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Abstract in English

In this dissertation we demonstrate that the continuous-time quantum walk
models remain powerful for general graph structures. We consider two as-
pects of this problem.

First, it is known that the standard Continuous-Time Quantum Walk
(CTQW), proposed by Childs and Goldstone, can propagate quickly on the
infinite path graph. However, the Schrodinger equation requires that the
Hamiltonian is symmetric, and thus only undirected graphs can be imple-
mented. In this thesis we will address the question, whether it is possible
to construct a continuous-time quantum walk on general directed graphs,
preserving its propagation properties.

Secondly, the quantum spatial search defined through CTQW has been
proven to work well on various undirected graphs. However, most of these
graphs have very simple structures. The most advanced results concerned
the Erdés-Rényi model of random graphs, which is the most popular but
not realistic random graph model, and Barabéasi-Albert random graphs, for
which full quadratic speed-up was not confirmed.

The dissertation consists of 7 chapters. In Chapter 1 we provided an intro-
duction and motivation. In Chapter 2 we present a notation and preliminary
concepts used in the dissertation.

In Chapters 3 and 4 we approach the first aspect. In Chapter 3 we propose
a nonmoralizing global interaction quantum stochastic walk, which is well-
definable on an arbitrary directed graph. We show that this model propagates
rapidly on an infinite path graph. In order to achieve the propagation speed
better than the classical one, we introduced a small amplitude transfer in
the direction opposite to the direction of the existing arcs. In Chapter 4
we analyze the convergence properties of the introduced model. We also
introduce two other quantum stochastic walk models called local and global
interaction quantum stochastic walks. We show that each of these models
has very different properties. In particular, local and nonmoralizing global
models present the most intuitive behavior on directed graphs. Our analysis
shows that it is indeed possible to introduce a fast continuous-time quantum
walk which is well-definable on general directed graphs.

In Chapters 5 and 6 we study the second of the posed questions. In
Chapter 5 we correct and improve state-of-the-art results on Erddés-Rényi
graphs. We also demonstrate that the convergence is correct for all vertices,
instead of only ‘most of them’. Compared to the previous state-of-the-art
results we show that Laplacian matrix is a much simpler operator to be
taken into consideration compared to the adjacency matrix. In Chapter 6 we
compare three different operators plausible for the quantum spatial search.



We show that the normalized Laplacian, under certain conditions, provides
the full quadratic speed-up. We analyze two random graph models which
output the graphs with complex structure with high probability. The analysis
confirms that the proposed operator is indeed better than other commonly
used operators. Finally, we propose the procedure which solves the problem
of determining the optimal time for running the quantum search algorithm.

Finally, in Chapter 7 we review and conclude our results. The dissertation
also consists of two Appendix sections, which provide the proofs for the
results used in the dissertation.
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Extended summary

Recently, quantum computers have attracted a huge attention. This is be-
cause such devices can solve vital computational problems faster than their
classical counterparts. What is more interesting, the speed-up is observ-
able even in the complexity of algorithms. The best example is the Shor’s
algorithm [1] which solves the integer factorization problem in polynomial
time in the terms of number length. It is notable to recall that any known
classical algorithm that solves the same problem requires exponential time
in a number of bits. Furthermore, the algorithm may threaten the current
cryptographic protocols, as it can easily break RSA encryption.

The Shor’s algorithm and other quantum algorithms [2,3] started an im-
portant and beautiful field called quantum computer science. The goal of
this discipline is to construct the algorithms which are faster compared to
the currently known algorithms for conventional computers. Despite numer-
ous important theoretical algorithms [2,4,5|, there are also the algorithms
which have the potential practical application. One can point to the Grover’s
algorithm and its extensions [3,6], quantum annealing algorithms [7,8|, vari-
ational optimization algorithms [9-12|, and Quantum PageRank [13,14].

Quantum algorithms can be divided into various classes according to the
problem they solve or the computational model they are based on [15]. In
this dissertation, we focus on a particularly important class called quantum
walks, in which the amplitude transfer is done within some underlying graph
structure [16-18|. It can be considered as an equivalent of random walk
algorithms, where the probability mass transfer is not allowed when the states
are not connected.

Quantum walks application comes in particular from its ballistic propa-
gation. Let us consider a random walk on an infinite path with the prob-
ability localized at position 0. Then after time ¢, the probability distribu-
tion of finding the walker can be well approximated by Gauss distribution
N(0,0(+/1)) [19]. Since the standard deviation grows proportionally to the
square root of time, we say that the stochastic process obeys a normal dif-
fusion. This is contrary to a quantum walk, where the standard deviation
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Figure 1: Distribution of continuous-time random walk (left) vs continuous-
time quantum walk (right) on a path graph with 101 nodes and after evolu-
tion time 22. The evolution starts in the middle of the graph.

grows like ©(¢%) [20], i.e. we can observe the ballistic diffusion. Thus the
propagation in a quantum walk may be much faster which may explain the
speed-up appearing in quantum walk algorithms. The resulting distributions
for both classical and quantum walks are presented in Fig. 1.

Despite the fact that the very first quantum walk is almost 20 years old,
there are two important questions regarding the generality of the results in
the terms of graph structure. Many quantum closed-system walk models,
proposed so far, were definable on relatively general graph structures [18,21,
22|. However, it was shown under general and reasonable assumptions that
by using the closed-system quantum evolution one cannot define a quantum
walk on a general directed graph [23|. This results from the quasi-periodicity
of the closed-system evolution, i.e. there exists an arbitrarily large time
evolution ¢ after which the system evolves to the state close to the initial
state. This in turn implies that a closed-system quantum walk can only
be well-defined for graphs, where, for arbitrary two nodes, there is a path
connecting them.

Since close-system quantum walks are not sufficient to model the evo-
lution on general directed graphs, interactions with the environment are
necessary. However, currently known open quantum walk models do not
yield the ballistic propagation [24-26]. In particular, for the continuous-time
open quantum walk [24], the classical evolution destroys its coherence, and
the proposed model lacks the ballistic propagation. It has been an open
question whether there exists a quantum walk model which preserves the



directed graph structure and whose propagation is better than the propa-
gation observed in random walks. This may be important, for the directed
graph model, for example in the case of the evolution for classical heuristic
optimization algorithms like simulated annealing or tabu search.

There is a similar lack of generality for quantum spatial search algorithms.
The quantum search algorithms are defined as the graph-restricted evolution,
which aims at finding a marked node. Note that there are known examples of
discrete quantum walks, yielding even a quadratic speed-up over an arbitrary
Markov-chain walk [21,27]. However, general and simple results are still
missing for continuous-time quantum walks.

The first continuous-time quantum spatial search algorithm [18] has been
deeply investigated for the special classes of graphs like complete graphs [18§],
grid graphs [18], binary trees [28], simplex of complete graphs [29], and others
[30-32]. Based on these results, the special properties of quantum walks
were presented. While the obtained results were an important step toward
the development of quantum search algorithms, all of the graphs considered
were almost regular (meaning all vertices have very similar degrees) and we
can split the vertices into several classes (so-called vertex-transitivity), within
which the vertices are indistinguishable.

The first approach in generalizing the above results was made for Erdés-
Rényi graphs [33-37]. While these graphs are not regular, the deviations
between the highest and the smallest degrees are sufficiently small to provide
very tight results on the efficiency of quantum search on these graphs. Then
three more general results were provided. The first one showed a quadratic
speed-up compared to a general Markov-chain search [38], at the cost of
larger Hilbert space. Additionally, in [39] quite general conditions for (op-
timal) quantum search for original continuous-time spatial search were pre-
sented. However, the application of these results required the full eigen-
decomposition of the graph-based Hamiltonian, which in general is a hard
computational task. In fact, this task is much more demanding compared to
the quantum or even the classical search itself. Finally, in [40] the authors
determined the efficiency of the quantum spatial search for complex graphs.
However, while the speed-up over the classical search was shown, it remains
an open question whether the quadratic speed-up over the Markov search is
achievable.

Dissertation overview In the scope of the dissertation we demonstrate
that the continuous-time quantum walk models remain powerful for general
graph structure. The analysis was done by approaching two problems:

1. Does a time-independent continuous-time quantum walk model which



is definable for general directed graphs and which maintains fast prop-
agation exist?

2. Is the original continuous-time quantum walk based spatial search [18§]
powerful enough to offer the speed-up for heterogeneous graphs?

Note that for both problems the context of ‘general graph structure’ changes.
For the first problem, we focus on directed graphs, while for the second prob-
lem — on undirected graphs with significant deviation between the degrees of
vertices. Currently, most of the results for quantum search considers almost
regular graphs. Therefore, we consider heterogeneous graphs as a reasonable
next step for investigation.

The first problem is approached using the formalism of quantum stochas-
tic walks [41]. The model is a generalization of both continuous-time quan-
tum walk [18] and continuous-time random walk. For the second problem,
we analyze the CTQW-based spatial search [18] on random heterogeneous
graphs and complex Barabasi-Albert graphs [42]. The latter is a paradig-
matic random graph model which simulates Internet network evolution.

The dissertation is organized as follows. In Chapter 2 we present a no-
tation and preliminary information used in the dissertation. In Chapter 3
we analyze a quantum walk model presented in [41], in the context of the
propagation. We improve the model into nonmoralizing quantum stochastic
walk which is well-defined on any directed graphs. In order to achieve better
than classical diffusion, we allowed a small amplitude transfer in the direc-
tion opposite to the direction of the existing arcs. In Chapter 4 we present
convergence properties of the introduced model and compare it to other well-
known quantum stochastic walk models. We confirm that the structure of the
directed graph is indeed preserved. In Chapter 5 we improve the results for
Erdés-Rényi presented in [33], in order to clarify the approach to the analysis
of CTQW-based spatial search to random graphs. In Chapter 6 we present
the analysis of the spatial search algorithm for heterogeneous and complex
graphs. Finally, in Chapter 7 we justify the correctness of our hypothesis in
the context of the results presented in the dissertation.

The results presented in Chapters 3 and 4 are based on the results from
[43-45]. The results presented in chapters 5 and 6 are based on the results
from [36,37,46,47|.
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