Sub- and super-fidelity as bounds for quantum fidelity

J. A. Miszczak, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski

October 28, 2008
Introduction
 Quantum states
 Properties of fidelity
 Analysis of fidelity

Bounds for fidelity
 Fidelity, sub- and super-fidelity
 Properties of sub- and super-fidelity
 Comparison of different bounds
 Super-fidelity and trace distance
 Measuring and calculating super-fidelity

Conclusions

References
Quantum states and fidelity

Quantum state is an operator $\rho : \mathcal{H}_N \rightarrow \mathcal{H}_N$, which is positive semi-definite ($\rho \geq 0$) and normalised ($\text{tr}\rho = 1$). We denote by $\Omega_N \subset \mathcal{M}_N$ the space of density matrices on \mathbb{C}^N.

We define the fidelity between two states as

$$F(\rho_1, \rho_2) = \left(\text{tr}|\sqrt{\rho_1}\sqrt{\rho_2}|\right)^2 = ||\rho_1^{1/2}\rho_2^{1/2}||^2_1,$$

where $|| \cdot ||_1$ is a trace norm, i.e. $||A||_1 = \text{tr}|A| = \sum_{i=1}^{N} \sigma_i(A)$.

In the case of two pure states $\rho_1 = |\phi\rangle\langle\phi|, \rho_2 = |\psi\rangle\langle\psi|$ we have $F(\rho_1, \rho_2) = |\langle\psi|\phi\rangle|^2$.

J.A.M, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski

Sub- and super-fidelity as bounds for quantum fidelity
Fidelity has few nice properties

- **Bounds:** $0 \leq F(\rho_1, \rho_2) \leq 1$. Furthermore $F(\rho_1, \rho_2) = 1$ iff $\rho_1 = \rho_2$, while $F(\rho_1, \rho_2) = 0$ iff $\text{supp}(\rho_1) \perp \text{supp}(\rho_2)$.

- **Symmetry:** $F(\rho_1, \rho_2) = F(\rho_2, \rho_1)$.

- **Unitary invariance:** $F(\rho_1, \rho_2) = F(U\rho_1U^\dagger, U\rho_2U^\dagger)$, for any unitary operator U.

- **Concavity:**
 \[
 F(\rho, a\rho_1 + (1-a)\rho_2) \geq aF(\rho, \rho_1) + (1-a)F(\rho, \rho_2), \text{ for } a \in [0,1].
 \]

- **Multiplicativity:** $F(\rho_1 \otimes \rho_2, \rho_3 \otimes \rho_4) = F(\rho_1, \rho_3)F(\rho_2, \rho_4)$.

- **Joint concavity:** $\sqrt{F(a\rho_1 + (1-a)\rho_2, a\rho_1' + (1-a)\rho_2')} \geq a\sqrt{F(\rho_1, \rho_1')} + (1-a)\sqrt{F(\rho_2, \rho_2')}$, for $a \in [0,1]$.
Classical counterpart

Fidelity between two diagonal operators is equal to the Bhattacharyya coefficient B for their eigenvalues.

$$\sqrt{F(\text{diag}(\rho_1), \text{diag}(\rho_2))} = B(p, q) = \sum_{i=1}^{n} \sqrt{p_i q_i}$$

Here p and q are eigenvalues of ρ_1 and ρ_2 respectively.
We start our analysis of fidelity by expressing it in terms of eigenvalues \(\lambda_i, \ i = 1, \ldots, N \) of the (positive) matrix \(\sqrt{\rho_1^{1/2} \rho_2 \rho_1^{1/2}} \). Using the fact that matrix \(\rho_1 \rho_2 \) is similar to matrix \(\sqrt{\rho_1 \rho_2} \sqrt{\rho_2} \) one can write

\[
\sqrt{F(\rho_1, \rho_2)} = \text{tr} \sqrt{\sqrt{\rho_1 \rho_2} \sqrt{\rho_1}} = \sum_{i=1}^{N} \lambda_i,
\]

and since \(\text{tr} \rho_1 \rho_2 = \text{tr} \sqrt{\rho_1 \rho_2} \sqrt{\rho_1} = \sum_{i=1}^{N} \lambda_i^2 \) by squaring the above we get

\[
F(\rho_1, \rho_2) = \left(\sum_{i=1}^{N} \lambda_i \right)^2 = \text{tr} \rho_1 \rho_2 + 2 \sum_{i<j} \lambda_i \lambda_j.
\]
Elementary symmetric functions

For a given matrix $X \in \mathcal{M}_N$ with eigenvalues $\lambda_1, \ldots, \lambda_N$ we define elementary symmetric function $s_m(X)$ as $s_m(\lambda_1, \ldots, \lambda_N)$.

For example

$$s_2(X) = \sum_{i<j} \lambda_i \lambda_j,$$

$$s_3(X) = \sum_{i<j<k} \lambda_i \lambda_j \lambda_k.$$

Using this notion we can write the fidelity as

$$F(\rho_1, \rho_2) = \text{tr}\rho_1\rho_2 + 2s_2(\sqrt[4]{\rho_1\rho_2}\sqrt[4]{\rho_1}).$$
Lower bound by Uhlmann

In his unpublished work Uhlmann suggested an inequality

\[F(\rho_1, \rho_2) \geq \text{tr}\rho_1\rho_2 + \sqrt{2}\sqrt{\text{tr}\rho_1\rho_2^2} - \text{tr}\rho_1\rho_2\rho_1\rho_2. \]

We define sub-fidelity as

\[E(\rho_1, \rho_2) = \rho_1\rho_2 + \sqrt{2}\sqrt{s_2(\rho_1\rho_2)}. \]

Using elementary symmetric functions this quantity can be represented as

\[E(\rho_1, \rho_2) = \text{tr}\rho_1\rho_2 + 2\sqrt{s_2(\rho_1\rho_2)}. \]
Super-fidelity

We can introduce upper bound which is complementary to sub-fidelity\(^1\)

\[
F(\rho_1, \rho_2) \leq \text{tr}\rho_1\rho_2 + \sqrt{(1 - \text{tr}\rho_1^2)(1 - \text{tr}\rho_2^2)}.
\]

Again we can use elementary symmetric function to get compact expression for super-fidelity

\[
G(\rho_1, \rho_2) = \text{tr}\rho_1\rho_2 + \sqrt{(1 - \text{tr}\rho_1^2)(1 - \text{tr}\rho_2^2)} = \text{tr}\rho_1\rho_2 + 2\sqrt{s_2(\rho_1)s_2(\rho_2)}.
\]

thus we have

\[
s_2(\sqrt{\sqrt{\rho_1\rho_2}\sqrt{\rho_1}}) \leq \sqrt{s_2(\rho_1)s_2(\rho_2)}
\]

Two inequalities $E(\rho_1, \rho_2) \leq F(\rho_1, \rho_2) \leq G(\rho_1, \rho_2)$ can be written in a compact way using elementary symmetric functions

$$\sqrt{s_2(\rho_1 \rho_2)} \leq s_2(\sqrt[\frac{1}{2}]{\rho_1 \rho_2} \sqrt[\frac{1}{2}]{\rho_1}) \leq \sqrt{s_2(\rho_1)s_2(\rho_2)}$$

- If one of the states is pure we have equality $E = F = G$.
- Moreover these quantities coincide for one-qubit states ($N = 2$).
Properties of sub- and super-fidelity

Sub- and super-fidelity share some properties with fidelity

i’) **Bounds:** $0 \leq E(\rho_1, \rho_2) \leq 1$ oraz $0 \leq G(\rho_1, \rho_2) \leq 1$.

ii’) **Symmetry:** $E(\rho_1, \rho_2) = E(\rho_2, \rho_1)$ and $G(\rho_1, \rho_2) = G(\rho_2, \rho_1)$.

iii’) **Unitary invariance:** $E(\rho_1, \rho_2) = E(U\rho_1 U^\dagger, U\rho_2 U^\dagger)$ and $G(\rho_1, \rho_2) = G(U\rho_1 U^\dagger, U\rho_2 U^\dagger)$, for any unitary U.

iv’) **Concavity:** Sub- and super-fidelity are concave,

$$E(A, \alpha B + (1 - \alpha) C) \geq \alpha E(A, B) + (1 - \alpha) E(A, C),$$

$$G(A, \alpha B + (1 - \alpha) C) \geq \alpha G(A, B) + (1 - \alpha) G(A, C).$$

v’) **Super-fidelity** (just like \sqrt{F}) is **jointly concave** in its two arguments

$$\sqrt{F}(a\rho_1 + (1-a)\rho_2, a\rho_1' + (1-a)\rho_2') \geq a\sqrt{F}(\rho_1, \rho_1') + (1-a)\sqrt{F}(\rho_2, \rho_2')$$

for $a \in [0, 1]$.

J.A.M, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski

Sub- and super-fidelity as bounds for quantum fidelity
Both E and G are not multiplicative. On the other hand
Properties of sub- and super-fidelity
Properties for tensor products

Both E and G are not multiplicative. On the other hand

vi') Super-fidelity is super-multiplicative:

$$G(\rho_1 \otimes \rho_2, \rho_3 \otimes \rho_4) \geq G(\rho_1, \rho_3) G(\rho_2, \rho_4),$$
Properties of sub- and super-fidelity

Properties for tensor products

Both E and G are not multiplicative. On the other hand

vi′) Super-fidelity is super-multiplicative:

$$G(\rho_1 \otimes \rho_2, \rho_3 \otimes \rho_4) \geq G(\rho_1, \rho_3)G(\rho_2, \rho_4),$$

vii′) Sub-fidelity is sub-multiplicative

$$E(\rho_1 \otimes \rho_2, \rho_3 \otimes \rho_4) \leq E(\rho_1, \rho_3)E(\rho_2, \rho_4).$$
If the density matrices ρ_p and ρ_q commute, discussed bound can be expressed in terms of respective eigenvalues $\{p_i\}_{i=1}^N$ and $\{q_i\}_{i=1}^N$:

$$E(\rho_p, \rho_q) = \sum_{i=1}^N p_i q_i + \sqrt{2 \left[\left(\sum_{i=1}^N p_i q_i \right)^2 - \sum_{i=1}^N p_i^2 q_i^2 \right]},$$

$$F(\rho_p, \rho_q) = \left(\sum_{i=1}^N \sqrt{p_i q_i} \right)^2,$$

$$G(\rho_p, \rho_q) = \sum_{i=1}^N p_i q_i + \sqrt{\left(1 - \sum_{i=1}^N p_i^2 \right) \left(1 - \sum_{i=1}^N q_i^2 \right)}.$$
Mixed states

To get some feeling about behaviour of E and G we calculate them for states of the form

$$\rho_a = a |\psi\rangle\langle\psi| + (1 - a) I / N.$$

where $|\psi\rangle$ is an arbitrary pure state.

For $\rho_* := I / N$ we get

$$F(\rho_a, \rho_*) = \frac{1}{N^2} \left(\sqrt{(N - 1)a + 1} + (N - 1)\sqrt{1 - a} \right)^2,$$

and sub- and super-fidelity are expressed as

$$E(\rho_a, \rho_*) = \frac{1}{N} + \sqrt{2} \frac{1}{N} \sqrt{1 - \frac{1}{N}} \sqrt{1 - a^2},$$

$$G(\rho_a, \rho_*) = \frac{1}{N} + \left(1 - \frac{1}{N} \right) \sqrt{1 - a^2}.$$
Comparison of sub–fidelity E, fidelity F and super–fidelity G.

\[F(a)^i \]

\begin{align*}
\text{a) } N &= 2 \\
E &= F = G \\
\text{b) } N &= 3 \\
\text{c) } N &= 4 \\
\text{d) } N &= 5 \\
E &\quad F &\quad G
\end{align*}

J.A.M, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski
Difference $G - F$ and $E - F$

F and G coincide if one of the states is pure, but it is natural to ask how big the difference $G - F$ might be. Let us use the Hilbert space of dimension $N = 2M$ and states

$$\rho_1 = \frac{2}{N} \text{diag}(1, \ldots, 1, 0, \ldots, 0)$$

and

$$\rho_2 = \frac{2}{N} \text{diag}(0, \ldots, 0, 1, \ldots, 1).$$
Difference $G - F$ and $E - F$

F and G coincide if one of the states is pure, but it is natural to ask how big the difference $G - F$ might be.

Let us use the Hilbert space of dimension $N = 2M$ and states

$$\rho_1 = \frac{2}{N}\text{diag}(1,\ldots,1,0,\ldots,0) \quad \text{and} \quad \rho_2 = \frac{2}{N}\text{diag}(0,\ldots,0,1,\ldots,1).$$

Since they are supported by orthogonal subspaces their fidelity vanishes, $F(\rho_1, \rho_2) = 0$. On the other hand their super–fidelity is equal to

$$G(\rho_1, \rho_2) = \frac{N - 2}{N},$$

and the difference $F - G$ can be arbitrarily close to 1.
Maximal difference

Max difference between fidelity and sub- and super-fidelity for random states in dimensions $N = 2, 3, \ldots, 62$.

J.A.M, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski

Sub- and super-fidelity as bounds for quantum fidelity
Average difference

On average situation looks somehow better.

Average difference between fidelity and sub- and super-fidelity for some values of $N \in [2, 62]$.

J.A.M, Z. Puchała, P. Horodecki, A. Uhlmann, K. Życzkowski

Sub- and super-fidelity as bounds for quantum fidelity
Super-fidelity and trace distance

For any $\rho_1, \rho_2 \in \Omega_N$ super-fidelity and trace distance are related by the inequality\(^2\)

$$1 - G(\rho_1, \rho_2) \leq D_{tr}(\rho_1, \rho_2)$$

Probability of error for distinguishing two density matrices $\rho_1, \rho_2 \in \Omega_N$ is expressed by the trace distance as

$$P_E(\rho_1, \rho_2) = \frac{1}{2}(1 - D_{tr}(\rho_1, \rho_2)).$$

Using the above inequalities we can write

$$\frac{1}{2} G(\rho_1, \rho_2) \geq P_E(\rho_1, \rho_2)$$

Experimental setup for measuring super-fidelity

We use fact that \(\text{tr} V_{12} \rho_1 \otimes \rho_2 = \text{tr} \rho_1 \rho_2 \) where \(V_{12} \) is a SWAP operator. \(V_{12} = P_{12}^+ - P_{12}^- \) is hermitian and thus represents an observable.
To measure \(G \) we need a source which creates pairs \(\rho_i \otimes \rho_j \), \(i, j = 1, 2 \).
The probability of measuring \(P_{12}^- \) reads \(p_{ij}^- = \text{tr} P_{12}^- \rho_i \otimes \rho_j \) and using it we can write

\[
G = 1 - 2(\rho_{12}^- - \sqrt{\rho_{11}^- \rho_{22}^-})
\]
Probability of the event that both detectors click is equal to p_{ij}^-. On detectors clicks with $p_{ij}^+ = 1 - p_{ij}^-$. Beam-splitter projects on P^- or P^+.

The experimental setup is in this case very simple.³

³F. A. Bovino et all, PRL 95, 240407 (2005)
Computational efficiency

E and G are much easier to calculate than fidelity \(F \). To compute any of these bounds it is enough to evaluate three traces only.

\[E, G \text{ are much easier to calculate than fidelity } F. \]

(See also P. E. M. F. Mendonca, *et al.*, arXiv:0806.1150)
Conclusions

- Proposed bounds share with fidelity its main features (they are bounded, symmetric, unitary invariant and concave).
- Super–fidelity G can be used in place of fidelity F for small systems or when at least one of the states is pure enough.
- Sub- and super-fidelity can be (in principle) measured in laboratory.
- It is easy to calculate them using standard computer algebra systems.
References

Thank you.