-free setting, as application of mixer on its eigenstate does not change
the state. For α′ > α ≥ 0 the initial parameters are chosen as

(γ⃗, β⃗)init
α′ = (γ⃗, β⃗)∗α, (4.7)

here ∗ denotes the optimal parameters for α.
It should be noted that each run of HOHo-QAOA follows the generic structure

of homotopy process as in Eq. (4.5) where the “run-time" of HOHo-QAOA is
characterized by the αstep, for a fixed αinit. The parameter αinit fixes the initial
α value. Generally, it can be inferred that better approximation to the optimal
solution can be achieved if we choose a sufficiently small value of αstep and αinit.
They can be described in a more elaborated way as follows. Small value of αstep

helps us realizing the homotopy of Eq. (4.5) and at the same time if we initiate
with αinit → 0, it becomes easier to find the ground state for the first step. To
show this, throughout the paper, we investigate the normalized energy

Enorm(Eα(γ⃗, β⃗), α) =
Eα(γ⃗, β⃗)−minH(α)

maxH(α)−minH(α)
, (4.8)

with respect to parameters of HOHo-QAOA, where Enorm(α) = 0, is the normalized
ground energy for any α ∈ [0, 1], and minH(α) (maxH(α)) denotes minimum
(maximum) of H(α).

4.4.1 Initialization strategy

In the following, first we numerically discuss proposed settings for initial QAOA
parameters (γ⃗, β⃗)init. With this setting we show that the homotopy parameters i.e.
αinit, αstep can be chosen detached from zero without compromising the efficiency
of the method. We consider and optimized energy E∗

norm, or in the case of HOHo-
QAOA also an intermediate optimized step energy E∗

norm(α). In the numerical
results the E∗

norm is averaged over 100 experiments. Details of the experiment can
be found in Appendix....

For the numerical investigation of optimal QAOA parameters, which is illus-
trated in Figure 4.3, we consider three possible initialization choices of the mixer
and objective parameters at α = αinit:

1. RR (Random Random): When the parameters corresponding to mixer and ob-
jective Hamiltonians are chosen from a uniform random distribution U(0, 2π)
i.e. γinit

j ∼ U(0, 2π), βinit
j ∼ U(0, 2π).

2. NZR (Near-Zero Random): The parameters corresponding to mixer Hamilto-
nian are chosen from U(0, 2π) but objective parameters are sampled from the
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values very close zero i.e. γinit
j ∼ U(0, v), βinit

j ∼ U(0, 2π), where v is 0.05.

3. ZR (Zero Random): Mixer parameters are sampled from U(0, 2π) chosen and
objective is all zeros i.e. γinit

j = 0, βinit
j ∼ U(0, 2π) as proposed before.

4.5 Results

In this section we analyze the performance of the introduced algorithm with respect
to other optimization strategies introduced above.

In order to enable the simple reproduction of our results, we publish our code
in https://doi.org/10.5281/zenodo.7585691. The algorithms for generating
data and plotting were implemented in Julia and Python programming languages.
Versions of the software and additional packages are listed in https://github.
com/iitis/hoho-qaoa-code.

In Figure [4.4](b) we investigate how the efficiency of the optimization depends
on the αstep. During this investigation, we take 10 layers of HOHo-QAOA. We
observe that in the range 10−4 ≤ αstep < 0.5 the approximation to the ground
energy and the corresponding standard deviation with increasing αstep → 0 remains
almost unchanged, giving rise to a region of stability with respect to αstep. This
behavior of E∗

norm with αstep is similar to what we can observe for αinit. This lead
us to a conclusion that one can choose αstep detached from zero for HOHo-QAOA.
It should be noted that due to high simulation cost the experiment for 16 qubits is
halted at the αstep = 10−2, whereas the investigation for 6, 16 qubits is extended
to 10−4.

The discussion and numerical results from the previous paragraphs give us the
following initialization rules of HOHo-QAOA, which leads to a high efficiency of
the method:

1. The parameters of mixer and objective should be initialized with ZR setting
i.e. γinit

j = 0, βinit
j ∼ U(0, 2π),

2. Although one can infer that αinit → 0 along with αstep → 0 gives the best
result, our investigations show that one can choose the homotopy parameters
detached from zero. This greatly reduces the cost of simulating HOHo-QAOA

While it is natural for HOHo-QAOA to initialize using ZR strategy, it is
unclear whether this choice will improve or worsen the results for QAOA or T-
QAOA. Therefore before comparing state-of-the-art methods to the introduced
one, we verify whether there is any difference in the performance for QAOA and
T-QAOA with respect to the initialization of the optimized angles. In Fig. ... we
investigate state-of-the art methods for parameters (γj, βj)

init initialized with RR
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Figure 4.3: The impact of different methods of initialization of γj, βj on HOHo-
QAOA. The left, the middle and the right figures are representing the convergence
for RR (Random Random), NZR (Near-Zero Random) with parameter v = 0.05,
and ZR (Zero Random) initialization respectively, see Sec. 4.4.1 for details. It
is visible that the ZR is outperforming the other two initializations. Although
for αinit ≤ 0.2 the performance of NZR and ZR are comparable but as we tune
αinit > 0.2, the minima for NZR scatters in region 0.10 < Enorm < 0.15 whereas the
minima for ZR clusters in a very narrow Enorm-width.

and ZR strategy. We observe that the performance of QAOA and T-QAOA is
not influenced by the chosen strategies. This justifies using ZR strategy when
comparing QAOA, T-QAOA and HOHo-QAOA.

Note that for QAOA we are observing undesired non-monotonic behavior
with respect to the number of layers. We claim that this is caused because of a
complicated landscape of the energy function, which makes difficult to optimize
it if no information about the problem instance is used during the initialization
from large number of nodes. This argument is complies with good performance of
T-QAOA where the initial parameters of (L+ 1)-layer step is evaluated based on
local optimal solutions of the L-layers step.

In Fig... we compare the performance of HOHo-QAOA with the other variants
when (γj, βj)

init are initialized using ZR setting. In the first experiment we run the
algorithms with a fixed number of nodes while increasing number layers. In the
second experiment the number of layers is fix while we vary the number of nodes.
The plots present optimized energy values, averaged respectively over 100 and 50
instances. The data shows that the introduced HOHo-QAOA gives us significantly
smaller energy in both experiment setups. Good improvements remains as more
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Figure 4.4: We illustrate the dependency of E∗
norm with αinit and αstep. In (a)

the variation of E∗
norm with αinit for 3 layers of HOHo-QAOA is presented, with

γinit
j = 0, βinit

j ∼ U(0, 2π). In the figure, we see a region of stability of HOHo-QAOA
in respect with αinit in the range 0.0 to 0.50. In (b) we present E∗

norm vs αstep using
10 layers of HOHo-QAOA. Just like in the case of αinit, for αstep a same region
of stability can be observed. This gives us the preference on the choice of step
parameter while utilizing HOHo-QAOA. It should be noted that the y-axis in (a)
is in linear scale and whereas in (b) it is in log scale. The lines in both the plots
are taken αinit and αstep-wise and is the mean of 100 experiments. The area under
the plots are standard deviation of energies.

layers of the HOHo-QAOA are used and also outperforms the other varients of
QAOA for higher number of nodes. This conclusions remain valid also for the best
sample solution chosen (dashed line). It should be noted that the HOHo-QAOA
outperforms QAOA and the T-QAOA in each and every layer starting from initial
layer 5 to final layer 100.

4.6 Conclusion
In the article, we present a novel algorithm for combinatorial optimization. The
method is a combination of homotopy optimization with an application in QAOA.
In our method, the observable used for computing the energy is changed during
the optimization process. The process starts with the observable being a mixer,
for which the initial state of QAOA is a grounds state, and is slowly moved into
the objective Hamiltonian. In addition, we verify that, although traditionally in
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Figure 4.5: Comparison of different initialization for QAOA and T-QAOA. In the
left (right) figure we illustrate how the E∗

norm changes with increasing number of
layers in QAOA (T-QAOA) under the RR and ZR settings. The solid line is the
median energy over 100 experiments, meanwhile the dashed line represents the best
sample, taken layer-wise and node-wise by choosing the minimum energy among
all the experiments. The areas are delimited by the first and third quartile.

the homotopy method, the initial value of transition parameter α should be 0
and the step should be as small as possible, for QAOA the value of considered
parameters can be detached from 0. Our investigation of different initializations of
HOHo-QAOA helped us to conclude that the Zero Random (ZR) initialization is
the optimal choice for the weighed Max-Cut problem. However, the optimal choice
of the hyperparameters, or whether we can indeed detach αinit from 0, may depend
on the particular problem at hand and the size of its instances.

A homotopy optimization is an algorithm dedicated to nonlinear optimized
functions, and since even a simple QAOA landscape is a linear combination of
many – for some problems exponentially many – sinusoidal functions, our approach
is well motivated for such energy function. This is in contrast to the typical VQE
optimization process, in which the function landscape with respect to a single
parameter is just a sine. By comparing our approach and QAOA algorithm with
the typical choice of optimization strategies we numerically confirmed that our
method outperforms state-of-the-art approaches.

While our algorithm was only presented for QUBO and X-mixer, it is not
restricted to it. In particular, if the transition function is of the form H(α) =
g1(α)Hmix + g2(α)Hobj, we only require the energy of the Hmixer to be efficiently
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Figure 4.6: Performance of HOHo-QAOA compared to QAOA and T-QAOA. On
both figures, for all the QAOA methods, we applied the ZR settings. The areas are
delimited by the first and third quartile. The solid line presents E∗

norm median over
100 experiments for the left figure and 50 experiments for the right figure, and the
dashed line represents the best sample, taken layer-wise and node-wise by choosing
the minimum energy among all the experiments. On the left figure, the number of
nodes is fixed to 10. On the right, the number of layers is fixed to 5 and the energy
is sampled within 6 to 18 nodes. The homotopy parameters are set as αinit = 0
and αstep = 0.01. One can see that in both cases the averaged energy as well as
the best sample of HOHo-QAOA outperforms the other variants of QAOA.

computable and the ground state to be easily prepared. Both the XY-mixer [125]
and the Grover mixer [14] satisfy these conditions. Moreover, our approach remains
also valid for higher-order binary problems [27, 51, 115] and more advanced pseudo-
code-based QAOA Hamiltonian implementation [11].

The introduced HOHo-QAOA uses the same quantum circuit as the standard
QAOA, yet it allows reaching quantum states with much lower expectation values.
Hence, using this method does not increase the impact of the noise. Compared to
T-QAOA, where new layers are added one by one, our algorithm is from the very
beginning working on the full circuit. One could expect therefore that HOHo-QAOA
overshoots with the number of QAOA layers, as it is not chosen adaptively as for
T-QAOA. However, as we observed for the given number of layers, HOHo-QAOA
explores the ansatz much better than T-QAOA. Hence, repeating HOHo-QAOA
from scratch with a gradually increasing number of layers may lead in fact to
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shorter (and thus more noise-robust) quantum circuits compared to the T-QAOA
method.

One could expect that the HOHo-QAOA algorithm will be the slowest method
of all the considered ones because of the classical optimization being executed for
all intermediate α. However, if the functions g1, g2 which defines the combination
of mixer and objective Hamiltonians are not varying extensively, one should expect
that the ground states for most of the intermediate Hamiltonians should be close
to neighbouring ones. Therefore, the number of steps to be taken by the classical
optimizer with each α change is expected to be much smaller compared to adding
a new layer as in T-QAOA with randomly chosen QAOA parameters. Whether
this phenomenon will make up for, so that the total optimization time will be
comparable to the time required for T-QAOA would require investigating larger
instances.

4.7 Chapter Summary

On this chapter, we present a variant of QAOA, the Hamiltonian-oriented ho-
motopy QAOA (HOHo-QAOA): a heuristic method based on classical homotopy
optimization. The motivation lies in the ability of homotopic optimization to handle
highly non-linear landscapes, such as the energy landscape of QAOA problems.
By decomposing the optimization of QAOA into multiple loops using a homotopy
map, HOHo-QAOA effectively navigates the non-linear energy landscape to search
for low-energy states. The trick is to mimic the search that happens in a adiabatic
path, which is known to reach a global minimal. The key concepts are:

• QAOA: The QAOA is a variational quantum algorithm dedicated to com-
binatorial optimization problems which applies a parametrized quantum
circuit based on a trotterized adiabatic evolution, i.e., the circuit consists of
interchangeably applied so-called mixer and problem Hamiltonians.

• Energy Landscape: Considering that, for QAOA, the circuit evolution is done
by applying the unitarie exp−iθH, where θ is a set of parameters of the
circuit and H the Hamiltonian which described the energy of the system, the
energy function with respect to θ takes a high non-linear form, making the
optimization of QAOA particularly difficult, prone to stuck in local minima.

• Homotopic Optmization: One of the well-known methods to solve a system of
highly non-linear problems is homotopy optimization, where a homotopy map
is constructed between two systems. The solution corresponding to one of
the systems is transformed into the solution of the other system by smoothly
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transitioning between two systems by introducing an interpolating parameter,
which we denoted in the chapter as alpha, that varies from 0 to 1.

In that sense, we can say that HOHo-QAOA utilizes a homotopy map to create
an optimization problem for each value of the interpolating parameter α, enabling
the algorithm to iterate through different loops using a combination of mixer and
objective Hamiltonians for cost function evaluation. This approach smoothens
the transition between the mixer and problem Hamiltonians during optimization,
simplifying the search for good QAOA parameters while keeping the quantum
circuit unchanged, i.e., HOHo-QAOA uses the same quantum circuit as the standard
QAOA, yet it allows reaching quantum states with much lower expectation values.
Hence, using this method does not increase the impact of the noise.

We empiric analysed the impact of homotopy parameters, specifically the
initial α value and step parameter alpha step. It demonstrates that even when
these parameters are not close to zero, HOHo-QAOA can still provide a good
approximation to the optimal solution, reducing computational costs. By iteratively
navigating through these loops, HOHo-QAOA improves the search for low-energy
states, outperforming the state-of-the-art QAOA and a variant of heuristic learning
of QAOA, know as trajectories QAOA (T-QAOA).
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Chapter 5

Applications of Quantum Annealing
for Music Theory

In this chapter1, we will discuss about formulating music composition and reduction
problems, and solving it using quantum annealing devices.

5.1 Introduction

Music composition can be thought of, in a very simplistic way, as a creative process
where one puts combines sound and silences resulting in a sequence that is aesthetic
interesting and/or pleasing hear. Over the years, it has been discovered that music
commonly associated with soothing and pleasing feelings follows some rules and
possess common patterns. Those rules have evolved and solidified up to some
extent over the centuries. Yet, there is still certain flexibility keeping open room
for creativity.

Being able to identify some rules and common patterns to guide the music
composition process is one of the keystones of music theory, therefore, is extensible
applied to algorithmic music composition. The seeds of computer-generated music
were sown at the end of the nineteenth century by Ada Lovelace, the first computer
programmer and also one of the first to recognize the usage of machines beyond
calculations. Lovelace put forward the idea that Babbage’s prototype computer,
the analytical engine, “might compose elaborate and scientific pieces of music of any
degree of complexity or extent” [88]. Yet, this dream was not realized until the 1950s,
when the first computer-generated music piece, the Iliac Suite, was composed [61].
Following the advancements in computer science, various methodologies have been
explored for generating music, including stochastic approaches, rule-based systems,

1The content of this chapter is based on the author’s works [10,21] and all the figures in this
chapter are taken from, or are adaptations of, the figures present in such work.
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evolutionary algorithms, and machine learning [102]. The emergence of quantum
computers heralds a new addition to this sequel.

With quantum computers starting to become accessible to the scientific com-
munity and enthusiasts, we are witnessing the growth of a new field referred to
as quantum computer music [90]. Although the term comprises using quantum
computers to generate, perform, and listen to music, we will focus on this chapter
on music generation and music reductions, which are problems that could benefit
of a new computation paradigm.

Most of the work undertaken so far on music generation using quantum comput-
ing is based on the gate-based model. In [69], a simple algorithm named Gatemel is
developed to generate music using IBM quantum computers. A classical-quantum
algorithm is introduced in [70], which uses Grover’s search and follows a rules-based
approach for composing music. For quantum algorithms, it was also proposed using
quantum walks and quantum natural language processing to compose music.

In this chapter, it is proposed new methodologies for dealing with generating
and reducing music using quantum annealing by approaching the problems as an
optimization tasks. We consider the problem of music composition from various
aspects, among them the composition of melody and rhythm. For music reduction,
we treated the problem as a variant of job scheduling, where each machine is a
instrument and the jobs are music phrases. Using D-Wave2 quantum annealers, we
generate music pieces that are displayed in the course of the text.

The rest of the chapter is structured as follows. The first part describes how
to formulate the music composition as an optimization problem. We begin with
a review of the classical approaches for music composition in the framework of
optimization in Sec. 5.2. We describe the fundamental techniques and formulations
for music composition using quantum annealing in Sec5.3. In Sec. 5.4 we present
the music reduction problem. Finally, we conclude with a discussion and suggestions
on future work in Sec. 5.6.

5.2 Music generation and optimization problems
Computational music generation is a field that emerged alongside the rise of
digital computers in the late 1940s. The first computer to play a music piece
was CSIR Mark-1 [39]. In the initial period, most studies focused reproducing an
existing music piece using computers rather than composing a new music piece.
Later with the increase of computational power, the focus of researchers shifted
to creating new music with the help of computers [17]. Programs and a set of
programming languages known as MUSIC-N were developed by Max Mathews at

2D-Wave is the company that produces publicly available quantum annealers. https://www.
dwavesys.com/
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Bell Laboratories in 1957 [84]. Besides, the popularization of video games and
synthesises played a huge role in computational music. This field is also known
as algorithmic music [112]. Various tools and techniques for algorithmic music
generation have been thoroughly discussed in [89].

Optimization is a widely used technique for computational music generation.
As mentioned previously, any piece of music can be seen as a sequence of sounds
and rests. These sequences can be recognized by their conformity to a specific
musical style or any other musical attribute. Consequently, any divergence from this
established proprieties in the generated music leads to a cost or penalty. Therefore,
through the optimization process, it is possibly to generate a sequence of music
elements that minimizes the deviation expected for a pre-identified music style.
Now, we will briefly summarize some of the techniques used for computational
music generation, where the new composition is achieved through optimizing some
parameters related to the music piece.

Statistical modelling is a common technique used in computational music
generation. In this approach, the existing music corpus is analysed and its statistical
properties are derived. To generate a new music, the process starts with a given
note. The next note is choose by calculating the pitch with the highest probability
given the set of parameters based on the previously derived proprieties. The
following notes are selected in the same fashion. Thus, sequentially the entire new
music piece is obtained. Here it is important to observe that the newly generated
music piece follows the statistical properties of the music piece from which the
probabilities were calculated [82]. Illiac Suite is considered to be the first musical
score generated by a computer in 1957 [46,61], using a statistical method known
as Markov chains.

Constraint programming is a programming paradigm where instead of steps to
solve a problem, the properties of the solution are specified by declaring a set of
constraints that must be satisfied. Mainly, it is an expansion of constraint logic
programming, which in turn is an expansion of satisfiability problem (SAT) [7].
The set of constraints with a general-purpose search algorithm can solve large
practical combinatorial and scheduling problems [122]. Since music composition
is a process where at every step, the choices available for the composer are in
the form of combinations of notes, chords, or intervals; these combinations are
constrained naturally by the rules of music, such as melody or harmony generation
rules [121]. This resemblance in the process of music generation and constraint
programming has been used in modeling and generation of various musical forms
such as counterpoint, harmony, rhythm, form, and instrumentation [5].

Integer linear programming (ILP), which is often referred to as integer program-
ming (IP) in the literature, is another main framework for solving combinatorial
problems. Though it shares a lot in common with constraint programming, ILP
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only uses variables with integer values to represent the problem as will be described
in the following section. Based on our knowledge, integer programming has not
been used extensively in the literature in the scope of music generation. Some works
in this line are the following. The natural one-to-one mapping between integers
and pitch values of the 12-tonal music system has been exploited by Tsubasa
Tanaka et al. [117] for musical motif analysis of existing masterpieces of music.
Nailson dos Santos Cunha et al. have generated guitar solo music using integer
programming [34].

The bottleneck in the ILP is their hardness: ILP are NP-Complete. The usual
approach for solving a combinatorial problem via ILP could be via exact algorithms,
such as branch and bounce, cutting planes method among them. Alternatively,
several heuristic methods such as hill-climbing, simulated annealing, ant colony
optimization, Hopfield neural networks, tabu search have been used to reach the
solution set [32,53]. The next imperative step would be using quantum methods for
solving combinatorial problems, which can be initially formulated as ILP problems,
which can be easily converted into a form that is suitable for quantum annealing.

5.3 Music Generation

Now we are going to briefly introduce how to map Melody generation into a problems
that can be solved in a quantum annealing device. In the next subsections, we
will defining a model for a sequence of notes, followed by the rules to select which
notes should be selected and rests. Then, we can define a objective function and
the constrains for the problem to be optimized using a QUBO formulation. To
conclude the piece, after describing how to generate the pitches for the melody, we
take into account the rhythm generation.

5.3.1 Melody Generation

As described in the previously, quantum annealing is a approach to find the optimal
solution of a problem encoded as a Ising Hamiltonian. We will start by investigating
different ways of formulating the process of melody generation as an optimization
problem. When we talk about melody generation, we refer to the generation of the
pitches only.

Model

Suppose that we want to generate a melody consisting of n notes, where the pitches
belong to the set P = {p1, p2, . . . , pk}. We will define the binary variables xi,j for
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i ∈ [n] and j ∈ P as in Eq. 5.1.

xi,j =

{
1 note at position i is j
0 otherwise.

(5.1)

The total number of variables required in this formulation is n|P |. Note that we
aim to generate n notes simultaneously. At the end of the optimization process, we
will obtain an assignment to the binary variables xi,j , which will indicate the pitch
of the note selected for each position.

Next, we will define some constraints which can be included in the objective
function using the penalty method. The first rule we need to incorporate is that
only one of the variables xi,j is equal to 1 for each position i. The rule is necessary
as exactly one pitch should be selected for each time point. This is equivalent to
having the constraint defined in Eq. 5.2 for each i ∈ [n],∑

j∈P
xi,j = 1. (5.2)

This constraint is the backbone of our formulation, and it should be included in the
QUBO using a sufficiently large penalty coefficient as it should never be violated.

Let us go through an example. Let P = {C4, D4, E4, G4} and n = 5. The QUBO
formulation has 20 variables defined through Eq. 5.1 and penalty terms of the form
presented in Eq. 5.3 for each i = 1, . . . , 5, that are obtained from Eq 5.2.(

1−
∑
j∈P

xi,j

)2

. (5.3)

At this point, any sequence of 5 notes has 0 energy and is equally likely to be
produced and there are in total 45 such sequences. The list of the first 5 samples
obtained from D-Wave as a result of running the QUBO formulation described
above is given in Table 5.1.

The energies of all the samples in Table 5.1 are 0 as no constraint is violated,
i.e., precisely one of the variables is 1 for each i. The resulting note sequences are
given in Table 5.2

So far, we have only defined a single rule ensuring a single note at each time
point. In general, one would like to introduce some more rules while composing a
melody as we will discuss next.
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i = 1 i = 2 i = 3 i = 4 i = 5

Sample 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0
Sample 2 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0
Sample 3 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0
Sample 4 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1
Sample 5 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0

Table 5.1: The list of first 5 samples obtained from D-Wave. The columns represent
the values of the variables x1,C4, x1,D4, x1,E4, x1,G4, x2,C4, . . . , x5,G4 in the given order.

Sample 1 E4− E4− G4− D4− D4

Sample 2 D4− G4− C4− C4− D4

Sample 3 D4− D4− G4− G4− E4

Sample 4 E4− G4− E4− C4− G4

Sample 5 D4− E4− C4− E4− D4

Table 5.2: The list of note sequences corresponding to the samples given in Table
5.1.

Rules About Consecutive Notes

Suppose that we want to add a restriction that the note pl does not appear after
the note pk. This is useful for avoiding particular intervals and amending our model.
Such a restriction can be incorporated into the QUBO formulation by adding the
term defined in Eq. 5.4 to the objective function multiplied with a suitable penalty
coefficient C for each i ∈ [n− 1],

xi,pkxi+1,pl . (5.4)

Note that when both variables equal 1 simultaneously, a penalty of C is added
to the objective function. Alternatively, we can express the same rule using the
constraint defined in Eq. 5.5 as

xi,pk + xi+1,pl ≤ 1. (5.5)

In this case, the inequality should be first transformed into equality by using slack
variables and then added to the objective function.

Now let us consider a rule saying that the same note does not appear more
than twice in a row. Similar to what we had above, the term xi,pjxi+1,pjxi+2,pj can
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be added to the objective for each i ∈ [n− 2] and pj ∈ P . However, this is not a
quadratic term, and quadratization is needed to obtain a QUBO. Alternatively,
the rule can be expressed by the constraint given in Eq. 5.6, which forces that at
most two of the variables are equal to 1 simultaneously,

xi,pj + xi+1,pj + xi+2,pj ≤ 2. (5.6)

Taking the previous example and assuming that P = {C4, D4, E4, G4} and n = 5,
let us also add the rule that G4 does not follow D4 using Eq. 5.4 and include Eq.
5.6 in our formulation as well. The first 5 samples from the experiment results are
listed in Table 5.3. All the sequences in the table have 0 energy and obey the rules
we have incorporated.

Sample 1 G4− D4− E4− G4− C4

Sample 2 E4− E4− C4− E4− G4

Sample 3 E4− D4− C4− E4− G4

Sample 4 D4− E4− G4− D4− C4

Sample 5 D4− E4− G4− D4− E4

Table 5.3: The list of note sequences obtained from D-Wave after incorporating
constraints given in Eq. 5.4 and Eq. 5.6.

Semitones and Augmented Intervals

Now let us investigate the different ways we can choose set P . We can identify the
notes through the number of semitones between the lowest pitch and the pitch in
consideration. The binary variables xi,j are defined as in Eq. 5.7 for each i ∈ [n]
and j ∈ P .

xi,j =


1, note at position i is j semitones

apart from the lowest pitch of the sequence,
0, otherwise.

(5.7)

When P is selected as {0, 1, 2, . . . , 12}, then it represents the notes from a
chromatic scale. Note that this representation is independent of the key chosen
as the result may be interpreted in any key. For instance, if we let xi,0 = C4,
subsequently the resulting P is the set of notes from the chromatic scale of C.

Identifying the notes through semitones, it will be easier for us to model some
rules like avoiding particular intervals. Let A be the list of intervals in semitones,
that we would like to avoid. This rule can be incorporated by adding the term
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defined in Eq. 5.8 to the objective function for all i ∈ [n], |j′ − j| ∈ A,

xi,jxi+1,j′ . (5.8)

Alternatively, it translates to the constraint given in Eq. 5.9, so that whenever an
unallowed interval is used, we have a penalty,

xi,j + xi+1,j′ ≤ 1 for all i ∈ [n], |j′ − j| ∈ A. (5.9)

We are also capable of taking P as a subset of the chromatic scale. For instance,
the set P = {0, 2, 4, 5, 7, 9, 11, 12} represents the notes from a major scale. Let us
also assume that we would like to set the first and the last pitch of the generated
music piece as the first degree of the scale. This can be incorporated by simply
adding the terms given in Eq. 5.10 to the objective.

(1− x1,0), (1− xn,0) (5.10)

Let us go over an example. We will let A = [6, 8, 10, 12], so that we would like
to avoid the intervals tritone, augmented fifth, augmented sixth, and augmented
seventh (octave). Assuming that P = {0, 2, 4, 5, 7, 9, 11, 12}, n = 20 and incorpo-
rating rules Eq. 5.2, Eq. 5.6, Eq. 5.8, and Eq 5.10, we obtain a QUBO formulation.
Due to the increased number of constraints, the solution returned by D-Wave QPU
violates some constraints and fails to return the ground state. Using D-Wave hybrid
solver, the obtained melody interpreted in C Major is given in Figure 5.1. Note
that not all the constraints are satisfied in this sample as well. This can be viewed
both as a caveat and a feature, as the violation of some constraints introduces some
randomness to the process.

Figure 5.1: The sequence of semitones is obtained from D-Wave hybrid solver and
it is interpreted in C Major.

Diatonic Scale and Tendency Notes

Previously, we investigated how one can identify the notes through semitones. All
music pieces have a definite key signature. Therefore it is often more suitable to
work with pitches from a particular scale.
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For simplicity, let us consider the 8 degrees of a diatonic scale. In this case, the
set P consists of d1, d2, . . . , d8 where dj is the j’th degree of the scale. Instead of
defining the variables by the pitches, we will define them through degrees for each
i ∈ [n] and dj ∈ P as given in the following equation:

xi,j =

{
1 note at position i is dj,
0 otherwise.

(5.11)

As a result of the optimization procedure, we will obtain a degree sequence,
which can then be translated into a note sequence based on the chosen scale. Hence,
our model is readily adaptable to different scales. Furthermore, the rules described
in the previous subsections are still applicable.

Some notes in the scale are less stable than the others which are known as
the tendency notes and tend to resolve to the stable ones. Let us examine how to
incorporate rules about tendency notes. According to the rule, degrees 2, 4, and
6 resolve down by one step, and degree 7 resolves to the octave. To reflect the
rule about tendency notes, for each i ∈ [n− 1], we will add the terms defined in
Eq. 5.12 to the objective,

xi,2(1− xi+1,1), xi,4(1− xi+1,3), xi,6(1− xi+1,5), xi,7(1− xi+1,8). (5.12)

Using equations (5.10) to (5.12) to formulate our model and setting n = 20,
the degree sequence obtained from D-Wave corresponding to one of the samples
with the lowest energy is given in Figure 5.2. The degree sequence is interpreted
for different scales.

Figure 5.2: The degree sequence is obtained from D-Wave and it is interpreted in
C Major and G Minor (natural) in the presented music scores, respectively.
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Objective Function

Having discussed how to incorporate different constraints into the model, we can
now explore how we can modify the objective function to differentiate between the
feasible solutions. When we have only the constraints, all sequences of notes that
do not violate any of the constraints are feasible solutions, and they are equally
likely to be sampled since they have the lowest possible energy. Any violated
constraint increases the energy value by the penalty value of the constraint. Note
that as mentioned earlier, sometimes we would like particular constraints to be
never violated (like Eq. 5.2), while a solution in which some constraints are violated
can still be desirable (avoidance of particular intervals).

In order to differentiate between the feasible solutions, we can give some “rewards”
to a particular sequence of notes, i.e. decrease their energy. For instance, we might
give a higher reward for pitch D4 following C4 vs. pitch E4 following C4. The way
to accomplish this is to have the term given in Eq. 5.13 in the objective function,

−
∑

i∈[n−1]
j,j′∈P

Wj,j′xi,jxi+1,j′ . (5.13)

Here, Wj,j′ is the weight associated with having note j′ after note j. The larger
the weight, the higher the reward we have in the objective function. Note that we
have a negative sign in front in Eq. 5.13, as we have a minimization problem and
want to decrease the energy. The weights can be determined by analyzing some
music pieces and forming a transition matrix of weights examining the consecutive
notes. Below, we illustrate this idea through a simple music piece.

Figure 5.3: An excerpt from Beethoven’s Ode to Joy.

In Figure 5.3, an excerpt from Beethoven’s Ode to Joy is given. To identify
the weights, we count the occurrences of consecutive pairs. To start with, we
identify the occurrences of each note and then count the number of times the
note is followed by another particular note. For instance, the note F#4 appears
at positions 1, 2, 7, 12, 13. It is followed by F#4 and E4 twice, and by G4 once.
Hence, we can deduce the weights given as

WF#4,E4 = 2, WF#4,F#4 = 2, WF#4,G4 = 1. (5.14)
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As the selected music piece is a short one, it does not contain all the notes from P
and for those notes i, the corresponding weight Wi,j = 0 for all j. We would like to
remark that having 0 as the weight does not imply that the corresponding note
tuple is always avoided but means that we don’t give additional rewards to such
pairs. The list of all non-zero weights is defined as

WF#4,E4 = 2, WF#4,F#4 = 2, WF#4,G4 = 1, (5.15)
WG4,F#4 = 1, WG4,A4 = 1,

WA4,G4 = 1, WA4,A4 = 1,

WE4,D4 = 1, WE4,E4 = 1, WE4,F#4 = 1,

WD4,D4 = 1, WD4,E4 = 1.

Note that taking the number of occurrences as the weights, we are also giving
rewards to pitches that appear more frequently than the other. For instance, F#
appears five times, and the overall reward is higher when more F#’s appear in the
sequence.

Now the question is how should we select set P . We can use Eq. 5.11 to define
our binary variables as the degrees from a scale. Hence, the matrix W defines the
transition weights between the scale degrees. Note that the newly generated music
piece mimics the one from which the transition weights are obtained. The longer
the music piece, the better estimates are obtained for the weights. Multiple pieces
can be selected as well, paying attention that they are from the same scale, or in
case considering pieces from different scales, one should take degrees of the scale
instead of the pitches when calculating the weights.

We define the QUBO formulation defined through binary variables given in
Eq. 5.11 using the constraints defined in Eq. 5.2, Eq. 5.10, Eq. 5.6, Eq. 5.12 and
Eq. 5.13 as the objective function with the weights obtained from Eq. 5.15. Note
that in this case, one needs to properly set the penalty coefficients; in case the
constraint is violated and there is a reward, an increase in the energy due to the
penalty should be larger than the decrease in the energy due to reward. The
resulting music piece obtained from the D-Wave hybrid solver is given in Figure
5.4. We interpreted the obtained degree sequence in D Major.

Alternatively, instead of generating weights for the transitions between individual
degrees, we can collect statistics about the different intervals used in the music
piece and how often they appear. Then accordingly, we can reward the intervals
that occur more frequently.
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Figure 5.4: The degree sequence is obtained from D-Wave using the transition
weights from Ode to Joy and it is interpreted in D Major.

Rests

The sets we have considered so far only consisted of the pitches; however, we may
want to include rests in the music piece as well. In this case, a rest element can
be included in the set P with appropriate rules. For instance, we may want to
avoid two consecutive rests, which we can easily accomplish with the rules we have
shown for consecutive notes. In addition, we can set the number of rests used in
the music piece by introducing the constraint given in Eq. 5.16.∑

i

xi,r = k, (5.16)

where k is the total number of rests we want in the music piece and xi,r denotes
that note at position i is a rest.

5.3.2 Rhythm Generation

So far, we have discussed generating the pitches of the melody. In this section, we
additionally take into account the rhythm.

Rhythmic Sequence

When generating a music piece, one option would be to generate the pitch sequence
and the rhythmic sequence separately. In such a case, the idea will be similar to
what we had previously. The set S will consist of possible durations for the notes,
such as whole, half, quarter, etc. The binary variables yi,j for i ∈ [n] and j ∈ D
will be defined as

yi,j =

{
1 note at position i has duration j,
0 otherwise.

(5.17)

Similarly, the first rule we need to incorporate is that only one of the variables
yi,j is equal to 1 for each position i, which is expressed using the constraint given
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in as ∑
j∈D

yi,j = 1. (5.18)

For the objective function, the same method can be used. Let us denote half
note by H, quarter note by Q, dotted quarter note by DQ and eighth note by E. For
the music piece given in Figure 5.3, we obtain the weights given as

WQ,Q = 11, WQ,DQ = 1 (5.19)
WDQ,E = 1

WE,H = 1.

If we only incorporate Eq. 5.18 and Eq. 5.19 in our formulation, then it is very
likely that we will have a sequence of quarter notes only, as they have the highest
weight. To avoid this, we will make sure that there are at least two notes of each
duration using the constraint given as

n∑
i=1

yi,d ≥ 2, (5.20)

for each d ∈ D.

We generate a rhythmic sequence with the binary variables defines as in Eq. 5.17,
using Eq. 5.18 and Eq. 5.20 as the constraints and the transition weights given in
Eq. 5.19 to obtain the objective function defined in Eq. 5.13. We combine it with
the degree sequence generated in Fig. 5.4 and obtain the music piece given in Fig.
5.5.

Figure 5.5: The rhythmic sequence obtained from D-Wave is combined with the
pitch sequence obtained in Fig. 5.4.

We would like to note that in this approach, we are not fixing the total length
of the music piece, but we are determining the durations for a given fixed set of
notes. To have a fixed music length, what we can do is include a constraint that
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takes into account the duration of each type of note as given as∑
i∈[n]
j∈D

d(j)yi,j = L, (5.21)

where d(j) is the duration of j and L is the total length of the music piece in terms
of eighth notes so that d(E) = 1, d(Q) = 2, d(DQ) = 3 and d(H) = 4. We discretize
the durations in terms of eighth notes as it is the note with shortest duration in
our example.

Rhythm and Pitch Generated Together

Another alternative is to consider pitches together with their durations. If P is the
set of possible pitches, and D is the set of possible durations, then overall, there
will be |D||P | possibilities for each note. Assuming there are n notes, the number
of variables we need significantly increases to n|D||P | in this case. The binary
variables for i ∈ [n], j ∈ P and k ∈ D take the form presented in Eq. 5.22.

xi,j,k =

{
1 note at position i is pitch j and has duration k,
0 otherwise.

(5.22)

The previous rules we defined about the consecutive notes and intervals apply here
too. Those constraints are included independent of k, the note’s duration. Likewise,
we can still take an objective function based on another music piece. This time, we
inspect the number of occurrences of consecutive pitch-duration pairs. However,
we would like to remark that the performance of the quantum annealers decreases
as the number of variables increases. Hence, it is often desirable to have models
with a smaller number of variables.

5.4 Music Reduction

Music reduction is the task of selecting particular parts - often called phrases - of a
music piece involving multiple instruments to be played with a smaller number of
instruments. By mapping phrases to jobs and the number of instruments desired
in the final music piece to the number of machines, we obtain a problem where the
starting and ending time of each job are fixed and the goal is to assign jobs to the
machines. In this scenario, idle time means that some particular instrument is not
playing any music for that duration, which should be minimized to obtain a final
music piece that captures the original music piece as much as possible. Consequently,
the weight of each phrase reflects how important and rich a particular phrase is in
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reflecting the main melody of the music piece.
In previous research, several approaches to the automatic arrangement of

ensemble or orchestral pieces for single instruments have been considered. A variety
of methods for music reduction and phrase selection were applied previously such
as machine learning [31], state-transition models [98], hidden Markov model [63],
entropy optimization [62], and local boundary detection model [78]. Besides the
extraction of information, those works also consider the playability of the newly
arranged pieces.

To build the problem instance, the first step is the identification of the musical
phrases and their weights. Subsequently, we present some experimental results.

5.4.1 Phrase identification

A phrase in a melody is a sequence of notes that express a musical idea on its
own. The ending of a phrase may be marked with relative lengthening of the last
note, intensity or timbral change, or the presence of rests or pauses [26, 97, 120].
Identification of musical phrases has been considered an essential part of music
perception by humans [74, 94]. Meanwhile, the automated detection of phrases
has been considered by many researchers. Some approaches make use of machine
learning techniques such as deep neural networks [56] or use statistical modelling
[104] and rule-based approaches which aim to identify the points of change in
different musical parameters such as pitch and rhythm [77,92]. In [78], the phrase
selection is based on computing the cost function with the information entropy of
the phrase.

We used the Local Boundary Detection Model (LBDM) proposed by [26] for
identifying musical phrases. First, sequences of pitch, interonset (duration between
the beginning of two consecutive notes), and rest intervals are obtained from a given
melodic sequence. For each interval, boundary strength values are calculated and
combined to obtain the melody’s overall local boundary strength profile. Boundary
strength values are proportional to the degree of change between two consecutive
intervals, and the boundary introduced on the larger interval is proportionally
stronger. The peaks of this sequence indicate the local boundaries.

To identify the peaks of the sequence, one needs to set a threshold value.
However, based on the threshold value, the phrases’ length may become too small
or too large. To overcome this issue, we developed the algorithm described in
Algorithm 1.

5.4.2 Determining the weight for each phrase

The goal of music reduction is to highlight a song’s most distinctive features and
capture the main melody while reducing the number of instruments. The main
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melody usually consists of pitch and rhythm rich in information. More formally,
such melodic phrases have higher entropy regarding information theory. In order
to quantify the amount of information in a phrase, we used the approach presented
in [78], which identifies pitch and interonset interval (IOI) entropy. The pitch
entropy corresponds to the frequency variety in a scale occurring in a sequence of
notes comprising a phrase. In the case of chords, which contain multiple pitches,
we only take into account the highest note in the chord for entropy calculation
because listeners tend to focus on the notes with the highest pitches.

Mathematically, the entropy for a random variable X with possible values
x1, . . . , xn is given by

H(X) = −
n∑

i=1

P (xi) log2 P (xi) , (5.23)

where P (xi) is the probability that X takes value xi. Suppose that we represent
with xi the possible pitch values that can occur in a phrase. Then, the probabilities
P (xi) are computed by

P (xi) =
ni

N
, (5.24)

where ni is the number of occurrences of the ith pitch in the phrase and the phrase
contains N notes. The melody entropy for each phrase is calculated based on this
probability calculation.

In addition to pitch, rhythm is also a factor in determining the amount of
information a phrase contains. Compared with the duration of notes, the IOI is
easier to perceive. Similarly to the pitch, we calculate the IOI entropy based on
the its probability, with xi as the possible IOI value in a set of N different IOIs
with ni occurrences in a phrase.

The underlying assumption is that compared to the accompaniment, the rhythm
in the main melody is more complicated and more difficult to predict. That means
the combined pitch and IOI entropy of the phrase in the main melody part should
be the largest.

5.5 Optimization algorithm

In this section, we will first describe the QUBO formulation for OFISPmin-i problem
and then discuss the classical post-processing step.
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5.5.1 QUBO formulation

Let us define the binary variable xi such that

xi =

{
1, if job bi is selected
0, otherwise

(5.25)

for i = 1, . . . , N .
Assuming that the time intervals for jobs are given by discrete time units

(minutes, seconds), we need the following constraint:∑
i: k∈[si,ei]

xi ≤M for k = 0, . . . , K. (5.26)

This constraint ensures that more than M jobs are not selected for any time point
and can be considered a hard constraint. Any solution violating this condition
would be an infeasible solution.

We also would like to have exactly M jobs assigned to each time point to
minimize idle time, although this may not always be possible. Hence, we introduce
the following constraint:∑

i: k∈[si,ei]
xi =M for k = 0, . . . , K. (5.27)

Using the first constraint together with this additional condition which can be
considered as a soft constraint, we penalize the cases where the number of selected
jobs xi exceeds M with a larger penalty than the case fewer jobs are selected. That
also complies with the goal of minimization of idle time in case it is only possible
to find a solution with idle time.

The goal is to maximize the total weight of the selected jobs:

N∑
i=1

wixi. (5.28)

Incorporating the constraints presented in Eq. (5.27) and Eq. (5.26), we present
the following QUBO formulation:

N∑
i=1

wixi + P1

K∑
k=1

 ∑
i: k∈[si,ei]

xi + E(ξk)−M

2

+ P2

K∑
k=1

 ∑
i: k∈[si,ei]

xi −M

2

.

(5.29)
In the given formulation, E(ξk) is the binary representation of the integer
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slack variable ξk, which is needed for converting the inequality constraint given in
Eq. (5.26) into equality. P1 and P2 are the penalty coefficients and P1 should be
selected larger than P2. For the given formulation, the number of variables required
is upper bounded by O(N +K logM): we need N binary variables to represent xi,
and K logM variables to represent K slack variables each ranging from 0 to M .

5.5.2 Post-processing

Note that the obtained solution does not give us information about the job machine
assignment but only the list of selected jobs. Nevertheless, given the list of selected
jobs, the assignment can be determined using a classical greedy algorithm typically
used for interval partitioning. The original problem aims to find an assignment with
the minimum possible number of classrooms to schedule all the lectures with fixed
starting and ending times. If we adapt this to our case, the lectures become jobs,
and classrooms become machines. In this approach, the jobs are sorted according
to their starting times and assigned greedily to machines. The algorithm has time
complexity O(N logN) [73], where N is the number of jobs. We describe the
algorithm in detail in Algorithm 1 for completeness.

Algorithm 1 Pseudocode for job machine assignment
Input: J – the list of selected jobs

Sort J by starting time in non-decreasing order
m← 1
for j in J do

if j is compatible with some machine k ∈ {1, . . . ,m} then
Assign j to k

else
m← m+ 1
Assign j to m

5.5.3 Enhancing the model

On top of the formulation presented above, one can introduce further constraints.
For instance, it might be the case that we do not want particular jobs to be selected
simultaneously. In such a case, it would be enough to include the term Pxixj for
the specific jobs bi and bj, where P is a suitable penalty coefficient. Note that one
can prioritize some jobs by increasing their weights further.

In the presented QUBO formulation, we assumed that all the machines were
identical. The case of unidentical machines is commonly considered in the literature
[8]. In that case, we have the restriction about machines on which a job can be

9696



Chapter 5. Applications of Quantum Annealing for Music Theory

processed. Let us denote the set of machines on which job bi can be processed by
Ri ⊆ R. To model the problem, we will introduce the binary variables indexed by
the job number and the assigned machine, as in the case of the ILP for OFISP. Let
xij be the binary variable such that

xij =

{
1, if job bi is assigned to machine rj
0, otherwise.

(5.30)

for i = 1, . . . , N and j = 1, . . . ,M . We need Eq., which forces each job to be
assigned to a single machine, and the objective stays as in Eq.. Additionally, we
need the following constraints:

∑
i: k∈[si,ei]

M∑
j=1

xij ≤M for k = 0, . . . , K, (5.31)

∑
i: k∈[si,ei]

M∑
j=1

xij =M for k = 0, . . . , K. (5.32)

Now, to make sure that a job is not assigned to an incompatible machine, we
add the terms Pxij, for those i, j pairs where rj ̸∈ Ri. Hence, any incompatible
assignment is penalized. Note that the number of variables required for this
formulation is N ·M instead of N , without counting the slack variables.

5.5.4 Results

We chose two classical compositions for our experiments: Suite No. 3 in D major,
BWV 1068, Air, and Beethoven’s Symphony No. 7 in A major, Op. 92, Second
Movement. The music sheets are encoded as MIDI files with public domain licenses
and parsed with music21 [35] library. Our goal was to reduce the given music piece
to two tracks. To start with, we classically processed the phrase selection algorithm,
identified the phrases, and created the QUBO formulation using pyqubo [131]
library.

We conducted the annealing experiments with the available solvers provided
by D-Wave, which included simulated, quantum, and hybrid annealers. The
parameters for simulated annealing used in our experiment are the number of
reads nr = 1000 and the number of sweeps ns = 1000. We used two quantum
processing units (QPUs) in the quantum annealing experiments. The first one,
Advantage_system4.1, provides 5627 qubits interconnected by Pegasus graph
topology. The second device, Advantage2_prototype1.1, has 563 qubits with the
underlying Zephyr topology. The tested parameters are discussed further below.
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Figure 5.6: Experiment results for entropy varying chain strength and annealing
times. The dashed lines correspond to the simulated annealing best result and
the dotted lines to the hybrid solver solution. The square, round, and star dots
correspond to chain strength values 0.1, 0.2, and 0.3, respectively

For the hybrid solver, no parameters are set, and it returns a single solution.
When running a problem on D-Wave QPUs, the variables should be mapped

to the QPU architecture, as the underlying graph representing the interactions
in the QPU is not fully connected. This process is known as minor embedding,
where multiple physical qubits represent a single logical qubit named a chain.
The coupling between those qubits is called the chain strength, which should be
accordingly set so that it is not too large to override the actual problem, yet it is
not small so that the chain is not broken [127]. The problems were automatically
embedded via D-Wave’s native probabilistic embedding algorithm.

For the quantum annealing solvers, we vary the parameters for chain strength
as cr = 0.1, 0.2, 0.3 and the annealing time as t = 100, 500, 1000, 2000. The number
of reads and the annealing time are subject to the relation nr · t < 106, and we
picked the maximum possible number of reads based on this relation.

The solutions in which hard constraints defined in Eq. 5.26 are violated are
considered infeasible, and the violations of Eq.5.27 are deemed as soft violations.
The results point to two solutions; the first is based on the sample with the highest
entropy, and the second is based on the sample with the minimum number of soft
violations. We decided to proceed with higher entropy solutions to maximize the
information from the original song. The code and its description used to generate
the experiment is available on https://doi.org/10.5281/zenodo.7410349.

Suite No. 3 in D major, BWV 1068, Air For this composition, which
comprehends four tracks with a length of 19 measures, we identified the set of jobs
from the 41 identified phrases. From this, the number of QUBO variables is 80.
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Advantage_system4.1

Chain Strength

Annealing Time 0.1 0.2 0.3

100 0 0 0

500 4 0 1

1000 3 0 1

2000 1 0 1

Table 5.4: Number of soft constraint violations for Suite No. 3 in D major, BWV
1068, Advantage_system4.1.

The results are presented in Fig 5.6. We compared the QPU results with
simulated annealing and hybrid solver, which returned feasible solutions with no
soft constraint violation and higher entropy. Feasible solutions were obtained
for both Advantage_system4.1 and Advantage2_prototype1.1 QPUs, with soft
violations. The number of physical variables for Advantage_system4.1 varied in
a range of 107 to 130 qubits and for Advantage2_prototype1.1 from 106 to 126.
The performances of both QPUs for chain strength cr = 0.2 were absent of soft
constraint violations and yielded the highest entropy.

Symphony No. 7 in A major, Op. 92, Second Movement We decided
to use for the second experiment a more challenging composition with 12 tracks
of length 276 measures. We identified 591 phrases to build the set of jobs and,
respectively, 1056 QUBO variables.

The results for simulated annealing and Hybrid Solver returned feasible so-
lutions with entropy values of 463.05 and 441.99, respectively. The solutions
contain around the same amount of soft constraint violations, around 16% of the
measures. Due to the number qubit requirements, the problem did not fit into
Advantage2_prototype1.1. The number of physical variables required to solve
the problem lay in the range of 2700 to 3020 for Advantage system4.1; however,
no feasible solutions were obtained. For more details about the number of violated
constraints, we refer to Tables tables 5.4 to 5.7.
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Advantage2_prototype1.1

Chain Strength

Annealing Time 0.1 0.2 0.3

100 4 0 0

500 2 0 0

1000 5 0 0

2000 0 0 1

Table 5.5: Number of soft constraint violations for Suite No. 3 in D major, BWV
1068, Advantage2_prototype1.1.

Soft Violations

Chain Strength

Annealing Time 0.1 0.2 0.3

100 149 157 163

500 153 162 167

1000 151 161 161

2000 149 162 170

Table 5.6: Number of soft constraint violations for for Symphony No. 7 in A major,
Op. 92, Second Movement, Advantage_system4.1.
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Hard Violations

Chain Strength

Annealing Time 0.1 0.2 0.3

100 26 40 33

500 25 45 40

1000 34 42 54

2000 26 41 54

Table 5.7: Number of hard constraint violations for for Symphony No. 7 in A
major, Op. 92, Second Movement, Advantage_system4.1.

5.6 Conclusions

The main goal of this chapter was to lay the groundwork for music composition
and music reduction using quantum annealing. We introduced various formulations
and demonstrated how music rules and styles could be incorporated into the model.
Prior to this work, the majority of the studies on music composition and music
reduction have focused on gate-based quantum computers. Notwithstanding the
previous efforts [44,71], this is the first time quantum annealing is used for melodic
music composition.

The presented methodologies will be intriguing for composers, quantum com-
puting researchers, and the community of algorithmic music generation and allow
interested readers to build upon the given notions. Being the first comprehensive
study on the nascent field of music composition using quantum annealing, we
believe that it will foster the development of the area. As a side contribution, a
novel application area for quantum annealing is demonstrated within this chapter.

The popularity of quantum annealing relies on the promise that one may gain
speedup by exploiting quantum effects when solving optimization problems. We
would like to emphasize that creativity is in the foreground instead of potential
quantum speedup throughout the chapter. Nonetheless, it is envisaged that it will
become possible to solve larger-scale problems and obtain higher quality results
faster than the known classical techniques with technological advancements. As
the technologies evolve, the ideas discussed here can be leveraged for building
larger-scale and more sophisticated models, and it may also be possible to exploit
quantum annealing for speedup when composing music.
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The study has opened up a vast amount of directions to investigate. First
of all, the models can be ameliorated to incorporate further rules. This might
be beneficial for harmony generation in particular, as the traditional rules for
harmonization have complex structures. In addition, one may adopt the approach
we have taken for defining the objection function while generating a melody, for
the Markov random fields. The harmonic progressions can be identified from an
existing music piece, and the potentials can be set in accordance. One may focus on
generating specific music types, such as counterpoint music, which heavily depends
on rules. As a natural progression, a target problem would be music completion.
Music completion refers to the task of replacing the missing notes in a given music
piece. It is a suitable candidate problem as it can be defined as the problem of
maximizing the likelihood that a sequence of notes is selected to replace the missing
ones. Besides music creation, one may consider other problems from the domain of
music, such as music arrangement, where the aim is to arrange a given music piece
to a given list of instruments by reduction. The list can be expanded to include
any problem that can be expressed as an optimization task.

Regarding the music reduction problem, observations in the conducted exper-
iments suggest that one can further tune the model. Taking into account the
enhancements proposed in Sec. 5.5.3, one can avoid particular phrases being played
simultaneously, which might create dissonance, or give higher weights to phrases
from specific instruments. Furthermore, for a given phrase, one can indicate which
instruments can play the phrase at the cost of having a larger number of variables.

5.7 Chapter Summary

For this chapter, we proposed a formulation of music composition and music
reduction as optimization problems to be solved using quantum annealing.

• Music generation is not usually treated as ILP problem, but this formulation
can be easily mapped into a QUBO form, which is suitable for quantum
annealing devices.

• We can treat the choice of selecting a notes and pauses based on a set of
rules, which can be translated into a model of constraints.

• The constraints are mapped into penalties, and incorporated to a QUBO
formulation.

• The QUBO is them passed to a quantum annealing devices and we can obtain
the a sequence of notes and pauses that are optimal to the cost function,
generating a melody.
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• Music reduction can be seen as an special case of a job scheduling with fixed
time interval.

• The goal of this optimization is to diminish the idle time in the machines
(instruments) while also selecting the most informational rich phrases, which
gives more identity to the song.

• The problem is formulated also as QUBO.

• For larger instances, the problem seems underperform compared to the
classical counterpart simulated annealing method.

103103



Chapter 5. Applications of Quantum Annealing for Music Theory

104104



Chapter 6

Conclusions

In this thesis, we investigated the application of hybrid quantum computing
techniques for solving combinatorial problems with two distinct families of NISQ
friendly algorithms: the Quantum Approximation Optimization Algorithm and
the Quantum Annealing methods. For the gate based approaches, we focus on
improving the performance of the algorithms with error mitigation or homotopy
optimization. And for quantum annealing, we explored the possibility of performing
creative and artistic work.

Our results can be summarized as:

• The variations of QAOA proposed in this thesis showed improvement com-
pared with state of the art version;

• Quantum Annealing can provide solutions for music composition and reduc-
tion, once they are formulated as optimization problems;

• None of the methods investigated shows advantage over classical algorithms
for solving combinatorial problems. In fact, for some instances of music
reduction, specially the most challenging ones, the Quantum Annealing
approached returned worst results compared to Simulated Annealing.

We believed that those results are expected in the scope of a early stage
technology. The possible drawbacks to mention are:

• Problems with parsing and encoding data to quantum devices. The choice
can heavily affect both size and depth of resulting quantum circuit, choice of
gates and some architecture a more sensible affect by those constrains;

• The problem should take in consideration the architectures nuances, and are
mostly ignored during the simulations; since most of the quantum algorithms
design so far are device agnostic;
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• The coast of running the algorithms in theory versus real devices can diverge
significantly. Therefore, minimizing the advantaged since the number of
operations can be in reality drastically different from the device agnostic
approaches, which takes in consideration only the number of gates and
operations applied in logical qubits.

One can say that it is also worth investigating if VQA and Quantum Annealing
would ever provide advantage even in the situation of a fault-tolerant quantum
device. Contrary to other conventional quantum algorithms, such as Phase Es-
timation, Amplitute Amplification and Quantum Fourier Transform, VQAs and
QA have no substantial proof of advantage. In the case of QA, once the problem
is encoded as a QUBO or Ising Hamiltonian, it should also take in consideration
embedding it to the qubits topology. Such problem is known to be NP-Hard. In
order words, if one wishes to solve a NP problem, it is also creating another, that
could be hard as the original one, just to run the solution in a QA device.

Due to it nature, quantum computers are hybrid by default. However, at the
current paradigm, the computation heavily relies on the classical side. The classical
computer not only process substantial part of the data, going even further as
actually computing several steps of the solutions, but also are the subtract to set
the instructions as a meta-programming platform.

It is safe to say that, even though quantum devices at this point are not match for
classical devices, they do pushed the later to evolve and adapt. Inspired by quantum
algorithms, a trend of “dequantizing” quantum algorithm, the classical methods
benefits with more efficient and resilient approaches inspired by the quantum
counterparts. Attempts to “dequantizing” claims of quantum advantage [118] and
post-quantum cryptography [15] are the most prominent examples.

Sometimes we have to stop or even step back if we want to move forward.

106106



Bibliography

[1] Honeywell System model H1, 2020. https://www.honeywell.com/us/en/
company/quantum/quantum-computer.

[2] S. Aaronson. Bqp and the polynomial hierarchy. In Proceedings of the
forty-second ACM symposium on Theory of computing, pages 141–150, 2010.

[3] S. Aaronson. Shtetl-optimized, The blog of Scott Aaronson, 2023. https:
//scottaaronson.blog/?p=4447.

[4] A. S. Alfa, S. S. Heragu, and M. Chen. A 3-opt based simulated annealing
algorithm for vehicle routing problems. Computers & Industrial Engineering,
21(1-4):635–639, 1991. doi:10.1016/0360-8352(91)90165-3.

[5] T. Anders. 133 Compositions Created with Constraint Programming. In The
Oxford Handbook of Algorithmic Music. Oxford University Press, 02 2018.
doi:10.1093/oxfordhb/9780190226992.013.5.

[6] B. Apolloni, C. Carvalho, and D. De Falco. Quantum stochastic optimization.
Stochastic Processes and their Applications, 33(2):233–244, 1989. doi:10.
1016/0304-4149(89)90040-9.

[7] K. Apt. Principles of Constraint Programming. Cambridge University Press,
2003. doi:10.1017/cbo9780511615320.

[8] E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed start and
end times. Discrete Applied Mathematics, 18(1):1–8, 1987. doi:10.1016/
0166-218X(87)90037-0.

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo,
M. Broughton, B. B. Buckley, D. A. Buell, et al. Hartree-Fock on a super-
conducting qubit quantum computer. Science, 369(6507):1084–1089, 2020.
doi:10.1126/science.abb9811.

107

https://www.honeywell.com/us/en/company/quantum/quantum-computer
https://www.honeywell.com/us/en/company/quantum/quantum-computer
https://scottaaronson.blog/?p=4447
https://scottaaronson.blog/?p=4447
https://doi.org/10.1016/0360-8352(91)90165-3
https://doi.org/10.1093/oxfordhb/9780190226992.013.5
https://doi.org/10.1016/0304-4149(89)90040-9
https://doi.org/10.1016/0304-4149(89)90040-9
https://doi.org/10.1017/cbo9780511615320
https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1126/science.abb9811


Bibliography

[10] A. Arya, L. Botelho, F. Cañete, D. Kapadia, and Ö. Salehi. Applications of
Quantum Annealing to Music Theory, pages 373–406. Springer International
Publishing, Cham, 2022. doi:10.1007/978-3-031-13909-3_15.

[11] B. Bakó, A. Glos, Ö. Salehi, and Z. Zimborás. Near-optimal circuit design
for variational quantum optimization, 2022. arXiv:2207.06294.

[12] F. Barahona. On the computational complexity of Ising spin glass models.
Journal of Physics A: Mathematical and General, 15(10):3241–3253, oct 1982.
doi:10.1088/0305-4470/15/10/028.

[13] A. Bärtschi and S. Eidenbenz. Deterministic preparation of Dicke states. In
International Symposium on Fundamentals of Computation Theory, pages
126–139. Springer, 2019. doi:10.1007/978-3-030-25027-0_9.

[14] A. Bärtschi and S. Eidenbenz. Grover mixers for QAOA: Shifting complexity
from mixer design to state preparation. In 2020 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE), pages 72–82. IEEE,
2020. doi:10.1109/qce49297.2020.00020.

[15] D. J. Bernstein and T. Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017. doi:10.1038/nature23461.

[16] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, et al.
Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics,
94(1):015004, 2022. doi:10.1103/revmodphys.94.015004.

[17] V. Bogdanov, C. Woodstra, J. Bush, and S. T. Erlewine. All Music Guide to
Electronica: the Definitive Guide to Electronic Music. CMP Media, 2001.

[18] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M.
Martinis, and M. Troyer. Evidence for quantum annealing with more than
one hundred qubits. Nature Physics, 10(3):218–224, 2014. doi:10.1038/
nphys2900.

[19] M. Borowski, P. Gora, K. Karnas, M. Błajda, K. Król, A. Matyjasek,
D. Burczyk, M. Szewczyk, and M. Kutwin. New hybrid quantum annealing
algorithms for solving Vehicle Routing Problem. In International Con-
ference on Computational Science, pages 546–561. Springer, 2020. doi:
10.1007/978-3-030-50433-5_42.

[20] L. Botelho, A. Glos, A. Kundu, J. A. Miszczak, Ö. Salehi, and Z. Zimborás.
Error mitigation for variational quantum algorithms through mid-circuit

108108

https://doi.org/10.1007/978-3-031-13909-3_15
https://arxiv.org/abs/2207.06294
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1007/978-3-030-25027-0_9
https://doi.org/10.1109/qce49297.2020.00020
https://doi.org/10.1038/nature23461
https://doi.org/10.1103/revmodphys.94.015004
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1007/978-3-030-50433-5_42
https://doi.org/10.1007/978-3-030-50433-5_42


Bibliography

measurements. Physical Review A, 105(2):022441, 2022. doi:10.1103/
physreva.105.022441.

[21] L. Botelho and Ö. Salehi. Fixed interval scheduling problem with minimal
idle time with an application to music arrangement problem, 2023. arXiv:
2310.14825.

[22] S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta.
Mitigating measurement errors in multiqubit experiments. Physical Review
A, 103(4):042605, 2021. doi:10.1103/physreva.103.042605.

[23] P. Brucker and S. Knust. On the complexity of scheduling. In Introduction
to Scheduling, pages 21–42. CRC Press, 2009.

[24] R. E. Burkard and T. Bönniger. A heuristic for quadratic boolean programs
with applications to quadratic assignment problems. European Journal of
Operational Research, 13(4):374–386, 1983. doi:10.1016/0377-2217(83)
90097-8.

[25] C. S. Calude, M. J. Dinneen, and R. Hua. QUBO formulations for the graph
isomorphism problem and related problems. Theoretical Computer Science,
701:54–69, 2017. doi:10.1016/j.tcs.2017.04.016.

[26] E. Cambouropoulos. The local boundary detection model (lbdm) and its
application in the study of expressive timing. In ICMC, page 8, 2001.

[27] C. Campbell and E. Dahl. QAOA of the highest order. In 2022 IEEE 19th
International Conference on Software Architecture Companion (ICSA-C),
pages 141–146. IEEE, 2022. doi:10.1109/icsa-c54293.2022.00035.
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